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In this section, we will give the definitions of Shannon entropy, motivating the definition from multiple
perspectives. We will use a finite alphabet X containing t symbols.

Definition 0.1. Let P be a probability distribution on X. Then the entropy of P is defined as

H(P ) = −
∑
a∈X

P (a) logP (a).

1 Combinatorial Motivation

The type or empirical distribution of a string x ∈ Xn is the distribution on the symbols in X determined by

Px(a) =
number of times a occurs in x

n
(a ∈ X).

For example, if X is the binary alphabet, the type of 0111 is

P0111(0) =
1

4
, P0111(0) =

3

4
.

A distribution P is called an n-type if there is a string with that distribution. The set of strings of a
particular type Px is denoted Tn

P . The superscript here denotes that this set consists of n-long strings.

For example, if P is the distribution P (0) = 1
4 , P (1) = 3

4 , then T 4 = {0111, 1011, 1101, 1110}. An
example of a distribution on the binary alphabet that cannot be a 4-type is P (0) = 1

7 , P (1) = 6
7 , since no

4-long string can have such an empirical distribution.

Lemma 1.1. The number of possible n-types defined on X is(
n + |X| − 1

|X| − 1

)
.

Proof. An n-type can be defined by considering a sequence of n ones, and inserting |X|−1 partitions between
them. Any such partition defines a unique type. The number of such partitions of n is(

n + |X| − 1

|X| − 1

)
.

We now try to show that there is a natural question which we can ask, whose answer will lead us to
Shannon entropy. The question is of fairly tight upper and lower bounds for the number of elements of any
type.
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Lemma 1.2. For any n-type P ,
2nH(P )(n+|X|−1
|X|−1

) ≤ |Tn
P | ≤ 2nH(P ).

Proof. Suppose P is defined by

Px(ai) =
ki
n
, 1 ≤ i ≤ |X|,

where X = {a1, a2, . . . , at} and
∑t

i=1 ki = n.

We know that

|Tn
P | =

n!

k1!k2! . . . kt!
.

This multinomial coefficient suggests that we can get an estimate at the above term by looking at
multinomial expansions. We have

nn = (k1 + k2 + · · ·+ kt)
n =

n∑
j1=1

n∑
j2=1

· · ·
n∑

jt−1=1

n!

j1!j2! . . . jt−1!jt!
kj11 kj22 . . . kjtt ,

where
∑

i=1 tji = n. Let us denote the summands as

S[j1, j2, . . . , jt].

The number of summands is
(n+|X|−1
|X|−1

)
.

The largest of the summands is the term

n!

k1!k2! . . . kt−1!kt!
kk11 kk22 . . . kktt ,

by the following consideration. Suppose at some index i, ji > ki. Necessarily, there must exist another index
m where jm < km. Without loss of generality, suppose j1 > k1, and j2 < k2. Then the ratio

S[j1, j2, . . . , jt]

S[j1 − 1, j2 + 1, . . . , jt]
=

j1k2
j2k1

< 1,

so the maximal summand is S[k1, k2, . . . , kt].

There is a correspondence between the summands and the n-types. Thus an upper bound on the sum is

nn ≤ S[k1k2 . . . kt]

(
n + |X| − 1

|X| − 1

)
=

n!

k1!k2! . . . kt−1!kt!
kk11 kk22 . . . kktt

(
n + |X| − 1

|X| − 1

)
=

n!

k1!k2! . . . kt−1!kt!
kk11 kk22 . . . kktt |Tn

P |.

For the lower bound on |Tn
P |, we observe from the above inequality that

|Tn
P |
(
n + |X| − 1

|X| − 1

)
≥ nn

Πt
i=1(ki)

ki

=
1

Πt
i=1(

ki
n )ki

= Πt
i=1P

−nPi
i

= Πt
i=12

−nPi log2 Pi

= 2
∑t

i=1−nPi log2 Pi = 2nH(P ).

For the upper bound, since the maximal term is merely one summand, we get that

|Tn
P | ≤ 2nH(P ).

Thus, H(P ) is a good estimate of
log2 |Tn

P |
n . We can interpret it as the average number of bits used to

represent the cardinality of |TP
n |, the averaging being done over the length of the sample, n.
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