1. Let $\mathbb{R}^\mathbb{N}$ be the set of sequences (r_0, r_1, \ldots) of real numbers. Note that each member of this set is an infinite sequence of reals. Alternatively, it can be defined as a cross product of the set \mathbb{R} with itself countably infinitely many times:

$$\mathbb{R}^\mathbb{N} = \bigotimes_{i \in \mathbb{N}} \mathbb{R}.$$

Prove or disprove: $\mathbb{R}^\mathbb{N}$ has the same cardinality as \mathbb{R}.

(20 points)

2. (a) Prove that a language L is decidable if and only if there is a Turing machine which accepts a string x if x is in L, and rejects and halts otherwise. (We defined L to be decidable if both L and L^c are Turing-acceptable.)

(10 points)

(b) Prove that every infinite acceptable language has an infinite decidable subset.

(20 points)

(c) A language $L \subseteq \Sigma^*$ is said to be immune if it has no infinite c.e. subset. Construct an immune language. (Hint: You may want to submit this at the end of the course.)

(*)

3. Lossless data compression has to be invertible - for every compressed word, there should be a unique decompressed word. Consider the binary alphabet $\Sigma = \{0, 1\}$. Let $C : \Sigma^n \rightarrow \Sigma^n$ be a compressor. Then the above constraint forces it to be one-to-one (an injection).

Prove that lossless data compression is ineffective: for all long enough lengths n and constant $c \in \mathbb{N}$, the number of strings of length n which have compressed words less than length $n - c$, is at most 2^{n-c}. Discuss why it still makes sense to gzip a file.

(10 points)

4. (a) Prove or disprove: There is a prefix encoding $\langle \cdot, \cdot \rangle$ of pairs of strings with the following property. There is a constant c such that for all pairs of strings (x, y),

$$|\langle x, y \rangle| \leq |x| + |y| + c.$$

(15 points)
5. Let \(n \) be a non-negative number.

(a) Consider the concatenation of the first \(n \) binary strings in the standard enumeration
\[
c_n = s_0 s_1 \ldots s_{n-1}.
\]
Prove that \(C(c_n) \leq \log_2 n + O(1) \). \hspace{1cm} (10 points)

(b) Recall that there is a computable enumeration \(T_0, T_1, \ldots \) of Turing machines. The “diagonal” halting language
\[
H = \{ x : T_x(x) \text{ halts} \},
\]
that is, the set of strings \(x \) such that the Turing machine \(T_x \) halts on input \(x \), is undecidable.

Let
\[
h_n = b_0 b_1 \ldots b_{n-1}
\]
be the concatenation of \(n \) bits, where \(b_i = 1 \) if \(s_i \in H \), and \(b_i = 0 \) otherwise. Prove that if \(n \) is large enough,
\[
C(h_n) \leq \log_2 n + O(1),
\]
that is, even though the diagonal halting problem is uncomputable, almost all the prefixes of its characteristic sequence have very low complexity. \hspace{1cm} (30 points)

6. Recall that \(m : \Sigma^* \rightarrow \mathbb{N} \) is defined as
\[
m(x) = \min_{y \geq x} C(y),
\]
that is, \(m(x) \) is the minimum complexity of all strings beyond \(x \) in the standard enumeration of strings.

Prove: Let \(F : \Sigma^* \rightarrow \mathbb{N} \) be a partial computable function monotone increasing from some \(x_0 \) onwards. Then for every large enough \(x \), \(m(x) < F(x) \) when \(F(x) \) is defined. \hspace{1cm} (20 points)

7. Prove that self-delimiting Kolmogorov complexity is not invariant with respect to cyclic shifts. That is, there is a string \(x_0 x_1 \ldots x_{n-1} \) and an \(m \), where \(0 \leq m \leq n - 2 \) such that the Kolmogorov complexity of \(x_{m+1} \ldots x_{n-1} x_0 \ldots x_m \) differs from that of the first by more than an additive constant. [Source: Li and Vitanyi, 2nd ed, pg 204.] \hspace{1cm} (20 points)

8. (a) (Data Processing Inequality) Let \(\phi \) be a total computable function. Show that there is a constant \(c_\phi \) depending only on \(\phi \) such that for any string \(x \),
\[
K(\phi(x)) \leq K(x) + c_\phi \quad \text{and} \quad C(\phi(x)) \leq C(x) + c_\phi.
\]
Discuss the implication of this inequality. \hspace{1cm} (10 points)

(b) A physicist friend of yours argues in the following way: “I will place a laptop on a stick of dynamite, and light the fuse. Very soon, you will have a tremendous increase in the entropy - intuitively, a physical process has started with a low complexity configuration and resulted in a high complexity configuration.” Reconcile this with the data processing inequality. \hspace{1cm} (5 points)
(c) Let $\phi(x, y)$ be a total computable function. Show that there is a constant c_ϕ such that for all strings x and y,

$$K(\phi(x, y)) \leq K(x) + K(y) + c_\phi.$$

(10 points)

(d) Show that the above inequality does not hold for C.

(10 points)

9. Let P be the set of all Turing machines. The halting probability (or Chaitin’s Ω) is the following number:

$$\Omega = \sum_{\substack{p \in P \\text{p halts}}} \frac{1}{2^{\|p\|}}.$$

Prove that a Turing machine cannot decide, for all large enough i, whether the i^{th} bit of Ω is 1 or not.

(5 points)

Assume that you know the following fact: Let n be a given arbitrary large enough number. Given the first n bits of Ω, it is possible to decide whether any Turing machine i, $0 \leq i \leq n - 1$ halts or not. Using this fact, prove that there is a constant $c \in \mathbb{N}$, such that for all n,

$$K(\Omega[0 \ldots n - 1]) \geq n - c.$$

(That is, prefixes of Chaitin’s Ω, unlike the prefixes of characteristic sequence of the halting language, are incompressible - Kolmogorov incompressibility is a stronger requirement than uncomputability.)

(25 points)