CS687 2010. Homework 1

1. (a) Prove that a language L is decidable if and only if there is a Turing machine which accepts a string x if x is in L, and rejects and halts otherwise. (We defined L to be decidable if both L and L^{c} are Turing-acceptable.)
(b) Prove that every infinite acceptable language has an infinite decidable subset.
(20 points)
2. (a) Define a prefix encoding $\langle\rangle:, \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$.
(b) Prove or disprove: There is a prefix encoding \langle,$\rangle of pairs of strings with the following property. There$ is a constant c such that for all pairs of strings (x, y),

$$
|\langle x, y\rangle| \leq|x|+|y|+c .
$$

(15 points)
3. Let n be a non-negative number.
(a) Consider the concatenation of the first n binary strings in the standard enumeration

$$
c_{n}=s_{0} s_{1} \ldots s_{n-1}
$$

Prove that $C\left(c_{n}\right) \leq \log _{2} n+O(1)$.
(b) Recall that there is a computable enumeration T_{0}, T_{1}, \ldots of Turing machines. The "diagonal" halting language

$$
H=\left\{x: T_{x}(x) \text { halts }\right\},
$$

that is, the set of strings x such that the Turing machine T_{x} halts on input x, is undecidable.
Let

$$
h_{n}=b_{0} b_{1} \ldots b_{n-1}
$$

be the concatenation of n bits, where b_{i} is 1 if $s_{i} \in H$, and b_{i} is 0 otherwise. Prove that if n is large enough,

$$
C\left(h_{n}\right) \leq \log _{2} n+O(1)
$$

that is, even though the diagonal halting problem is uncomputable, almost all the prefixes of its characteristic sequence have very low complexity.
(30 points)
4. Recall that $m: \Sigma^{*} \rightarrow \mathbb{N}$ is defined as

$$
m(x)=\min _{y \geq x} C(y)
$$

that is, $m(x)$ is the minimum complexity of all strings beyond x in the standard enumeration of strings.
Prove: Let $F: \Sigma^{*} \rightarrow \mathbb{N}$ be a partial computable function monotone increasing from some x_{0} onwards. Then for every large enough $x, m(x)<F(x)$ when $F(x)$ is defined.
(20 points)
5. Prove that self-delimiting Kolmogorov complexity is not invariant with respect to cyclic shifts. That is, there is a string $x_{0} x_{1} \ldots x_{n-1}$ and an m, where $0 \leq m \leq n-2$ such that the Kolmogorov complexity of $x_{m+1} \ldots x_{n-1} x_{0} \ldots x_{m}$ differs from that of the first by more than an additive constant.[Source: Li and Vitanyi, $2^{\text {nd }}$ ed, pg 204.]
(20 points)
6. (a) (Data Processing Inequality) Let ϕ be a total computable function. Show that there is a constant c_{ϕ} depending only on ϕ such that for any string x,

$$
K(\phi(x)) \leq K(x)+c_{\phi} \quad \text { and } \quad C(\phi(x)) \leq C(x)+c_{\phi} .
$$

Discuss the implication of this inequality.
(10 points)
(b) Let $\phi(x, y)$ be a total computable function. Show that there is a constant c_{ϕ} such that for all strings x and y,

$$
\begin{equation*}
K(\phi(x, y)) \leq K(x)+K(y)+c_{\phi} . \tag{10points}
\end{equation*}
$$

(c) Show that the above inequality does not hold for C.
7. Let P be the set of all Turing machines. The halting probability (or Chaitin's Ω) is the following number:

$$
\Omega=\sum_{\substack{p \in P \\ p \text { halts }}} \frac{1}{2^{|p|}} .
$$

Prove that a Turing machine cannot decide, for all large enough i, whether the $i^{\text {th }}$ bit of Ω is 1 or not.

Assume that you know the following fact: Let n be a given arbitrary large enough number. Given the first n bits of Ω, it is possible to decide whether any Turing machine $i, 0 \leq i \leq n-1$ halts or not. Using this fact, prove that there is a constant $c \in \mathbb{N}$, such that for all n,

$$
K(\Omega[0 \ldots n-1]) \geq n-c .
$$

(That is, prefixes of Chatin's Ω, unlike the prefixes of characteristic sequence of the halting language, are incompressible - Kolmogorov incompressibility is a stronger requirement than uncomputability.)
(25 points)

