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1 Random Variables

Material in this chapter is taken from Shiryaev [1]. Let (Ω,F , P ) be a probability space, where Ω is the
sample space, F is the σ-algebra comprising the events, and P is the probability measure. Recall that a
standard example of a measurable space is (R,B(R)), where B(R) is the smallest σ-algebra containing all
the intervals of the form (infty, a], a ∈ R, and the empty set.

Recall that a random variable X : Ω → R is a measurable function in the probability space. That
is, assuming that the measure space on R is (R,B(R)), we require that for every S ∈ B(R), X−1(S) ∈ F.
Please consult the notes on measurability to see one intuition behind this definition, and examples of random
variables.

The probability distribution µX induced by X on (R,B(R)) is defined as follows. For any set S ∈ B(R),
we have

µX(S) = P (X−1(S)) = P ({ω ∈ Ω | X(ω) ∈ S}).

Note that the right hand side is a probability on subsets of Ω. Thus the probability on the domain can be
used to define an induced probability on the range.

This is not a very strange concept - for example, when we have a dartboard with three regions, say a
red region with a score of 20, a blue region with a score of 10 and a green region with a score of 20, we
usually like to think of “the probability that I will get a 20 on a throw”. Here we are directly thinking of a
probability over the scores. This is naturally defined as probability that the dart lands on a region whose
score is 20, that is, either red or green. If

score : {Red,Blue,Green} → {20, 10}

is the random variable, then we seek the probability of the event score−1({20}) = {Red,Green}.

When we are discussing this general concept, it is interesting to view a familiar concept - that of a
probability distribution - in a new light. First, we recall the definition of a distribution function.

Definition 1.1. The function FX : R→ [0, 1] defined by

FX(x) = P{ω ∈ Ω | X(ω) ≤ x}, x ∈ R,

is called the distribution function of X.

When we discuss discrete random variables, we like to talk of P (X = x). This is usually called the
probability density function. For discrete random variables, we can use the density function to define the
distribution function, and vice versa. (How?)

However, in the continuous case, P (X = x) for a real number x is 0. So the distribution function is more
informative than the density function.

Now, note that FX(x) is µX((−∞, x]), and (−∞, x] is a set in B(R). So the distribution function is
specifically, the induced probability of some special sets in the σ-algebra over R.
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2 Random Vectors

Definition 2.1. A finite sequence of random variables (X1(ω), X2(ω), . . . , Xn(ω)) is called an n-dimensional
random vector.

The induced probability µX1,X2,...,Xn(S) for any set S ∈ B(Rn) is defined to be P (XS
1 ∩ · · · ∩X−1n (S)).

Just as the distribution function of a random variable is related to the probability induced by it, we can
see that the joint distribution of the random variables X1, . . . , Xn is related to the induced probability of
(X1, . . . , Xn).

When we have distributions involving multiple random variables, we can now study the relationships
between the random variables. An important concept is that of independence.

We say that the random variables X1, . . . , Xn are independent if

FX1,...,Xn(x1, . . . , xn) = FX1(x1)FX2(x2) . . . FXn(xn).

3 Stochastic Process

An infinite sequence of random variables X1, X2, . . . , where each is a real-valued function on the same space
Ω is called a stochastic process.

For example, let Ω be the set of infinite binary sequences. Let Xi(ω) be the ith coordindate of ω. Then
X0, X1, . . . is a stochastic process.

We say that a stochastic process X0, X1, . . . is independent if for every k ∈ N, for every set of natural
numbers {i1, i2, . . . , ik}, the set of random variables Xi1 , . . . , Xik are independent.

An independent stochastic process is said to be an independent, identically distributed (i.i.d. for short)
stochastic process, if FXi = FXj for all i, j ∈ N.

Exercise

1. Consider the experiment of tossing a fair coin “infinitely many times”. Let Xi : {Heads,Tails} → {0, 1}
be the random variable defined by X(Heads) = 1 and X({Tails}) = 0. Since it is a fair coin,
P (Xi = 1) = 0.5 for any i ∈ N. Define the joint distributions and show that X0, X1, . . . is an
independent, identically distributed stochastic process.

2. Consider the unit interval [0, 1). For a real number x, let 〈x〉 denote the fractional part of x, that is
x− bxc. For example, 〈1.5〉 = 0.5.

Let Xi : [0, 1)→ {0, 1} be defined as follows.

Xi(ω) =

{
0 if 〈2iω〉 ∈ [0, 0.5)

1 if 〈2iω〉 ∈ [0.5, 1).

Intuitively, Xi(ω) is the ith bit in the binary expansion of ω.

Show that X0, X1, . . . is an independent process. This exercise shows that we can study “deterministic”
processes in the probabilistic setting, together with concepts like independence.

3. Construct an independent binary valued stochastic process that is not i.i.d.
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4 Stationary Stochastic Process

Independence is quite a strong assumption in the study of stochastic processes, and when we want to apply
theorems about stochastic processes to several phenomena, we often find that the process at hand is not
independent.

At the same time, we would like to retain some of the nice properties of stochastic processes like the
law of large numbers. It is clear that a purely deterministic process will not obey the law of averages - for
example, if an experiment always yields 0, then it will not yield 1s half of the time, and the law of large
numbers fails badly. Is there a middle ground where slightly dependent sequence of processes still retain
some of the probabilistic features of independent processes - for example, for a binary-valued stochastic
process which is not independent, could we still say that with high probability, we will get zeroes half of the
time, asymptotically?

There are several such important settings which simultaneously admit dependence, and many probabilis-
tic laws of independent processes. The most important is that of a stationary stochastic process.

Definition 4.1. Let (Ω,F , P ) be a probability space and X = (X0, X1, . . . ) be a stochastic process. For
k ∈ N, T kX = (Xk, Xk+1, . . . ) be the stochastic proces representing the kth “left-shift of X”.

X is stationary if the probability distributions of X and T kX are the same for every k ≥ 1:

P (X ∈ B) = P (T kX ∈ B) ∀B ∈ B(R∞) ∀k ∈ N.

An equivalent definitions using finite-dimensional distributions is as follows.

Note that for a binary i.i.d. process, P (01) = P (0)P (1) = P (10), but for a stochastic process, P (01) can
be different from P (10). This gives an intuition to the kind of generalization possible using stationarity.

There is a version of the law of large numbers applicable to the set of stationary processes, called the
Ergodic Theorem. To introduce this, we now view stationary processes via a slightly different viewpoint.

4.1 Measure-Preserving Transformations

Exercises

1. Show that every i.i.d. process is stationary.
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