
Lempel Ziv 1978

January 21, 2013

1 Motivation

An encoder E is said to be information lossless if for all initial states z and all strings x, the triple
(z, output(z, x), state(z, x)) uniquely determines x.

E is said to be information lossless of finite order if for all initial states z and any string x, the pair
(z, output(z, x)) uniquely determines x. In particular, the final state need not be transmitted to decode x.
One way to ensure this is by forbidding λ-transitions.

A coding theorem, Theorem ?? is proved using an information lossless of finite-order constructionm while
its converse ?? is proved under the information lossless assumption.

The compression ratio achieved by encoder E on string x ∈ An is

ρ(E, x[1 . . . n]) =
L(y[1 . . . n])

n log2 α
.

The minimum of ρ(E, x[1 . . . n]) over the class E(s) of all finite-state information lossless encoders with
input alphabet of size α and at most s number of states is denoted by ρ(E(s), x[1 . . . n]). This quantity
depends on s, x and n. (Please note that E(s) depends on x. The optimal compressor for another string
might be different.)

Further, let
ρ(E(s), x) = lim sup

n→∞
ρ(E(s), x[1 . . . n]).

This quantity is the asymptotic compressibility of x using finite-state compressors using s states.

Now, as the number of states increases, we get better compression - to see this, observe that every s-
state compressor can be trivially made into a compressor having s+1 states by adding an unreachable state.
Hence the compressibility achieved by compressors with s+ 1 states is at most as high as that achieved by
those with only s states. Hence, we can define

ρ(x) = lim
s→∞

ρ(E(s), x).

The latter quantity that depends only on x is referred to as the finite-state compressibility of the infinite
sequence x. This quantity, for every sequence x, lies in the closed unit interval.

1.1 Results about individual sequences

We derive a lower bound for ρ(x) for every sequence x, using a parsing argument. In this part, we will argue
that every information-lossless compressor of finite order will have to output strings of a particular length.
This is called the converse-to-coding theorem.

1

We derive an upper bound for ρ(x) by constructing the disjoint-block Lempel-Ziv compressor, whose s-
sections (we will define this) are provably almost optimal over all finite-state information lossless compressors
having at most s states. This is the constructive coding theorem.

Even over a single infinite sequence, we can take a probabilistic viewpoint by considering the empirical
distribution on n-long strings defined by the particular infinite sequence. In this case, we prove that the
entropy of the distribution of strings over A∗ is precisely the finite-state compressibility of the sequence x,
for every sequence x.

1.2 Probabilistic viewpoint

In addition, we can consider a probabilistic viewpoint, that the infinite sequence x is drawn from an ergodic
source with entropy H (the entropy being defined on the source itself), or a stationary source with entropy
H.

If the source is ergodic, we have a result that with probability 1 (but not necessarily for every sequence
x, that the entropy of the source matches the finite-state compressibility of x. 1

If the source is stationary but not necessarily ergodic, then we have a result in L1 convergence - that the
expected value of the compressibility over all the sequences, is the entropy of the source.

2 Coding Theorem - Algorithm

We will give an algorithm E to compress sequence and prove its performance characteristics.

Theorem 2.1. For every n > 0 there is an ILF encoder E with s(n) states that implements a block to
variable code with the following properties.

In what follows, for a finite string x, c(x) is the maximum number of distinct phrases whose concatenation
forms x.

1. ∀n, i and every input block x[1 . . . n], the compression ratio of E satisfies

ρ(E , x[in+ 1 . . . (i+ 1)n]) ≤ c(x[in+ 1 . . . (i+ 1)n])

n logα
log[2α(c(x[(in+ 1 . . . (i+ 1)n] + 1))].

2. For every finite s,
ρ(E , x[1 . . . n]) ≤ ρ(E(s), x[1 . . . n]) + δs(n),

with
lim
n→∞

δs(n) = 0.

3. Given an infinite input sequence ω, for any ε > 0,

ρ(E , ω[1 . . . n]) ≤ ρ(ω) + δε(ω, n),

where
lim
n→∞

δε(ω, n) = ε.

We will give the proof in two parts. First we give the algorithm - the encoder and the decoder. Then,
we will show that it has the above properties.

1Shields [?] strengthened this result later to show that for every sequence x, the same result holds.

2

2.1 Algorithm

§1. For the encoder E , we have an ILF finite-state machine that implementsa conctenated coing scheme
by combining (a) a fixed block-to-variable block outer code with (b) a state-dependent variable-to-variable
inner code.

The inner code encodes sequentially, growing segments of an n-long input block, where n is fairly large.
After the encoder finishes scanning an n-block, it returns to the initial state, thus “forgetting” its past.

In an adaptive dictionary scheme, we need to build a dictionary of phrases, and have a parsing scheme
to identify the next phrase in the input string. The segments of a block which form the “dictionary input”
of the inner coder will be constructed using an incremental parsing procedure. The procedure is greedy and
sequential.

Suppose at some stage in the algorithm, we have segmented x[1 . . . n] into distinct phrases. The new
phrase is the shortest prefix of the unparsed part, that is, x[n . . .] which is different from all current phrases
in the dictionary.

Let the current parsing be

x[1 . . . n] = x[1 . . . n1]x[n1 + 1 . . . n2] . . . x[np + 1 . . . n].

This parsing is called incremental, if the first p phrases are all distinct, and if for all j = 1, 2, . . . p+ 1, there
is a positive integer i < j such that x[ni−1 +1 . . . ni] = x[nj−1 +1 . . . nj] - that is, there is some earlier phrase
at position i such that the phrase at position j is exactly the phrase at position i extended by 1 bit. Since
we need this operation frequently, let us define this as a function. The function d : Σ∗ → Σ∗ is defined by
d(w) = w[1 . . . |w| − 1], that is, the longest proper prefix of w.

Thus for every j = 1, 2, . . . , p+ 1, there is a unique nonnegative integer π(j) = i, where i < j, such that
d(x[nj−1 + 1 . . . nj]) = x[ni−1 + 1 . . . ni].

The parsing rule is as follows. To determine the jth phrase, j = 1, 2, . . . , p + 1, let nj be the largest
integer less than n such that d(x[nj−1 + 1 . . . nj]) is among the phrases 1, 2, . . . , j − 1.

The phrase x[nj−1 + 1 . . . nj] is encoded in binary as

I(x[nj−1 + 1 . . . nj]) = π(j)α + IA(x[nj]),

where IA : A→ {0, 1}∗ is a binary encoding of each of the symbols in A.

It is easy to see that

0 ≤ I(x[nj−1 + 1 . . . nj]) ≤ (j − 1)α+ α− 1 = jα− 1.

Thus the length of the encoding of the jth phrase is dlog(jα)e.

§2. Decoder. The decoder gets a binary string. It has access to the alphabet encoding function Iα. It
has to output the original message, a string in A∗. (Alternatively, we can see the decoder as transforming
an infinite binary sequence to an infinite sequence in A∞.) It proceeds inductively as follows.

We use three variables, j, which is the index of the next phrase, kj , the , and nj , the length of the jth

phrase. At the beginning, set j = 0, kj = 0 and nj = 0.

In addition, we keep a dictionary, which is a variable-length-array of variable-length phrases.

Suppose we have decoded up to phrase j − 1, and the values kj and nj reflect this.

Increment kj by dlog(j + 1)αe. Take the next kj bits from the input binary sequence. Let I(x[nj +
1 . . . nj+1]) be the integer whose representation is given by these bits. Determine the unique nonnegative
integers i and r which satisfy

I(x[nj + 1 . . . nj+1]) = iα + r, 0 ≤ r ≤ α− 1.

3

Now, we can extract the last letter of the j + 1st phrase from r.

Similarly, the prefix of the (j + 1)st phrase is the ith entry in the dictionary. Insert x[nj + 1 . . . nj+1] as
the (j + 1)st entry in the dictionary.

If nj + (ni − ni−1) + 1 ≥ n, then we are done. Otherwise, set nj+1 = nj + (ni − ni−1) + 1, increment j
by 1, and recurse. (If the decoder is decoding an infinite binary sequence, then it does not have a stopping
condition.)

2.2 Properties

§1. First, some easy observations about the parsing in the last section. The first phrase has length exactly 1
(i.e. n1 = 1.) The last phrase may or may not be distinct from the previous phrases. Also, for every phrase
in x[1 . . . n], every one of its proper prefixes appear in the parsing.

Let Lj be the length of the jth phrase, j = 1, . . . , p+ 1. The total number of bits when coding an input
string x[1 . . . n] into p+ 1 phrases is

L =

p+1∑
j=1

Lj

=

p+1∑
j=1

dlog(jα)e

≤
p+1∑
j=1

(log(jα) + 1)

=

p+1∑
j=1

log(2jα)

≤ (p+ 1)[log(p+ 1) + log(2α)] [j ≤ p+ 1]

We know that p ≤ c(x[1 . . . n]), the maximum number of distinct phrases whose concatenation forms
x[1 . . . n]. Substituting this into the inequality above, we get

L ≤ C log(2αC) where C = c(x[1 . . . n]) + 1 (1)

From this, we get

ρ(E , x[1 . . . n]) ≤ C

n logα
log
(
2αC

)
, where C = c(x[1 . . . n]) + 1

This proves (i).

§2. Now, we have to see how well this compressor does, with respect to other compressors. Let s be
fixed. Then the converse to the coding theorem gives us that

c(x) + s2

n logα
log

c(x) + s2

4s2
+

2s2

n logα
≤ ρ(E(s), x).

4

Thus, we can write that

c(x) + 1

n logα
log(2α(c(x) + 1)) =

c(x) + s2

n logα
log(2α(c(x) + 1))− s2 − 1

n logα
log(2α(c(x) + 1))

=
c(x) + s2

n logα
log

(
2α(c(x) + 1)

c(x) + s2

)
− s2 − 1

n logα
log(2α(c(x) + 1))

+
c(x) + s2

n logα
log(c(x) + s2)

We obtain
ρ(E , x) ≤ ρ(E(s), x) + δ(c(x), n),

where

δ(c(x), n) =
c(x) + s2

n logα
log

(
2α(c(x) + 1)

c+ s2

)
− s2 − 1

n logα
log(2α(c(x) + 1)).

Now, if we use the estimate that for any string x ∈ An,

c(x) <
n logα

(1− εn) log n
,

where εn tends to 0 as n tends to ∞, we obtain that

lim
n→∞

δ(c(x), n) = 0.

This proves 2.

§3. The compression attained by our encoder E for x ∈ A∞ is

ρE(x, n) = lim sup
k→∞

1

kn logα

k∑
i=1

Li,

where Li is the length of the ith block in x of length n.

We know by (1) and (2) that

Li
n logα

= ρE(x[(i− 1)n+ 1 . . . in]) ≤ ρE(s)(x[(i− 1)n+ 1 . . . in]) + δs(n).

Thus,

ρ(E , x, n) ≤ lim sup
k→∞

1

K

k∑
i=1

ρ(E(s), x[(i− 1)n+ 1 . . . in]) + δs(n) = ρ(E(s), x) + δs(n), (2)

where limn→∞δs(n) = 0.

Since
ρ(x) = lim

s→∞
ρ(E(s), x),

we can write

ρ(E(s), x) = ρ(x) + δ′s(x), (3)

where lims→∞ δ
′
s(x) = 0.

From the (??) and (??), we can write that for any ε > 0,

ρ(E , x, n) ≤ ρ(x) + ε+ δs(n),

which proves (3) with δε(x, n) = ε+ δs(n).

This completes the proof of (3).

5

3 Converse-to-coding theorem

Theorem 3.1. For every x ∈ An,

ρ(E(s), x) ≥ c(x) + s2

n logα
log

c(x) + s2

4s2
+

2s2

n logα
,

where c(x) is the maximum number of distinct phrases whose concatenation forms x.

Note that this is an individual lower bound, and hence very powerful. The theorem points to this parsing
scheme as one of the ways to capture the essence of finite-state compression.

Proof. Given an encoder E having s-states and an input string x ∈ An, let

x = x[1 . . . n1]x[n1 + 1 . . . n2] . . . x[nc−1 + 1 . . . n]

be a parsing of x into c distinct phrases. Let

cj = |{x[ni−1 + 1 . . . ni] | output length(y[ni−1 − 1 . . . ni]) = j.}| .

In the above definition, recall that y[i] can be λ. Since E is a information-lossless compressor of finite order,
we know that

cj ≤ s22j .

Suppose

c = s2

(
∆k +

k∑
i=0

2i

)
+ r, 0 ≤ r < s2. (4)

(Adjusting to form nice sums.) Then we can assume that cj = s22j , for 0 ≤ j ≤ k, and ck+1 = s2∆k + r.
Let cj = 0 for j > k + 1.

Hence

c = s2
k∑
j=0

2j + s2∆k = s2(2k+1 + t),

where
t = ∆k − 1 +

r

s2
,

and

output length(y) ≥ s2
k∑
j=0

j2j + (k + 1)(s2∆k + r)

= s2[(k − 1)2k+1 + 2] + (k + 1)(s2(∆k + r))

= s2((k − 1)2k+1 + t) + s2(k + 3 + 2t)

= (k − 1)[c+ s2] + 2s2(t+ 2). (5)

By (??) and (??), we have that

L(y) ≥ (c+ s2)

(
c+ s2

4s2

)
+ δ, (6)

(Determining δ in terms of s2.)

6

3.1 Existence of empirical entropy rate of a sequence

Lemma 3.2. For every sequence x,

Ĥ(x) = lim
m→∞

lim sup
n→∞

Ĥm(x[1 . . . n])

exists, where Ĥm(x) is the entropy of the 2m-dimensional empirical probability distribution defined by x on
the set of m-long strings.

Proof.

(`+m)H`+m(x) =
−1

logα
lim sup
n→∞

∑
w∈A`+m

P (x[1 . . . n], w) logP (x[1 . . . n], w)

7

