Lecture 2: State space and vector spaces

Rajat Mittal
IIT Kanpur
We will start by looking at the first question? How do we represent data/information stored inside a quantum computer/system. In other words, how do we mathematically capture the state of a quantum computer at any instance of the computation.
Exercise 1. How do we capture the state for a classical computer?
Simply, the state of a computer can be represented by a sequence of 0's and 1's, where each such number is called a bit.

For the quantum case, the answer is given by the 1 st and 4 th postulate of quantum mechanics. To understand these postulates, we will need to go through few concepts in linear algebra first. These notes will assume that the reader is familiar with the concept of vector space, basis and linear independence. Strang's book, Linear Algebra and its applications, is a good source to brush up these concepts.

This exposition will focus on vectors and matrices. Dirac's notation is used widely in quantum computing to represent these linear algebraic quantities, because it simplifies the understanding of quantum mechanical concepts. We will switch between the standard vector notation and Dirac notation in these notes.

Exercise 2. Read about vector space, basis, and linear independence if you are not comfortable with these words.

1 Vector spaces

One of the most fundamental concept in linear algebra is that of a vector space. You must have seen vector spaces over real numbers. The vector space \mathbb{R}^{n} (dimension n) consists of vectors with n coordinates such that each coordinate is a real number.

We will mostly concern ourselves with the vector space \mathbb{C}^{n}, the vector space of dimension n over the field of complex numbers. The vectors in \mathbb{C}^{n} are going to be our states of a quantum computer. This means that the scalars used in these vector spaces are complex numbers, i.e., every coordinate will contain a complex number. For example, \mathbb{C}^{2} is a vector space of dimension 2 . All elements in this vector space can be written as a linear combination of two standard basis vectors,

$$
e_{0}=\binom{1}{0} \quad \& \quad e_{1}=\binom{0}{1}
$$

So, every vector $v \in \mathbb{C}^{2}$ can be written as $\alpha_{0} e_{0}+\alpha_{1} e_{1}$, where α_{0}, α_{1} are two complex numbers. In Dirac's notation these two standard basis vectors are written as $e_{0}=|0\rangle$ and $e_{1}=|1\rangle$.

A column vector is the most basic unit of a vector space. Using Dirac's notation, a column vector will be denoted by $|\psi\rangle$. Suppose $\left\{\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \cdots,\left|v_{n}\right\rangle\right\}$ is the basis of the vector space, then any vector $|v\rangle$ can be written as

$$
|v\rangle=a_{1}\left|v_{1}\right\rangle+\cdots+a_{n}\left|v_{n}\right\rangle
$$

where all a_{i} 's are complex numbers.
For a vector space with dimension n, the standard basis is denoted by $|0\rangle,|1\rangle, \cdots,|n-1\rangle$. Here you can think of $|i\rangle$ as the vector with 1 at the $(i+1)$-th position and 0 otherwise. For example, a 3 -dimensional space will have standard basis elements $|0\rangle,|1\rangle$ and $|2\rangle$.

$$
|0\rangle=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \&|1\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \&|2\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Remember that a bit in a classical computer is a number in $\{0,1\}$. Analogously, a qubit in a quantum computer is going to be a unit vector in \mathbb{C}^{2}.
Exercise 3. What is a unit vector?
In other words, the state of a qubit can be written as $\alpha|0\rangle+\beta|1\rangle$, where $\alpha^{2}+\beta^{2}=1$. You can think of α, β as weights on classical states $|0\rangle,|1\rangle$ respectively. Notice that we did not say probability, more on it later.

Exercise 4. Can you come up with a state of qubit which is not classical? Are your α, β real numbers?
Exercise 5. What is the difference between vector $|0\rangle$ and vector 0 ?
There is a small difference between vector $|0\rangle$ and vector 0 (the vector with all entries 0). First one is a basis vector with the first entry 1 and rest 0 .

The notation $\langle\psi|$ denotes the row vector whose entries are complex conjugate of the entries of the vector $|\psi\rangle$ (also known as the adjoint, $|\psi\rangle=\left\langle\left.\psi\right|^{*}\right)$. If $|\psi\rangle=\left(x_{1} x_{2} \cdots x_{n}\right)^{T}$ and $|\phi\rangle=\left(\begin{array}{llll}y_{1} & y_{2} & \cdots & y_{n}\end{array}\right)^{T}$, the vector space \mathbb{C}^{n} is equipped with the natural inner product (like dot product),

$$
\langle\psi \mid \phi\rangle=\left(\left(x_{1}, x_{2}, \cdots, x_{n}\right),\left(y_{1}, y_{2}, \cdots, y_{n}\right)\right)=\sum_{i=1}^{n} x_{i}^{*} y_{i}
$$

Here x^{*} denotes the complex conjugate of a complex number x. In usual vector notation, the inner product between ψ and ϕ will be denoted by $\psi^{*} \phi$.

For a vector space $V \in \mathbb{C}^{n}$, its orthogonal complement V^{\perp} is defined as,

$$
V^{\perp}:=\left\{w \in \mathbb{C}^{n}:\langle v \mid w\rangle=0 \quad \forall v \in V\right\}
$$

In the beginning, you can convert expressions in Dirac notation to the usual vector notation. Slowly, it might become easier to directly manipulate expressions in Dirac notation.

Exercise 6. Suppose a qubit is in state $|\psi\rangle$, where $\psi^{T}=(1 / \sqrt{2},-i / \sqrt{2})$. Is it a valid qubit state? Write it in Dirac notation.

2 Operators

A quantum computer will not be very useful if it remains in the same state. It needs to move to desired states by application of transformations (like gates in a classical computer). Since states are vectors, and all transformations in quantum are linear, it is time to study linear operators on vectors.

Given two vector spaces, V and W over \mathbb{C}, a linear operator $M: V \rightarrow W$ is defined as an operator satisfying the following properties.
$-M(x+y)=M(x)+M(y)$.
$-M(\alpha x)=\alpha M(x), \forall \alpha \in \mathbb{C}$.
These conditions imply that the zero of the vector space V is mapped to the zero of the vector space W. Also,

$$
M\left(\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}\right)=\alpha_{1} M\left(x_{1}\right)+\cdots+\alpha_{k} M\left(x_{k}\right)
$$

Where x_{1}, \cdots, x_{k} are elements of V and α_{i} 's are in \mathbb{C}. Because of this linearity, it is enough to specify the value of a linear operator on any basis of the vector space V. In other words, a linear operator is uniquely defined by the values it takes on any particular basis of V.

Let us define the addition of two linear operators as $(M+N)(u)=M(u)+N(u)$. Similarly, αM (scalar multiplication) is defined to be the operator $(\alpha M)(u)=\alpha M(u)$. The space of all linear operators from V to W (denoted $L(V, W)$) is a vector space in itself. The space of linear operators from V to V will be denoted by $L(V)$.

Exercise 7. Given the dimension of V and W, what is the dimension of the vector spaces $L(V, W)$?
Exercise 8. Can you think of a linear operator which takes $|0\rangle$ to $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ and $|1\rangle$ to $\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$?
One of the issue is, how to represent a linear operator. You can give its action on all the elements in vector space, but that will take infinite space.

2.1 Matrices as linear operators

Given two vector spaces $V=\mathbb{C}^{n}, W=\mathbb{C}^{m}$ and a matrix M of dimension $m \times n$, the operation $v \in V \rightarrow$ $M v \in W$ is a linear operation. Here, if $|v\rangle=a_{1}\left|v_{1}\right\rangle+\cdots+a_{n}\left|v_{n}\right\rangle$, we represent it as a vector,

$$
\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
$$

So, a matrix acts as a linear operator on the corresponding vector space.
To ask the converse, can any linear operator be specified by a matrix?
Let f be a linear operator from a vector space V (dimension n) to a vector space W (dimension m). Suppose $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ is a basis for the vector space V. Denote the images of elements of this basis under f as $\left\{w_{1}=f\left(e_{1}\right), w_{2}=f\left(e_{2}\right) \cdots, w_{n}=f\left(e_{n}\right)\right\}$.

Exercise 9. What is the lower-bound/ upper-bound on the dimension of the vector space spanned by $\left\{w_{1}, w_{2}, \cdots, w_{n}\right\} ?$

Define M_{f} to be the matrix with columns $w_{1}, w_{2}, \cdots, w_{n}$. Notice that M_{f} is a matrix of dimension $m \times n$. It is a simple exercise to verify that the action of the matrix M_{f} on a vector $v \in V$ is just $M_{f} v$. Here we assume that v is expressed in the chosen basis $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$.

Exercise 10. Convince yourself that $M v$ is a linear combination of columns of M.
Notice that the matrix M_{f} and the operator f act exactly the same on the basis elements of V. Since both the operations are linear, they are exactly the same operation. This proves that any linear operation can be specified by a matrix.

Exercise 11. Can you now think of a linear operator which takes $|0\rangle$ to $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ and $|1\rangle$ to $\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$?
In Dirac's notation, we denoted inner product between two vectors $|\psi\rangle,|\phi\rangle$ by $\langle\psi \mid \phi\rangle$. The expression $A=|\psi\rangle\langle\phi|$ is a matrix which takes $|v\rangle$ to $\langle\phi \mid v\rangle|\psi\rangle$. The analog of this expression in the simple vector notation would be, $A=\psi \phi^{*}$. If a linear operator M takes an orthonormal basis $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ to vectors $\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$, then the matrix representation of M is

$$
M=\sum_{i=1}^{n}\left|w_{i}\right\rangle\left\langle v_{i}\right|
$$

Exercise 12. What will be $(|w\rangle\langle v|)|v\rangle$. Prove that M defined in the equation above will have the action as intended.

The equivalence of matrices and linear operators does not depend upon the chosen basis. We can pick our favorite bases of V and W, and the linear operator can similarly be written in the new basis as a matrix (The columns of this matrix are images of the basis elements of V). In other words, given bases of V and W and a linear operator f, it has a unique matrix representation.

To compute the action of a linear operator, express $v \in V$ in the preferred basis and multiply it with the matrix representation. The output will be in the chosen basis of W. We will use the two terms, linear operator and matrix, interchangeably in future (bases will be clear from the context). In Dirac's notation, action of M on a vector $|v\rangle$ is just $M|v\rangle$. Also, $\langle u \mid M v\rangle=\left\langle M^{*} u \mid v\right\rangle$ is denoted by $\langle u| M|v\rangle$.

For a matrix A, A^{T} denotes the transpose of the matrix and A^{*} denotes the adjoint of the matrix (take complex conjugate and then transpose).

Exercise 13. Why is matrix multiplication defined the way it is? Why can't it be defined in the more natural way of entry-wise multiplication?

Let us look at some simple matrices which will be used later.

- Zero matrix: The matrix with all the entries 0 . It acts trivially on every element and takes them to the 0 vector.
- Identity matrix: The matrix with 1's on the diagonal and 0 otherwise. It takes $v \in V$ to v itself.
- All 1's matrix (J) : All the entries of this matrix are 1.

Exercise 14. What is the action of matrix J ?

2.2 Extra reading: Kernel, image and rank

For a linear operator/matrix (from V to W), the kernel is defined to be the set of vectors which map to 0 .

$$
\operatorname{ker}(M)=\{x \in V: M x=0\}
$$

Here 0 is the zero vector in space W.
Exercise 15. What is the kernel of the matrix J ?
The image is the set of vectors which can be obtained through the action of the matrix on some element of the vector space V.

$$
i m g(M)=\{x \in W: \exists y \in V, x=M y\}
$$

Exercise 16. Show that $\operatorname{img}(M)$ and $\operatorname{ker}(M)$ are subspaces.
Exercise 17 . What is the image of J ?
Notice that $\operatorname{ker}(M)$ is a subspace of V, but $\operatorname{img}(M)$ is a subspace of W. The dimension of $\operatorname{img}(M)$ is known as the rank of $M(\operatorname{rank}(M))$. The dimension of $\operatorname{ker}(M)$ is known as the nullity of $M($ nullity $(M))$. For a matrix $M \in L(V, W)$, by the famous rank-nullity theorem,

$$
\operatorname{rank}(M)+\operatorname{nullity}(M)=\operatorname{dim}(V) .
$$

Here $\operatorname{dim}(V)$ is the dimension of the vector space V.
Proof. Suppose u_{1}, \cdots, u_{k} is the basis for $k e r(M)$. We can extend it to the basis of $V: u_{1}, \cdots, u_{k}, v_{k+1}, \cdots, v_{n}$. We need to prove that the dimension of $\operatorname{img}(M)$ is $n-k$. It can be proved by showing that the set $\left\{M v_{k+1}, \cdots, M v_{n}\right\}$ forms a basis of $i m g(M)$.
Exercise 18. Prove that any vector in the image of M can be expressed as linear combination of $M v_{k+1}, \cdots, M v_{n}$. Also any linear combination of $M v_{k+1}, \cdots, M v_{n}$ can't be zero vector.

Given a vector v and a matrix M, it is easy to see that the vector $M v$ is a linear combination of columns of M. To be more precise, $M v=\sum_{i} M_{i} v_{i}$ where M_{i} is the i th column of M and v_{i} is the i th co-ordinate of v. This implies that any element in the image of M is a linear combination of its columns.

Exercise 19. Prove the rank of a matrix is equal to the dimension of the vector space spanned by its columns (column-space).

The dimension of the column space is sometimes referred as the column-rank. We can similarly define the row-rank, the dimension of the space spanned by the rows of the matrix. Luckily, row-rank turns out to be equal to column-rank and we will call both of them as the rank of the matrix. This can be proved easily using Gaussian elimination.

2.3 Operations on matrices

Lets look at some of the basic operations on these matrices.

- Trace: The trace of a square matrix A is the sum of all the diagonal elements.

$$
\operatorname{tr}(A)=\sum_{i} A[i, i]
$$

- Entry-wise multiplication: The entry-wise multiplication of two matrices is known as Hadamard product and only makes sense when both of them have same number of rows and columns. The Hadamard product of two matrices A, B is

$$
(A \circ B)[i, j]=A[i, j] B[i, j] .
$$

The related operation is when you add up the entries of this Hadamard product.

$$
(A \bullet B)=\sum_{i, j} A[i, j] B[i, j]
$$

Notice that $A \bullet B$ is a scalar and not a matrix.
Exercise 20. Given a matrix, express - operation in terms of multiplication and trace operation.

- Inverse: Inverse of a matrix M is the matrix M^{-1}, s.t., $M M^{-1}=M^{-1} M=I$. The inverse only exists if the matrix has full rank (columns of M span the whole space).
Exercise 21. What is the inverse of matrix J (all 1's matrix).
Exercise 22. Show that the inverse of a matrix exists iff it has full rank.

3 First postulate: state of a system

The postulates of quantum mechanics provide us the mathematical formalism over which the physical theory is developed. For people studying quantum computing, it gives the basic laws according to which any quantum system (or a quantum computer) works.

These postulates were agreed upon after a lot of trial and error. We won't be concerned about the physical motivation of these postulates. Most of the material for this lecture is taken from [1]. It is a very good reference for more details.

As discussed before, in this lecture note, we are interested in postulates which allow us to represent data/information in a quantum computer (the state of a quantum computer at an instance). The first postulates specifies, what is meant mathematically by the state of a quantum system.

Postulate 1: A physically isolated system is associated with a Hilbert space, called the state space of the system. The system, at a particular time, is completely described by a unit vector in this Hilbert space, called the state of the system.

Intuitively, Hilbert space is a vector space with enough structure so that we can apply the techniques of linear algebra and analysis on it.

Exercise 23. Read more about Hilbert spaces.
For this course, we will only be dealing with vector spaces over complex numbers with inner product defined over them. In almost all these cases, the dimension is going to be finite (say n). In particular, we will assume that our state space is \mathbb{C}^{n} for some n (n is the dimension of this state space).

The simplest non-trivial state space would be \mathbb{C}^{2} (dimension being 2), the state space of a qubit. Remember that a qubit is a generalization of bit, the way we store information in a classical computer. It will be spanned by two standard basis vectors, $|0\rangle$ and $|1\rangle$. These two, $|0\rangle$ and $|1\rangle$, represent classical states in a quantum computer. For an example of a non-classical state in this basis, take $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ or

Exercise 24. Find another basis of \mathbb{C}^{2}.
Exercise 25. Write states $|0\rangle,|1\rangle$ in terms of $|+\rangle,|-\rangle$.

Any state in this system can be written as,

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad|\alpha|^{2}+|\beta|^{2}=1
$$

The coefficients, α and β, are called the amplitude. Specifically, $\alpha(\beta)$ is the amplitude of the state $|\psi\rangle$ for $|0\rangle(|1\rangle)$ respectively. When α and β are non-zero, we say that $|\psi\rangle$ is in superposition of states $|0\rangle$ and $|1\rangle$.

The property of superposition seems to be one of the major reasons behind the power of quantum computing (other is entanglement, described later). It allows us to compute aggregate properties of an input much faster than the classical computer (we will see this in action very soon, Deutsch's algorithm).

Note 1. Many people interpret this as, the state $|\psi\rangle$ is in state $|0\rangle$ with probability $|\alpha|^{2}$ and in state $|1\rangle$ with probability $|\beta|^{2}$. This is only a consequence of $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ and not equivalent to it.

Exercise 26. Why is it not equivalent?
Exercise 27. Suppose $\frac{1}{3}((1+2 i)|0\rangle+(a i)|1\rangle)$ is a quantum state. What is the value of a ?
We have talked about the case when \mathbb{C}^{2} is our Hilbert space, and that case will be very useful. Though, in general, if there are n different classical states, the quantum state would be a unit vector expressed in an orthonormal basis $\{|0\rangle,|1\rangle, \cdots,|n-1\rangle\}$.

Remember that the standard basis is one of the most convenient basis to represent a state, but definitely not the only basis to represent a state. We can have any basis $\left\{\left|v_{0}\right\rangle,\left|v_{1}\right\rangle, \cdots,\left|v_{n}-1\right\rangle\right\}$ and a state $|\psi\rangle$ can be written as,

$$
|\psi\rangle=\alpha_{0}\left|v_{0}\right\rangle+\alpha_{1}\left|v_{1}\right\rangle+\cdots+\alpha_{n-1}\left|v_{n-1}\right\rangle, \quad \sum_{i}\left|\alpha_{i}\right|^{2}=1
$$

We will say that the state $|\psi\rangle$ is in superposition of basis states $\left\{\left|v_{0}\right\rangle,\left|v_{1}\right\rangle, \cdots,\left|v_{n}-1\right\rangle\right\}$ (ideally using only those states whose amplitude is non-zero).

You might already guess from the discussion that the operators on these quantum states will be matrices (linear operators over the vector space). It will turn out that not all linear operators are allowed. Though, that will be discussed in the next lecture (second postulate).

Before that, we have to look at one more postulate. Notice that the state of a classical computer is described by multiple bits (not just a single bit). How can we describe state of multiple qubits? That takes us to the concept of tensor product.

4 Tensor product

We have described the state of a system as a vector in a Hilbert space. What happens if we have multiple systems. For a classical computer, the answer is pretty simple, you just describe the state of both systems independently.

Interestingly, we can have a state of a composite quantum systems such that the individual state of the constituent systems can't be described. This property is known as entanglement and is the reason behind many weird properties of quantum mechanics. To understand this phenomenon, we need to understand the concept of tensor products.

Suppose there is a ball which can be colored blue or red. The state of a quantum ball is a unit vector in two dimensions,

$$
|v\rangle=\alpha|r\rangle+\beta|b\rangle .
$$

Where $|r\rangle,|b\rangle$ represent the classical states, the ball being red or blue, the coefficients α, β follow the usual law.

How about if there are two different balls. The classical states possible are $|r r\rangle,|r b\rangle,|b r\rangle,|b b\rangle$, i.e., we take the set multiplication of possible states of individual system.

What are the possible states if this system is quantum? By analogy with one quantum ball case, any linear superposition of these classical states (normalized) should be a possible quantum state:

$$
|v\rangle=\alpha|r r\rangle+\beta|r b\rangle+\gamma|b r\rangle+\delta|b b\rangle,
$$

where $|v\rangle$ is a unit vector.
This idea motivates the definition of tensor product. Given two vector spaces V, W equipped with an inner product and spanned by the orthonormal basis $v_{1}, v_{2}, \cdots, v_{n}$ and $w_{1}, w_{2}, \cdots, w_{m}$, the tensor product $V \otimes W$ is the space spanned by the $m n$ vectors $\left(v_{1} \otimes w_{1}\right), \cdots,\left(v_{1} \otimes w_{n}\right),\left(v_{2} \otimes w_{1}\right), \cdots,\left(v_{n} \otimes w_{m}\right)$.

Exercise 28. What is the dimension of space $V \otimes W$?
Formally, tensor product of two vector spaces is equipped with a bilinear map $\otimes: V \times W \rightarrow V \otimes W$ which satisfies the following conditions.

- Scalar multiplication: for $\alpha \in \mathbb{C}, v \in V$ and $w \in W$,

$$
\alpha(v \otimes w)=(\alpha v) \otimes w=v \otimes(\alpha w)
$$

- Linearity in the first component: for $v_{1}, v_{2} \in V$ and $w \in W$,

$$
\left(v_{1}+v_{2}\right) \otimes w=v_{1} \otimes w+v_{2} \otimes w
$$

- Linearity in the second component: for $v \in V$ and $w_{1}, w_{2} \in W$,

$$
v \otimes\left(w_{1}+w_{2}\right)=v \otimes w_{1}+v \otimes w_{2} .
$$

For our purposes, we can define the tensor product of two vectors in a canonical way for the vector spaces \mathbb{C}^{n} and \mathbb{C}^{m}. The tensor product of two vectors $a=\left(a_{1}, \cdots, a_{n}\right) \in V$ and $b=\left(b_{1}, \cdots, b_{m}\right)$ is the vector $a \otimes b \in V \otimes W=\mathbb{C}^{m n}$,

$$
a \otimes b=\left(\begin{array}{c}
a_{1} b \\
a_{2} b \\
\vdots \\
a_{n} b
\end{array}\right)=\left(\begin{array}{c}
a_{1} b_{1} \\
a_{1} b_{2} \\
\vdots \\
a_{1} b_{m} \\
\vdots \\
\vdots \\
a_{n} b_{1} \\
\vdots \\
a_{n} b_{m}
\end{array}\right)
$$

Exercise 29. What is the tensor product $a \otimes b$, where

$$
a=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), b=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) .
$$

In Dirac's notation, we further simplify $|v\rangle \otimes|w\rangle$ to $|v w\rangle$ when v and w are symbols. For example, state $|0\rangle \otimes|1\rangle$ is same as $|0\rangle|1\rangle=|01\rangle$.
Exercise 30. What is the basis of state of two qubits? What about three qubits?
Exercise 31. Show that $(v+w) \otimes(a+b)=v \otimes a+v \otimes b+w \otimes a+w \otimes b$. In other words, $(|v\rangle+|w\rangle)(|a\rangle+|b\rangle)=$ $|v a\rangle+|v b\rangle+|w a\rangle+|w b\rangle$.

We can define the inner product on the tensor product space in the natural way,

$$
\begin{equation*}
\langle a \otimes b \mid c \otimes d\rangle=\langle a \mid c\rangle\langle b \mid d\rangle \tag{1}
\end{equation*}
$$

In other words, we have defined the tensor product between two Hilbert spaces V and W. First, look at them as vector spaces and define the vector space $V \otimes W$. Then, we define the inner product on $V \otimes W$ by the equation above (Eq. 1).

Carrying the analogy further, given two linear operators $A \in L(V)$ and $B \in L(W)$, their tensor product $A \otimes B$ can be defined in the space $L(V \otimes W)$. Precisely, its action is specified by,

$$
(A \otimes B)(a \otimes b)=A a \otimes B b
$$

We can extend this by linearity to define the action on the complete space $V \otimes W$.
Exercise 32. Write out the matrix representation of $H^{\otimes 2}=H \otimes H$ where $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ is the Hadamard Matrix. What is $H^{\otimes 2}\left(\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\right)$?
Exercise 33. Given the matrix representation of A, B; come up with the matrix representation of $A \otimes B$.
You can easily verify the following properties,
$-(A \otimes B)(C \otimes D)=A C \otimes B D$
$-(A \otimes B)^{*}=A^{*} \otimes B^{*}$
$A \otimes B$ are linear operators in $L(V \otimes W)$. Can there be other linear operators?
The sum of two linear operators is a linear operator. So, any operator of the form $\sum_{i} c_{i}\left(A_{i} \otimes B_{i}\right)$ is also a linear operator.

Are there any more linear operators? It turns out that these are the only linear operators in $L(V \otimes W)$, you can prove this by dimensionality argument.

The description of tensor product is given in a very simplified manner in terms of basis vectors, sufficient for use in our course. Readers are encouraged to check out the formal definitions.

5 Fourth postulate: composite Systems

The fourth postulate deals with composite systems, systems with more than one part. We will cover second and third postulates in the later sections. We will use tensor products for the sake of describing multiple systems.

Postulate 4: Suppose the state space of Alice is H_{A} and Bob is H_{B}, then the state space of their combined system is $H_{A} \otimes H_{B}$. If Alice prepares her system in state $|a\rangle$ and Bob prepares it in $|b\rangle$, then the combined state is $|a\rangle \otimes|b\rangle$, succinctly written as $|a b\rangle$.

Exercise 34. If Alice's qubit is in state $\frac{1}{2}|0\rangle+\frac{\sqrt{3}}{2}|1\rangle$ and Bob's qubit is in $\frac{1}{\sqrt{2}}|0\rangle-\frac{i}{\sqrt{2}}|1\rangle$, what is the state of the combined system?

Similarly, if operator A is applied on Alice's system and operator B is applied on Bob's system, then operator $A \otimes B$ is applied to the combined system. This follows from the property,

$$
(A \otimes B)(|a\rangle \otimes|b\rangle)=A|a\rangle \otimes B|b\rangle
$$

Generally, it is quite clear which part of the system belongs to which party. In case of confusion, we will use subscripts to resolve it. So if A is an operator on first system and B is an operator on second system, the combined operator is $A_{1} \otimes B_{2}$.

The most useful example will be of k qubits.
Exercise 35. What will be the dimension of the state space of k qubits?
The state space for k qubits is $\mathbb{C}^{2^{k}}$. It is a vector space of dimension 2^{k}. A natural way to represent this vector space is through basis $|0\rangle,|1\rangle,|2\rangle, \cdots,\left|2^{k}-1\right\rangle$. Though, a better way to represent the basis is by binary strings of length k. This way, we keep the structure of k qubits and not a general vector space with 2^{k} dimension.

To take an example, the state space of 2 qubits is spanned by $|00\rangle,|01\rangle,|10\rangle,|11\rangle$. The state space of k qubits is spanned by $\left|B_{n}\right\rangle$, where B_{n} is the binary representation of number n and n ranges from 0 to $2^{k}-1$. These basis states are product states, e.g., state $|001\rangle=|0\rangle \otimes|0\rangle \otimes|1\rangle$.

Notice the rise in the dimension of the state space for k qubits. If we described the state space of k bits, it will have dimension k (over the field of two elements). For k qubits, it rises to dimension 2^{k} over complex numbers. There is an exponential growth, which makes it expensive to simulate quantum computer on a classical computer.

Exercise 36. Are the two states $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ and $|+\rangle \otimes|+\rangle$ same?
The tensor product structure of the composite system gives rise to a very interesting property called entanglement. As explained before, there are states in the composite system which cannot be decomposed into the states of their constituent systems. Such states are called entangled states.

The most famous example of an entangled state is called the Bell state,

$$
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Exercise 37. Show that the Bell state can't be written as $|\psi\rangle \otimes|\phi\rangle$.
It is clear that every state in the composite system $H_{1} \otimes H_{2}$ can be written as $\sum_{i=1}^{l}\left|\psi_{i}\right\rangle \otimes\left|\phi_{i}\right\rangle$ (Why?). Exercise 38. Prove a bound of $\operatorname{dim}\left(H_{1}\right) \times \operatorname{dim}\left(H_{2}\right)$ on l for any state in the composite system.

Can you give a better bound? Read about Schmidt decomposition for a better bound. We have defined when a state is entangled and when is it not. But how can we quantify entanglement? In other words, how entangled is an state? These are very interesting questions and lot of research is currently being done to answer them.

6 Assignment

Exercise 39. Prove that $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.
Exercise 40. Prove that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{*} A\right)$ without using singular or spectral decomposition.
Hint: $\operatorname{rank}(A) \geq \operatorname{rank}\left(A^{*} A\right)$ is easy. For the other direction, reduce A to its reduced row echelon form.

Exercise 41. Show that $\langle v| A|w\rangle=\sum_{i j} A_{i j} v_{i}^{*} w_{j}$.
Exercise 42. Show that $\operatorname{tr}(A|v\rangle\langle v|)=\langle v| A|v\rangle$.
Exercise 43. Suppose M, N are two square matrices, show that $M N=I \Rightarrow N M=I$. Notice that it is not true if matrix is not square, find a counterexample.

Exercise 44. Write the matrix representation of the operator which takes $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ to $|0\rangle$ and $\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$ to $|1\rangle$.

Exercise 45. Read about Pauli matrices X, Y and Z. Let $\psi=\frac{|00\rangle+|11\rangle}{\sqrt{2}}$, calculate the value of $\langle\psi| X_{1} \otimes Z_{2}|\psi\rangle$. Exercise 46 . What is $\left(\frac{1}{2}|0\rangle+\frac{\sqrt{3}}{2}|1\rangle\right) \otimes|-\rangle$.

References

1. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge, 2010.
