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Up till now we have mostly tried to model a single randomized experiment, sometimes looking at indepen-
dent repetition of such an experiment. This chapter will look at stochastic processes, which can be thought
of as a randomized process or a sequence of randomized experiments (where the next outcome might depend
on previous outcomes).

We view a stochastic process as a sequence of random variables dependent on each other. It can also
be thought of as a sequence of observations on a randomized process. This is a much more general setting
and can model many more situations; to take a few examples: amount of traffic on road everyday, rainfall
everyday and movement of stock prices.

Mathematically, a stochastic process is a sequence {Xt}t∈I of random variables taking values in some
common state space (say S), where t comes from some index set I. Notice a crucial difference, before we
defined random variables to be X : Ω → R. In this case, the set of outputs are called the state space of these
random variables. It is different from the sample space Ω, and Xt can be thought of as a function from Ω
to S (Xt : Ω → S). We will denote the elements of state space by letters s1, s2, · · · .

The state space of random variables, S, could be a discrete or a continuous set. In almost all situations,
we can think of t as time and index being some passage of time. Even the time index set I could be discrete
(e.g., random experiment every day) or continuous (e.g., movement of stock prices).

In this chapter, we will mostly worry about the case when index set is discrete (index coming from the
set of natural numbers). The probability, in most general terms, could be written as,

P [X1 = s1, · · · , Xk = sk] = P [X1 = s1]P [X2 = s2|X1 = s1] · · ·P [Xk = sk|X1 = s1, · · · , Xk−1 = sk−1] .

Exercise 1. What did we use here?

We assumed that value of Xk only depends on the random variables before it. As mentioned above, this
is the most general setting and very hard to deal with. The easiest version is the one studied before, sequence
of independent random variables.

P [X1 = s1, X2 = s2, · · · , Xk = sk] = P [X1 = s1]P [X2 = s2] · · ·P [Xk = sk].

Our focus in this chapter is on processes which are slightly more general than the independent random
variables.

1 Markov process

A sequence of random variables {Xt}t∈N is said to satisfy the Markov property (or called a Markov chain) if,

P [Xk = sk|X1 = s1, X2 = s2 · · · , Xk−1 = sk−1] = P [Xk = sk|Xk−1 = sk−1] .

Exercise 2. Convince yourself that if Xi’s are independent random variables, then they are a Markov chain
too (trivially).

Intuitively, the value of the last random variable is sufficient to determine the future (nothing about
the past is needed). To be precise, it is not that the value of Xk+1 does not depend upon X1, X2, · · · ; just
that the influence of X1, X2, · · · is absorbed by Xk. In other words, conditioned on Xk, random variables
Xk+1 and X1 are independent. For example, let Yt denote the maximum rainfall seen till month t. Assuming
rainfall every month is independent, {Yt} is a Markov chain.

Exercise 3. Let Xi’s be independent random variables. Are the elements of {Yk :=
∑k

i=1 Xk}k independent
too? Do they form a Markov chain?



1.1 Homogeneous Markov chains

From the Markov property, the future probabilities only depend on initial probabilities (P [X0 = s]) and
conditional transition probabilities of type P [Xk = s|Xk−1 = t].

A homogeneous Markov chain is one where the conditional dependences above do not depend on time,
i.e.,

P [Xk = i|Xk−1 = j] = P [X1 = i|X0 = j] ,

for all pair of elements i, j in state space S. To take an example, in a test-series between India and Pakistan,
the number of wins by India after every test match is a homogeneous Markov chain (assuming they win each
test with some independent identical probability).

Exercise 4. Convince yourself that the number of wins of India in a cricket match (Markov chain defined

above) is a Markov chain. In general, if {Xi}ni=1 are i.i.d’s, then {Yi =
∑i

j=1 Xj}ni=1 is a (homogeneous)
Markov process.

For the rest of this chapter, a Markov chain would mean a homogeneous Markov chain.
This simple set of stochastic processes, a Markov chain (homogeneous), can be specified by just two set

of values,

– Initial probability distribution µ, a |S| length vector. Since it describes the probabilities in the beginning,
all entries are positive and sum to 1.

– Transition matrix M (|S| × |S|), describing the probabilities of moving between states. So,

Mij = P [X1 = j|X0 = i] ∀i, j ∈ S.

A Markov chain can also be depicted as a graph (Figure 1) with vertices from the state space.

A

D

C

B

Fig. 1. A general homogeneous Markov chain.

Exercise 5. What can you say about the sum of the entries of a row of M? What about sum of a column?

One of the simplest example of a Markov chain is the drunkard’s walk in one dimension. The state space
is integers. Assume that the drunkard starts at 0. At any point of time, he can potentially move one step to
right or one step to left with equal probability. So, the transition matrix is given by,

Mij =

{
1/2 (j = i± 1),

0 otherwise

It is clear that such a walk satisfies the Markov property (why?).
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Exercise 6. What is the starting state µ?

A generalization of drunkard’s walk is the concept of random walk on a graph a G. In this case, the
state space is the set of all vertices. At any time step, you can move to any neighbouring vertex with some
probability (in many instances, it is uniform on all neighbours). Drunkard’s walk can be thought of as a
random walk on a line.

Exercise 7. Write the state space S and transition matrix for a random walk on a complete graph (move to
any neighbour with equal probability).

You can visualize any discrete Markov chain as a random walk on a graph where the vertices are the
elements of the state space (Figure 1). The concept of random walk has been very helpful in complexity
theory, for example, it has been used in designing randomized algorithms and pseudo-random generators.

Exercise 8. What are pseudo-random generators, read about them on internet.

In general, Markov chains are used to model many diverse situations; to describe evolution of DNA,
motion of particles in physics (Brownian motion), information from a communication source and so on. The
application of a Markov chain stems from the fact that its evolution can be studied easily and it still has
strong structural properties (similar to independent events).

1.2 Evolution of a Markov chain

We consider a Markov chain with a state space S and transition matrix M . The initial state (or a probability
distribution) is specified by a vector µ of dimension |S|. The different entries of µ correspond to the probability
of being in some state i ∈ S at t = 0. We need to find the probability distribution at some future time t, say
µt. In other words, µ0 = µ.

Exercise 9. What will be the probability distribution at t = 1?

First, let us calculate the probability of being in some state i ∈ S at t = 1. We must have moved to i
from some j ∈ S at time t = 0. So,

P [X1 = i] =
∑
j∈S

P [X1 = i|X0 = j]P [X0 = j] =
∑
j∈S

µ(j)Mji.

A keener look at the equation shows that this is the dot product between µ = µ0 and the i-th column
vector of M . We get the equation,

µT
1 = µTM.

What about µ2? What is the probability of begin in state j in 2 steps starting from state i? Again, we
can be any intermediate step u ∈ S at t = 1.

P [X2 = j|X0 = i] =
∑
u∈S

P [X1 = u|X0 = i]P [X2 = j|X1 = u] =
∑
u∈S

MiuMuj .

Notice that the equality follows from Markov property. Again, by the property of matrix multiplication,

P [X2 = j|X0 = i] = (M2)ij .

You will prove in the assignment that (Mn)ij is nothing but the probability of being in state j after n
steps, if we start from state i. So, we get the more general equation for evolution,

µT
n = µTMn.

This shows that the state of a Markov chain at any time t is completely determined by its initial state µ
and transition matrix M . Also, Mn gives the probabilities of moving between two states in n steps.

It turns out that under some mild conditions on a Markov chain, much more can be said about its
evolution. To give a glimpse, under mild conditions, a Markov chain will converge to a unique stationary
distribution irrespective of the starting state. In other words, the start doesn’t matter, slowly (after a long
time) the state of the Markov chain will get closer and closer to a stationary distribution (importantly, that
distribution does not depend on the starting state).
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2 Regular Markov chains and stationary distribution

The exposition in this section is taken from the book by Grinstead and Snell ([1]).
As mentioned before, under a few restrictions, whatever be the starting state, a Markov chain ends up

in the same distribution. Such a distribution is called a stationary distribution.
Before we formally define stationary distributions and these restrictions, let us first see why some such

restrictions are needed. Suppose someone tells you that stationary distribution exists for all Markov chains.

Exercise 10. Can you think of an example where these is no stationary distribution.

Trivially, you can have two kind of states such that going from one kind to another is impossible. So, if we
start from a distribution on first kind, we can’t be in the same distribution as if we started at a distribution
from second kind. Though, it is possible that both tend to different distributions.

Another example where stationary distribution will not exist is

M =

(
0 1
1 0

)
The state will keep fluctuating from state 1 to state 2 and vice versa.

To remove these weird cases, we can define a regular Markov chain to be the one, s.t.,

∃ m : (Mm)ij > 0 ∀i, j ∈ S.

Intuitively, there exists some m, such that, the probability of going from state i to state j after m steps
is positive for all i, j. Notice the order of quantifiers here, there exists a single m for which all the entries of
Mm are positive.

Exercise 11. Check that the two Markov chains (not having stationary distribution) defined in the beginning
of this section are not regular.

We will prove, for any regular Markov chain (for all µ) the final state limn→∞ µTMn tends to some w
(stationary distribution independent of µ).

Convergence to stationary distribution: Let M be the transition matrix of a regular Markov chain. Let us
see how Mn behaves as n tends to infinity. Define Q := Mm be such that all entries of Q are positive (there
exists such an m, because M is regular).

Exercise 12. Show that all rows of Q are probability vectors themselves.

We can instead look at the behavior of Qn as n tends to infinity. That means, think of Q as one step of
the Markov chain.

We already noticed that each row of Q is a probability vector, i.e., each entry is positive and they sum up
to 1. In other words, multiplying any vector y by a row of Q, averages the entries of y. Doing it for all rows,
the entries of y become mixed. The following theorem proves it formally.

Theorem 1. Let M be a transition matrix of a regular Markov chain. Define Q := Mm be the matrix, such
that, all of its entries are positive. Then, for any y, Qny tends to a constant multiplied by all 1’s vector (all
entries of the vector are same) as n tends to infinity.

Proof. To start with, assume that the maximum entry and minimum entry of y are M0 and m0 respectively.
After n applications of Q, say the maximum and minimum entries become Mn and mn respectively. We
want to show that the gap Mt −mt keeps decreasing, eventually moving to zero.

We know that all entries of Q are positive, assume that all of them are more than d (some constant bigger
than zero).

Exercise 13. Prove that d is smaller than half, if there are more than 2 states in the state space.
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Denote y1 = Qy, then every entry of y1 is smaller than,

(1− d)M0 + dm0.

This follows because the coefficient of m0 is at least d and all other entries are at most as big as M0.

Similarly every entry is bigger than (1− d)m0 + dM0. In other words, M1 −m1 is smaller than,

(1− d)M0 + dm0 − ((1− d)m0 + dM0) = (1− 2d)(M0 −m0).

Since 0 < d ≤ 1/2, this shows that the gap between the maximum and minimum entry keeps decreasing.
In other words, Qny tends to a constant vector as n → ∞.

We are ready to show that a Markov chain converges to its stationary distribution (only an informal
argument will be given). For a large n, we know that Qn = Mnm and Qny ≈ cy1, where 1 is the all 1’s
vector and cy is some constant (might depend upon y).

To simplify the notation, replace nm by n, we get that Mny ≈ cy1. This is a very strong property.
Replacing y by ei (standard basis vectors with 1 at the i-th place), we get that every column of Mn is close
to a constant vector.

Since every column is almost a constant vector, every row of Mn is close to some fixed vector w. Notice
the difference between fixed and constant vector. (Fixed implies, that all rows are same (vector w), individual
entries of these rows need not be same.)

Exercise 14. Show that entries of w sum to 1. Moreover, it is a probability vector.

So, w is the stationary distribution for M . Let u be any probability vector, then uTMn ≈ w (all rows of
Mn are close to w). Informally, we can start in any state, ultimately the Markov chain will end up close to
w.

Formally, wTMn ≈ w, by taking u to be w (w is a probability vector). You can also see that Mn+1 =
M ·Mn has all rows close to w. So, w ≈ wMn+1 = wMnM ≈ wM . In other words, w is the eigenvalue 1
eigenvector for MT .

We can formally define the stationary distribution now.

Definition 1. A stationary distribution is a vector w, s.t., wT = wTM . In other words, it is the eigenvalue
1 eigenvector of MT .

The formal definition of stationary distribution seems to be different from the intuition given in this
section. The proof above shows that the formal definition matches with the intuition. In other words, both our
definitions of stationary distribution, eigenvalue 1 eigenvector (formal) and vector to which state converges
(informal), are same for a Markov chain.

For a regular Markov chain, there is an easy way to find the stationary distribution.

Theorem 2 ([2], Theorem 7.10). Let M be the transition matrix of a regular Markov chain with n
elements in the state space. If there are non-negative numbers p1, p2, ·, pn such that

piMij = pjMji,

for any i, j, then p1, p2, · · · , pn is a stationary distribution for M .

Exercise 15. Prove the above theorem.

Exercise 16. Suppose a transition matrix is symmetric, show that the stationary distribution is uniform.
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3 Page rank algorithm

We will find an algorithm to rank pages on internet using ideas from Markov chains. This page rank algorithm
motivated the actual algorithm for ranking pages on Google. The actual algorithm is kept secret by Google
(obviously :)).

What is the problem? Internet has a huge collection of pages. We need to rank pages according to their
importance. Once done, we can output search result on a query by outputting high ranking pages containing
that query. It could also be a more involved combination of page rank and similarity of the page to the query.

For now, we will only worry about ranking pages on the internet irrespective of the query. What informa-
tion tells us that a page is more important than other? We have the information about connections between
pages, i.e., which pages link to each other.

In other words, we are given a directed graph G = (V,E), where V is the set of pages and (i, j) ∈ E is a
directed edge if i links to j. The importance of page i should be more if many pages link to it. Let pi be the
importance score of page i. Our first attempt could be,

pi :=
∑

j:(j,i)∈E

1.

This is a solution, but not a great one. We need to consider two more factors in calculating importance.

– If there are many link from page j, its contribution in the importance of page i should be small.
– A link from an important page should be weighted more.

The first point is easy to handle, say mj is the total number of links from page j. Then,

pi :=
∑

j:(j,i)∈E

1/mj .

How should we take care of the second point? We could multiply the contribution of j by pj ,

pi :=
∑

j:(j,i)∈E

pj/mj . (1)

Though, this makes our equation circular. We don’t even know whether it will have a solution or not.
Let us look at this problem (and these equations) from another viewpoint, the one of Markov chains.

Assume that a person is surfing the web. She starts from a random page. At each time step, she randomly
moves to another web-page by clicking on a link from the current web-page.

This should remind you of a Markov chain. The state space will be the set of all pages. The transition
probability from page j to i is 1/mj . From our discussion about the stationary distribution, wherever this
person starts, she will eventually end up at the stationary distribution. Our final importance score for a page
should be the corresponding entry in the stationary distribution.

Exercise 17. Let M be the transition matrix for the above chain. Show that pM = p is same as Eq. 1.

So, to find the importance score, we just need to find the stationary distribution for the Markov chain.
There is a catch, what is the guarantee that the chainM is regular. Otherwise, we might not have a stationary
distribution (non-unique) or the surfer might not converge to the stationary distribution.

Exercise 18. Construct a graph of pages, such that, the corresponding chain is not regular.

There is a simple fix to the problem above. We can assume that the surfer at any time step could just
get bored with probability p and start fresh. In other words, with probability p she can go to an arbitrary
web-page, and with probability (1− p) she moves like before (using the links on the page).
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The new transition matrix is given by,

(M ′)ji :=

{
p/n+ (1− p)/mj if j links to i

p/n if j does not link to i

This is equivalent to the transformation,

M ′ = (p/n) J + (1− p)M,

where M is the old transition matrix and J is the all 1’s matrix.
Since every entry of M ′ is positive (why?), it defines a regular Markov chain.

Exercise 19. Verify that M ′ defines a regular Markov chain.

So, a stationary distribution exists for M ′. The entries in the stationary distribution give the importance
of the web-page. They can be sorted or used with other measures to output search results.

Another way to modify the Markov chain: There is one more way to modify the Markov chain over
web-pages to make it regular. A Markov chain is called Ergodic if for all i and j there exist an n, such that,
Mn

ij > 0. Notice the difference between regular and Ergodic, in case of Ergodic, n can depend upon i and j.

Note 1. In general, Ergodicity refers to the property that the process goes around all parts of state space.
The term originates from Physics.

Exercise 20. Construct a Markov chain which is Ergodic but not regular.

The method described below works for any Ergodic Markov chain and converts it into a regular chain.
In our surfing example, Ergodic means that the graph is connected. We can assume that at every time step,
with half the probability surfer stays at the same webpage or moves to another page via a link on the current
web-page.

Exercise 21. Show that the new transition matrix is M ′ = 1/2I + 1/2M .

You will show in the assignment that both M and M ′ have the same stationary distribution. We will
show that if M is Ergodic then M ′ is regular. The idea is pretty simple.

– Suppose there are r states in the state space of M . Then, for all i and j, there exists m < r such that
(Mm)ij > 0.

– If (M ′n)ij > 0, then (M ′m)ij > 0 for all m ≥ n.

The first step follows from the graph theoretic fact that if there is a path between i and j, then there
is a path between i and j with length less than the number of vertices. For the second step, notice that all
diagonal entries of M ′ are positive (there is a positive chance that we stay put at a web-page). So, once we
arrive at a web-page, there will always be a positive probability of being at that web-page at any future time
step.

Exercise 22. Prove the second step formally using induction.

So, we can always convert an Ergodic Markov chain to a regular one and find the stationary distribution
for the regular Markov chain.

Computing stationary distribution: There is another computational question here. How will we compute
the stationary distribution? There are billions of web-pages on the internet. A usual algorithm to find the
eigenvector will take lot of time. Luckily, our graph is very sparse (a single web-page is connected to only
few web-pages). Solving linear equations for sparse matrices form a big area of study in theoretical computer
science.

Another way to compute the stationary distribution would be to computeM ′nu for any initial distribution
u and large n. We know that it should converge to the stationary distribution. Again, we need techniques
for fast multiplication of sparse matrices to compute M ′nu.
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4 Assignment

Exercise 23. Let M be the transition matrix of a Markov chain. Prove that Mn
ij is the probability of being

in state j after n steps, if we start from state i.

Exercise 24. Read about Ergodic Markov chains.

Exercise 25. Let {Xi}i be a set of independent random variables. Show that Yi = max{X1, X2, · · · , Xi}’s
and Zi = min{X1, X2, · · · , Xi}’s are Markov processes. Is {Yi + Zi}i a Markov process?

Exercise 26. For a Markov chain given by transition matrix M , Show that M and 1/2I + 1/2M have the
same stationary distribution.
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