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Kolmogorov’s Programme:

“The application of probability theory can be put on a uniform
basis. It is always a matter of hypotheses about the impossibility
of reducing in one way or another the complexity of the
description of objects in question.”
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Kolmogorov’s Programme:

“The application of probability theory can be put on a uniform
basis. It is always a matter of hypotheses about the impossibility
of reducing in one way or another the complexity of the
description of objects in question.”

Consider theorems in Probability theory which hold “almost
everywhere”.
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Kolmogorov’s Programme:

“The application of probability theory can be put on a uniform
basis. It is always a matter of hypotheses about the impossibility
of reducing in one way or another the complexity of the
description of objects in question.”

Consider theorems in Probability theory which hold “almost
everywhere”. Can we show that if an object has maximum
descriptional complexity, (i.e. is “random”), then it obeys the
theorem?
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Definition 1. Let (X,F , P ) be a probability space.

A measurable transformation T : X → X is called measure-preserving if for
every A ∈ F , P (T−1A) = P (A).

A measure-preserving map T is ergodic if for all A ∈ F , TA = A only when
P (A) ∈ {0, 1}.

Example. If X is a finite set with the uniform distribution on it, then every
permutation is a measure-preserving transformation.

Any permutation consisting of a single cycle is an ergodic transformation.

Definition 2. A system (X,F , P, T ) where (X,F , P ) is a probability space
and T is measure-preserving with respect to it, is called a dynamical system.
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The entropy of a partition α = (α0, . . . , αn−1) of X is

H(α) =

n−1
∑

i=0

P (αi) log

(

1

P (αi)

)

.
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The entropy of a partition α = (α0, . . . , αn−1) of X is

H(α) =

n−1
∑

i=0

P (αi) log

(

1

P (αi)

)

.

The k-step entropy is

hk(α, T ) =
H

(

α ∨ · · · ∨ T−k+1α
)

k
.



Kolmogorov-Sinai Entropy

Dynamical Systems

⊲ KSentropy

KS theorem

Converse

Setting

Overview

Computability of φ

LC

Marker

Skeletons

Fillers

Marriage Lemma

Assignment Lemma

References

7 / 28

The entropy of a partition α = (α0, . . . , αn−1) of X is

H(α) =

n−1
∑

i=0

P (αi) log

(

1

P (αi)

)

.

The k-step entropy is

hk(α, T ) =
H

(

α ∨ · · · ∨ T−k+1α
)

k
.

The entropy of a transformation T wrt α is

h(α, T ) = lim
k→∞

hk(α, T ).
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The entropy of a partition α = (α0, . . . , αn−1) of X is

H(α) =

n−1
∑

i=0

P (αi) log

(

1

P (αi)

)

.

The k-step entropy is

hk(α, T ) =
H

(

α ∨ · · · ∨ T−k+1α
)

k
.

The entropy of a transformation T wrt α is

h(α, T ) = lim
k→∞

hk(α, T ).

The entropy of a transformation T is

h(T ) = sup{h(α, T ) | α is a finite partition of X}.
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The partition α of X is called a generator if the σ-algebra on X
is generated by · · · ∨ T−2α ∨ T−1α ∨ α ∨ Tα ∨ T 2α . . . .
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The partition α of X is called a generator if the σ-algebra on X
is generated by · · · ∨ T−2α ∨ T−1α ∨ α ∨ Tα ∨ T 2α . . . .

Theorem 3. If α is a generator, then h(α, T ) = h(T ).
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The partition α of X is called a generator if the σ-algebra on X
is generated by · · · ∨ T−2α ∨ T−1α ∨ α ∨ Tα ∨ T 2α . . . .

Theorem 3. If α is a generator, then h(α, T ) = h(T ).

(α is a “natural” partition induced by T .)
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The partition α of X is called a generator if the σ-algebra on X
is generated by · · · ∨ T−2α ∨ T−1α ∨ α ∨ Tα ∨ T 2α . . . .

Theorem 3. If α is a generator, then h(α, T ) = h(T ).

(α is a “natural” partition induced by T .)

Definition 4. An isomorphism φ : A → B is a function such
that φ ◦ TA = TB ◦ φ.
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The partition α of X is called a generator if the σ-algebra on X
is generated by · · · ∨ T−2α ∨ T−1α ∨ α ∨ Tα ∨ T 2α . . . .

Theorem 3. If α is a generator, then h(α, T ) = h(T ).

(α is a “natural” partition induced by T .)

Definition 4. An isomorphism φ : A → B is a function such
that φ ◦ TA = TB ◦ φ.

Theorem 5. If two dynamical systems are isomorphic to each

other, then they have the same Kolmogorov-Sinai entropy.
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Let ΣA and ΣB be two finite alphabets.
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Let ΣA and ΣB be two finite alphabets.

Let A = (Σ∞
A ,B(Σ∞

A ), PA, TA) and B = (Σ∞
B ,B(Σ∞

B ), PB, TB)
be two Bernoulli systems with the same KS entropy.
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Let ΣA and ΣB be two finite alphabets.

Let A = (Σ∞
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A ), PA, TA) and B = (Σ∞
B ,B(Σ∞

B ), PB, TB)
be two Bernoulli systems with the same KS entropy.

Are the two systems necessarily isomorphic?

(Note: ΣA and ΣB need not have the same cardinality.)
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Let ΣA and ΣB be two finite alphabets.

Let A = (Σ∞
A ,B(Σ∞

A ), PA, TA) and B = (Σ∞
B ,B(Σ∞

B ), PB, TB)
be two Bernoulli systems with the same KS entropy.

Are the two systems necessarily isomorphic?

(Note: ΣA and ΣB need not have the same cardinality.)

Answer: Yes [Orn70]. In fact, there is a finitary isomorphism
between them [KS79].
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The finite portions x[ −m. . . 0 . . .m ] of an infinite sequence x
are the cylinders of x.
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are the cylinders of x.

A finitary map φ : A → B is one where for every x ∈ A such
that φ(x) is defined, there is an N such that
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are the cylinders of x.

A finitary map φ : A → B is one where for every x ∈ A such
that φ(x) is defined, there is an N such that
φ(x[ −N . . . 0 . . . N ]) determines φ(x)[0].
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The finite portions x[ −m. . . 0 . . .m ] of an infinite sequence x
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A finitary map φ : A → B is one where for every x ∈ A such
that φ(x) is defined, there is an N such that
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This N , in general, depends on the x.
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The finite portions x[ −m. . . 0 . . .m ] of an infinite sequence x
are the cylinders of x.

A finitary map φ : A → B is one where for every x ∈ A such
that φ(x) is defined, there is an N such that
φ(x[ −N . . . 0 . . . N ]) determines φ(x)[0].

This N , in general, depends on the x.

Further, φ(x) may not be defined on some x.
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The finite portions x[ −m. . . 0 . . .m ] of an infinite sequence x
are the cylinders of x.

A finitary map φ : A → B is one where for every x ∈ A such
that φ(x) is defined, there is an N such that
φ(x[ −N . . . 0 . . . N ]) determines φ(x)[0].

This N , in general, depends on the x.

Further, φ(x) may not be defined on some x.
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Definition 6. A dynamical system A = (Σ∞
A ,B(Σ∞

A ), PA, TA) is
called computable if PA : Σ∗

A → [0, 1] is computable, and
TA : Σ∗

A → Σ∗
A is a computable monotone transformation.
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Definition 6. A dynamical system A = (Σ∞
A ,B(Σ∞

A ), PA, TA) is
called computable if PA : Σ∗

A → [0, 1] is computable, and
TA : Σ∗

A → Σ∗
A is a computable monotone transformation.

Let us assume that A and B are computable systems.
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Definition 6. A dynamical system A = (Σ∞
A ,B(Σ∞

A ), PA, TA) is
called computable if PA : Σ∗

A → [0, 1] is computable, and
TA : Σ∗

A → Σ∗
A is a computable monotone transformation.

Let us assume that A and B are computable systems.

Does this make φ computable?
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Definition 6. A dynamical system A = (Σ∞
A ,B(Σ∞

A ), PA, TA) is
called computable if PA : Σ∗

A → [0, 1] is computable, and
TA : Σ∗

A → Σ∗
A is a computable monotone transformation.

Let us assume that A and B are computable systems.

Does this make φ computable?

No! φ is undefined at several points - it is defined on some
measure 1 proper subset, but may be undefined on a measure 0,
nonempty set.
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Definition 6. A dynamical system A = (Σ∞
A ,B(Σ∞

A ), PA, TA) is
called computable if PA : Σ∗

A → [0, 1] is computable, and
TA : Σ∗

A → Σ∗
A is a computable monotone transformation.

Let us assume that A and B are computable systems.

Does this make φ computable?

No! φ is undefined at several points - it is defined on some
measure 1 proper subset, but may be undefined on a measure 0,
nonempty set.

Where exactly is the isomorphism well-defined?
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Definition 6. A dynamical system A = (Σ∞
A ,B(Σ∞

A ), PA, TA) is
called computable if PA : Σ∗

A → [0, 1] is computable, and
TA : Σ∗

A → Σ∗
A is a computable monotone transformation.

Let us assume that A and B are computable systems.

Does this make φ computable?

No! φ is undefined at several points - it is defined on some
measure 1 proper subset, but may be undefined on a measure 0,
nonempty set.

Where exactly is the isomorphism well-defined?
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Definition 6. A dynamical system A = (Σ∞
A ,B(Σ∞

A ), PA, TA) is
called computable if PA : Σ∗

A → [0, 1] is computable, and
TA : Σ∗

A → Σ∗
A is a computable monotone transformation.

Let us assume that A and B are computable systems.

Does this make φ computable?

No! φ is undefined at several points - it is defined on some
measure 1 proper subset, but may be undefined on a measure 0,
nonempty set.

Where exactly is the isomorphism well-defined?

Answer: (At least) over the Martin-Löf random points in the
systems.
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Most strings in Σn are random. Similarly, a measure 1 subset of any
computable space consist of “random” objects.

Let U1, U2, . . . be some computable enumeration of open intervals with
rational endpoints, in the space. A constructive measure 0 set is one which
can be expressed as

⋂

m>0

∞
⋃

n=1

Uin,m,

where for each m, we have that the open cover
⋃∞

n=1 Uin,m has probability
less than 1

2m .
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Let us denote Km = U c
m. The sequence 〈Km〉∞m=1 is called a layering of X.

If a function φ(Km) is computable uniformly in m, we say that it is layerwise
computable. (Such computations converge on all random points.)



Layerwise computability

14 / 28

Since there is a universal Turing machine, there is a largest constructive
measure 0 set.

The complement of this set is the smallest co-constructive measure 1 set,
which is called the set of Martin-Löf random objects.

Let us denote Km = U c
m. The sequence 〈Km〉∞m=1 is called a layering of X.

If a function φ(Km) is computable uniformly in m, we say that it is layerwise
computable. (Such computations converge on all random points.)



Structure of the Proof

15 / 28

We will construct a layerwise computable isomorphism which will take
Martin-Löf random points in A to those in B and conversely.

1. The Marker Lemma
2. The Skeleton Lemma
3. The Filler Lemma
4. The Marriage Lemma
5. The Assignment Lemma
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Reduce the problem to the following: construct an isomorphism
between two mixing Markov systems with the same entropy and
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Reduce the problem to the following: construct an isomorphism
between two mixing Markov systems with the same entropy and

having some symbol with equal probability.
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Reduce the problem to the following: construct an isomorphism
between two mixing Markov systems with the same entropy and

having some symbol with equal probability.

Sort ΣA and ΣB in decreasing order of probability.1 Designate
the symbol with the highest probability in ΣA as 0, and that
with the least probability in ΣB as 1.
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Reduce the problem to the following: construct an isomorphism
between two mixing Markov systems with the same entropy and

having some symbol with equal probability.

Sort ΣA and ΣB in decreasing order of probability.1 Designate
the symbol with the highest probability in ΣA as 0, and that
with the least probability in ΣB as 1.

Construct a mixing Markov system C with approximately the
same entropy as A and B, with PC(0) = PA(0) and
PC(1) = PB(1).
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Reduce the problem to the following: construct an isomorphism
between two mixing Markov systems with the same entropy and

having some symbol with equal probability.

Sort ΣA and ΣB in decreasing order of probability.1 Designate
the symbol with the highest probability in ΣA as 0, and that
with the least probability in ΣB as 1.

Construct a mixing Markov system C with approximately the
same entropy as A and B, with PC(0) = PA(0) and
PC(1) = PB(1).
Fix an alphabet size c large enough that the entropy of the
partition ΣC is greater than that of ΣA and ΣB .
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Reduce the problem to the following: construct an isomorphism
between two mixing Markov systems with the same entropy and

having some symbol with equal probability.

Sort ΣA and ΣB in decreasing order of probability.1 Designate
the symbol with the highest probability in ΣA as 0, and that
with the least probability in ΣB as 1.

Construct a mixing Markov system C with approximately the
same entropy as A and B, with PC(0) = PA(0) and
PC(1) = PB(1).
Fix an alphabet size c large enough that the entropy of the
partition ΣC is greater than that of ΣA and ΣB .

Now, we need an algorithm to define the probabilities of strings
x ∈ Σ∗

C .
1We work with (1± ǫn) approximations of probability.
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Let m be the memory of the Markov systems.

1. Input: a string x ∈ Σ∗ and n ∈ N where we require
|HA −HC |, |HB −HC | <

1
2n .
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2. If x ∈ {0}∗, then output PA(0
∗, n). If x ∈ {1}∗, then output PB(1

∗, n).
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∗, n).

3. If |x| < m+ 1, then adjust the probabilities of the alphabet symbols in C
such that the entropy condition holds.
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Let m be the memory of the Markov systems.

1. Input: a string x ∈ Σ∗ and n ∈ N where we require
|HA −HC |, |HB −HC | <

1
2n .

2. If x ∈ {0}∗, then output PA(0
∗, n). If x ∈ {1}∗, then output PB(1

∗, n).

3. If |x| < m+ 1, then adjust the probabilities of the alphabet symbols in C
such that the entropy condition holds.

4. If |x| > m+ 1, then compute P (c|z) for all c ∈ ΣC , and z ∈ Σm, and
compute PC(x).
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Now, PA(0) = PC(0). We will identify finite strings from Σ∗
A

which can be mapped to finite strings in Σ∗
C .
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Now, PA(0) = PC(0). We will identify finite strings from Σ∗
A

which can be mapped to finite strings in Σ∗
C .

Idea: We will potentially match strings in A and C if their
patterns of 0s is the same.
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Now, PA(0) = PC(0). We will identify finite strings from Σ∗
A

which can be mapped to finite strings in Σ∗
C .

Idea: We will potentially match strings in A and C if their
patterns of 0s is the same.

Let N0 < N1 < . . . be a sequence of positive integers.
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Now, PA(0) = PC(0). We will identify finite strings from Σ∗
A

which can be mapped to finite strings in Σ∗
C .

Idea: We will potentially match strings in A and C if their
patterns of 0s is the same.

Let N0 < N1 < . . . be a sequence of positive integers.

Map all non-zero symbols in a sequence (from A or C) to . A
skeleton of rank r at position i in x, denoted S(x, r, i) is defined
as the shortest string enclosing x[i] and delimited by Nr many
zeroes on either end.
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Now, PA(0) = PC(0). We will identify finite strings from Σ∗
A

which can be mapped to finite strings in Σ∗
C .

Idea: We will potentially match strings in A and C if their
patterns of 0s is the same.

Let N0 < N1 < . . . be a sequence of positive integers.

Map all non-zero symbols in a sequence (from A or C) to . A
skeleton of rank r at position i in x, denoted S(x, r, i) is defined
as the shortest string enclosing x[i] and delimited by Nr many
zeroes on either end.

A skeleton S(x, r, i) can be decomposed uniquely into skeletons
of rank r − 1.
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x ∈ A

000 00000 00000

φ(x) ∈ C
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x ∈ A

000 00000 00000

φ(x) ∈ C

Skeletons

S0

S1

S2
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Lemma Let 〈Lr〉
∞
r=1 be an increasing sequence of positive integers. Then

there is a layering 〈K ′
r〉

∞
r=1 of A and an increasing sequence of positive

integers 〈Nr〉
∞
r=0 uniformly computable in r such that for every r ∈ N and

every x ∈ K ′
r, the following hold.
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� There is a skeleton centered at x[0] delimited by Nr many zeroes.
(denoted S(x, r, 0).)
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� There is a skeleton centered at x[0] delimited by Nr many zeroes.
(denoted S(x, r, 0).)

� S(x, r, 0) has at least Lr many gaps.
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Lemma Let 〈Lr〉
∞
r=1 be an increasing sequence of positive integers. Then

there is a layering 〈K ′
r〉

∞
r=1 of A and an increasing sequence of positive

integers 〈Nr〉
∞
r=0 uniformly computable in r such that for every r ∈ N and

every x ∈ K ′
r, the following hold.

� There is a skeleton centered at x[0] delimited by Nr many zeroes.
(denoted S(x, r, 0).)

� S(x, r, 0) has at least Lr many gaps.

Proof Idea: If such skeletons occur only finitely often on x, we can form a
layerwise computable integrable test that will attain ∞ on x.
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Lemma Let 〈Lr〉
∞
r=1 be an increasing sequence of positive integers. Then

there is a layering 〈K ′
r〉

∞
r=1 of A and an increasing sequence of positive

integers 〈Nr〉
∞
r=0 uniformly computable in r such that for every r ∈ N and

every x ∈ K ′
r, the following hold.

� There is a skeleton centered at x[0] delimited by Nr many zeroes.
(denoted S(x, r, 0).)

� S(x, r, 0) has at least Lr many gaps.

Proof Idea: If such skeletons occur only finitely often on x, we can form a
layerwise computable integrable test that will attain ∞ on x.
Then x /∈ MLR.
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We have identified potential matches between elements in A and C based on
identical skeletons. We have to decide what goes in the gaps.
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We have identified potential matches between elements in A and C based on
identical skeletons. We have to decide what goes in the gaps.

Let ηr and θr denote the minimum and the maximum conditional probabilites
of symbols in A and C at precision r. Fix a sequence of numbers Lr,
r = 1, 2, . . . such that

lim
r→∞

1

ηr
2−Lr(1/2r) = 0.
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Let ηr and θr denote the minimum and the maximum conditional probabilites
of symbols in A and C at precision r. Fix a sequence of numbers Lr,
r = 1, 2, . . . such that

lim
r→∞

1

ηr
2−Lr(1/2r) = 0.

Let S(x, r, i) have ℓ blanks in positions s1, s2, . . . , sℓ. We fix the filler
alphabet as Σℓ

A and Σℓ
C in A and C respectively.
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Let ηr and θr denote the minimum and the maximum conditional probabilites
of symbols in A and C at precision r. Fix a sequence of numbers Lr,
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For a filler F , let J(F, n) ⊆ {s1, . . . , sℓ} be an index set of the positions in S
filled by F .
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We have identified potential matches between elements in A and C based on
identical skeletons. We have to decide what goes in the gaps.

Let ηr and θr denote the minimum and the maximum conditional probabilites
of symbols in A and C at precision r. Fix a sequence of numbers Lr,
r = 1, 2, . . . such that

lim
r→∞

1

ηr
2−Lr(1/2r) = 0.

Let S(x, r, i) have ℓ blanks in positions s1, s2, . . . , sℓ. We fix the filler
alphabet as Σℓ

A and Σℓ
C in A and C respectively.

For a filler F , let J(F, n) ⊆ {s1, . . . , sℓ} be an index set of the positions in S
filled by F .

Define an equivalence relation ∼n: F ∼n F ′ if J(F, n) = J(F ′, n) and F
agrees with F ′ on J(F, n).
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The equivalence classes are constructed inductively on the rank.
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The equivalence classes are constructed inductively on the rank.

For a rank 1 skeleton, set J(F, n) to be the largest subset P of
{s1, . . . , sℓ} such that the probability of the cylinder specified by
P is at least 3

2η1
2−L1(H−ε1).
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The equivalence classes are constructed inductively on the rank.

For a rank 1 skeleton, set J(F, n) to be the largest subset P of
{s1, . . . , sℓ} such that the probability of the cylinder specified by
P is at least 3

2η1
2−L1(H−ε1).

Let Pr = {sj1 , . . . , sjk} be fixed by skeletons of rank ≤ r.
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The equivalence classes are constructed inductively on the rank.

For a rank 1 skeleton, set J(F, n) to be the largest subset P of
{s1, . . . , sℓ} such that the probability of the cylinder specified by
P is at least 3

2η1
2−L1(H−ε1).

Let Pr = {sj1 , . . . , sjk} be fixed by skeletons of rank ≤ r.

For a skeleton of rank r + 1, pick the largest subset of P of
{s1, . . . , sℓ} − Pr so that the probability of the cylinder specified
by Pr ∪ P is at least

(1 + εr)

ηr
2−Lr(H−εr).
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The equivalence classes are constructed inductively on the rank.

For a rank 1 skeleton, set J(F, n) to be the largest subset P of
{s1, . . . , sℓ} such that the probability of the cylinder specified by
P is at least 3

2η1
2−L1(H−ε1).

Let Pr = {sj1 , . . . , sjk} be fixed by skeletons of rank ≤ r.

For a skeleton of rank r + 1, pick the largest subset of P of
{s1, . . . , sℓ} − Pr so that the probability of the cylinder specified
by Pr ∪ P is at least

(1 + εr)

ηr
2−Lr(H−εr).

Then J(F, n) for a rank r + 1 skeleton is Pr ∪ P .
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Lemma There is a layering 〈K ′′
p 〉

∞
p=1 such that or every n, there is a large

enough r such that for every skeleton S of rank r and length ℓ corresponding
to x ∈ K ′′

r , we have:
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− log2PA

(
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)

+ log2(1− εn) ≤ L(H− εr)
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Lemma There is a layering 〈K ′′
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∞
p=1 such that or every n, there is a large

enough r such that for every skeleton S of rank r and length ℓ corresponding
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r , we have:

1. For all F ∈ F(S),

− log2PA

(

F̃r,n
)

+ log2(1− εn) ≤ L(H− εr)

2. For all F ∈ F(S) except maybe on a set of measure εn:

(a) − log2PA(F̃r,n) + log2
(1−εr)ηr
(1+εn)2

> L(H − εr)

(b) 1
L |J(F, r)| > 1− 3

| log
2
θr|

εr

where L = ℓ+ |ZS |.
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Lemma There is a layering 〈K ′′
p 〉

∞
p=1 such that or every n, there is a large

enough r such that for every skeleton S of rank r and length ℓ corresponding
to x ∈ K ′′

r , we have:

1. For all F ∈ F(S),

− log2PA

(

F̃r,n
)

+ log2(1− εn) ≤ L(H− εr)

2. For all F ∈ F(S) except maybe on a set of measure εn:

(a) − log2PA(F̃r,n) + log2
(1−εr)ηr
(1+εn)2

> L(H − εr)

(b) 1
L |J(F, r)| > 1− 3

| log
2
θr|

εr

where L = ℓ+ |ZS |.

Proof Idea: Estimates follow from the effective Shannon-McMillan-Breiman
theorem [Hoc09], [Hoy12].
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We have a bipartite graph G with left set : ∼n-equivalence
classes of fillers for A, and right set : ∼n-equivalence classes of
fillers for B. Each vertex F̃ on the left has probability PA(F̃ )
and each vertex G̃ on the right has probability PC(G̃).
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We have a bipartite graph G with left set : ∼n-equivalence
classes of fillers for A, and right set : ∼n-equivalence classes of
fillers for B. Each vertex F̃ on the left has probability PA(F̃ )
and each vertex G̃ on the right has probability PC(G̃).

A society f is a relation so that for every subset S of left
vertices, PA(S) ≤ PC(f(S)).
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We have a bipartite graph G with left set : ∼n-equivalence
classes of fillers for A, and right set : ∼n-equivalence classes of
fillers for B. Each vertex F̃ on the left has probability PA(F̃ )
and each vertex G̃ on the right has probability PC(G̃).

A society f is a relation so that for every subset S of left
vertices, PA(S) ≤ PC(f(S)).

This implies that for every subset T of right vertices,
PC(T ) ≤ PA(f

−1T ). (i.e. The “dual” graph also defines a
society.)
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We have a bipartite graph G with left set : ∼n-equivalence
classes of fillers for A, and right set : ∼n-equivalence classes of
fillers for B. Each vertex F̃ on the left has probability PA(F̃ )
and each vertex G̃ on the right has probability PC(G̃).

A society f is a relation so that for every subset S of left
vertices, PA(S) ≤ PC(f(S)).

This implies that for every subset T of right vertices,
PC(T ) ≤ PA(f

−1T ). (i.e. The “dual” graph also defines a
society.)

A minimal society is a society where the removal of any edge
violates the condition for a society.
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Every society has a minimal subsociety which is produced by a
joining - that is, a joint distribution on L×R with marginals PA

and PC .
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Every society has a minimal subsociety which is produced by a
joining - that is, a joint distribution on L×R with marginals PA

and PC .

In a minimal subsociety, there is at least one vertex on the right
which knows at most one left vertex.
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Every society has a minimal subsociety which is produced by a
joining - that is, a joint distribution on L×R with marginals PA

and PC .

In a minimal subsociety, there is at least one vertex on the right
which knows at most one left vertex.

Our modification: a society is called ǫ-robust if for every left set
S, PA(S)(1 + ǫ) ≤ PB(f(S))(1− ǫ), and for every right set
T , PB(1− ǫ) ≤ PA(f

−1(T ))(1 + ǫ),
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Lemma 7 (Assignment Lemma). If x ∈ A such that

x ∈ Kr′ ∩K ′
r′ with x[0] not contained in a block of 0 longer

than m, then there is an even r, computable from r′, such that

1. With respect to the society RSr(x) : Ḡ(Sr(x)) F̃(Sr(x)),

R−1
Sr(x)

(F̃r(x)) is a singleton, say, Ḡr(x).

2. ir(x) ∈ J0(Ḡr(x)).
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Lemma 7 (Assignment Lemma). If x ∈ A such that

x ∈ Kr′ ∩K ′
r′ with x[0] not contained in a block of 0 longer

than m, then there is an even r, computable from r′, such that

1. With respect to the society RSr(x) : Ḡ(Sr(x)) F̃(Sr(x)),

R−1
Sr(x)

(F̃r(x)) is a singleton, say, Ḡr(x).

2. ir(x) ∈ J0(Ḡr(x)).

Intuitively, this lemma says that φ(x)[0] is determined from some
long enough central cylinder of x.
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Lemma 7 (Assignment Lemma). If x ∈ A such that

x ∈ Kr′ ∩K ′
r′ with x[0] not contained in a block of 0 longer

than m, then there is an even r, computable from r′, such that

1. With respect to the society RSr(x) : Ḡ(Sr(x)) F̃(Sr(x)),

R−1
Sr(x)

(F̃r(x)) is a singleton, say, Ḡr(x).

2. ir(x) ∈ J0(Ḡr(x)).

Intuitively, this lemma says that φ(x)[0] is determined from some
long enough central cylinder of x.

φ commutes with TA and TC . The image of Martin-Löf points
under measure-preserving transformations is Martin-Löf random.
Hence for x ∈ MLRA, every co-ordinate of φ(x) is determined in
a layerwise computable way.
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Thank You.
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