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Our next task will be to generalize ideas learnt in linear programming to a more general class of optimiza-
tion problems, called semidefinite programming. This class, even though being more general, preserves the
three important properties of linear programming: wide applicability, efficient algorithm and duality theory.

Semidefinite programming is a class of convex optimization where:

– Cost/optimization function is linear,
– Constraints are either linear equalities/inequalities, and/or membership constraints with respect to the

semidefinite cone; these membership constraints are also called generalized inequalities.

Hence, it can be viewed as linear programming with the additional power of generalized inequalities for
the positive semidefinite cone (Sn). We will learn the meaning of generalized inequalities in this lecture note.

The main aim of the first part is to prepare your background for semidefinite programming. We have
already seen some linear algebra. Now, we will see the concept of eigenvalues and eigenvectors, spectral
decomposition and special classes of matrices. The class of positive semidefinite matrices will be of special
interest to us. We will look at the properties of positive semidefinite matrices and the cone formed by them.

Later, we will look at the standard form of a semidefinite program. The lecture will finish with some
situations which can be modelled as a semidefinite program. Specifically, we will cover Goemans-Williamson
approximation algorithm for max cut using relaxation and rounding technique.

Remember, matrices are linear operators and every linear operator can be represented by a matrix (if we fix
a basis). There were two important theorems covered earlier.

Theorem 1 (Rank-nullity theorem). Let M be an m × n matrix. The dimension of the image of M
is known as the rank of M (rank(M)) and the dimension of kernel of M is known as the nullity of M
(nullity(M)). Then,

rank(M) + nullity(M) = n.

Theorem 2 (Column rank and row rank). The column rank of a matrix M is same as the row rank of
M .

1 Eigenvalues and eigenvectors

Consider two vector spaces V and W over real numbers. A matrix M ∈ L(V,W ) is square if dim(V ) =
dim(W ). In particular, a matrix M ∈ L(V ) is always square.

Consider a matrix M ∈ L(V ), any vector v ∈ V satisfying,

Mv = λv for some λ ∈ R,

is called the eigenvector of matrix M with eigenvalue λ.

Exercise 1. Given two eigenvectors v, w, when is their linear combination an eigenvector itself?

The previous exercise can be used to show that all the eigenvectors corresponding to a particular eigen-
value form a subspace. This subspace is called the eigenspace of the corresponding eigenvalue.

An eigenvalue λ of an n× n matrix M satisfies the equation

det(λI −M) = 0,



where det(M) denotes the determinant of the matrix M . The polynomial det(λI −M) = 0, in λ, is called
the characteristic polynomial of M . The characteristic polynomial has degree n and will have n roots in the
field of complex numbers. Though, these roots might not be real.

It can be shown that if λ is a root of characteristic polynomial then there exist at least one eigenvector
corresponding to λ. We leave it as an exercise (Hint: look at the null space of λI −M for that λ).

Exercise 2. Give an example of a matrix with no real roots of the characteristic polynomial.

The next theorem says that eigenvalues are preserved under basis transformation.

Theorem 3. Given a matrix P of full rank, matrix M and matrix P−1MP have the same set of eigenvalues.

Proof. Suppose λ is an eigenvalue of P−1MP , we need to show that it is an eigenvalue for M too. Say λ is
an eigenvalue with eigenvector v. Then,

P−1MPv = λv ⇒ M(Pv) = λPv.

Hence Pv is an eigenvector with eigenvalue λ.

The opposite direction follows similarly. Given an eigenvector v of M , it can be shown that P−1v is an
eigenvector of P−1MP .

P−1MP (P−1v) = P−1Mv = λP−1v

Hence proved.

Exercise 3. Where did we use the fact that P is a full rank matrix?

The problem Ax = b is easy to solve when the matrix is upper/lower triangular (we convert a general
matrix into that form using Gaussian elimination). Similarly Ax = λx is easy to solve when the matrix is
diagonal.

Exercise 4. What are the eigenvalues of a diagonal matrix?

Using Thm. 3, it is easy to find eigenvalues of a matrix, if it can be diagonalized (for M , find P such
that P−1MP is diagonal). It is not always possible to diagonalize a matrix. There is a beautiful theory of
diagonalizable matrices, we will not go into details here. Interested readers can refer Gilbert Strang’s book
on linear algebra [2].

One of the cases, when it can be diagonalized, is symmetric matrices. In this case, the eigenvectors are
orthogonal to each other. This fact about symmetric matrices is also known as spectral decomposition.

Theorem 4. Spectral decomposition: For a symmetric matrix M ∈ Rn×n, there exists an orthonormal basis
x1, · · · , xn of Rn, s.t.,

M =

n∑
i=1

λixix
T
i .

Here, λi ∈ R for all i.

The proof of this theorem is given in the next section and is optional.

Exercise 5. Show that xi is an eigenvector of M with eigenvalue λi.

Note 1. uTw is a scalar, but uwT is a matrix.
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Note 2. The λi’s need not be different. If we collect all the xi’s corresponding to a particular eigenvalue λ,
the space spanned by those xi’s is the eigenspace of λ.

A matrix U is orthogonal if UUT = UTU = I. In other words, the columns of U form an orthonormal
basis of the whole space.

Orthogonal matrices can be viewed as matrices which implement a change of basis. Hence, they preserve
the angle (inner product) between the vectors (prove it). So for an orthogonal U ,

uT v = (Uu)T (Uv).

If two matrices A,B are related by A = U−1BU , where U is orthogonal, then they are called orthogonally
similar. If two matrices are orthogonally similar then they are similar.

Spectral theorem can be stated as the fact that symmetric matrices are orthogonally similar to a diagonal
matrix. It means that any symmetric matrix M can be expressed as UTDU , where D is the diagonal matrix
with eigenvalues and U is the orthogonal matrix with columns as eigenvectors.

1.1 Extra reading: proof of spectral decomposition

Exercise 6. Let v1, v2 be two eigenvectors of a matrix M with distinct eigenvalues. Show that these two
eigenvectors are linearly independent.

This exercise also shows: sum of the dimensions of eigenspaces of an n× n matrix M can’t exceed n.
Given an n× n matrix M , it need not have n linearly independent eigenvectors. The matrix M is called

diagonalizable iff the set of eigenvectors of M span the complete space Rn.
For a diagonalizable matrix, the basis of eigenvectors need not be an orthogonal basis. We will be

interested in matrices which have an orthonormal basis of eigenvectors.
Suppose a matrixM has an orthonormal basis of eigenvectors. Let λ1, λ2, · · · , λn ∈ R be the n eigenvalues

with the corresponding eigenvectors u1, u2, · · · , un. Define D to be the diagonal matrix with Dii = λi for
every i. Let U be the matrix with i-th column being ui. Since ui’s are orthonormal, UT = U−1.

Exercise 7. Show that M = UDUT . Remember, to show that two matrices are same, we only need to show
that their action on a basis is same.

So, if a matrix M has an orthonormal set of eigenvectors, then it can be written as UDUT . This implies
that M = MT . We call such matrices symmetric.

What about the reverse direction? Spectral decomposition shows that every symmetric matrix has an
orthonormal set of eigenvectors. Before proving spectral decomposition, let us look at the eigenvalues and
eigenvectors of a symmetric matrix.

Lemma 1. Let Mu = λ1u and Mw = λ2w, where λ1 and λ2 are not equal. Then

uTw = 0.

Proof. Notice that λ1, λ2, u, w need not be real. From the conditions given in the lemma,

λ1u
Tw = (Mu)Tw = uT (Mw) = λ2u

Tw.

Where did we use the fact that M is symmetric?
Since λ1 ̸= λ2, we get that uTw = 0.

Let M be a symmetric matrix. A priori, it is not even clear that all the roots of det(M − λI) are real.
Let us first prove that all roots of the characteristic polynomial are real.

Lemma 2. Given an n× n symmetric matrix M , all roots of det(λI −M) are real.
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Proof. Let λ be a root of det(λI −M). Suppose it is not real,

λ = a+ ib, where b ̸= 0.

Since λI −M is zero, the kernel of λI −M is not empty. Hence, there exists a vector v = x + iy, such
that

M(x+ iy) = (a+ ib)(x+ iy).

Taking the adjoint of this equation and noting M∗ = M (M is real and symmetric),

M(x− iy) = (a− ib)(x− iy).

Using Lem. 1, we know that x+ iy and x− iy should be orthogonal to each other.

Exercise 8. Prove that x+ iy and x− iy can not be orthogonal to each other by taking their inner product.

Now we are ready to prove spectral decomposition.

Proof of Thm. 4. Proof of spectral theorem essentially hinges on the following lemma.

Lemma 3. Given an eigenspace S (of eigenvalue λ) of a symmetric matrix M , the matrix M acts on the
space S and S⊥ separately. In other words, Mv ∈ S if v ∈ S and Mv ∈ S⊥ if v ∈ S⊥.

Proof of lemma. Since S is an eigenspace, Mv ∈ S if v ∈ S. This shows that M preserves the subspace S.
Suppose v1 ∈ S⊥, v2 ∈ S, then Mv2 = MT v2 ∈ S. So,

0 = vT1 M
T v2 = (Mv1)

T (v2).

This shows that Mv1 ∈ S⊥. Hence, matrix M acts separately on S and S⊥.

We have already shown that the eigenvectors of a symmetric matrix corresponding to different eigenvalues
are orthogonal (Lem. 1). Also, it was shown that every root of the characteristic polynomial is real, so there
are n real roots (Lem. 2). Though some roots might be present with multiplicities more than 1.

Assume that we list out all possible eigenvalues λ1, λ2, · · · , λk with their eigenspaces P1, P2, · · · , Pk. If∑k
i=1 dim(Pi) = n, then we are done. If not say the remaining space is Pk+1.
Since eigenvalues do not change under a basis transformation (Thm. 3), we can look at M in the bases

of P1, P2, · · · , Pk+1. Lem. 3 implies that matrix M looks like,

λ1

λ1

. . .

λk

. . .

λk

C


.

We can assume that C is non-zero (why?). Then fundamental theorem of algebra says that det(λI − C)
has a root. Since that will also be a root of det(λI − M), it has to be real. But then this real root will
have at least one eigenvector. This is a contradiction, since we had listed all possible eigenvalues and their
eigenspaces.

Exercise 9. Given the spectral decomposition of M , what is the spectral decomposition of MT ?
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It was shown before that any matrix with orthonormal set of eigenvectors is a symmetric matrix. Hence,
spectral decomposition provides another characterization of symmetric matrices.

Clearly the spectral decomposition is not unique (essentially because of the multiplicity of eigenvalues).
But the eigenspaces corresponding to each eigenvalue are fixed. So there is a unique decomposition in terms
of eigenspaces and then any orthonormal basis of these eigenspaces can be chosen.

2 Positive semidefinite matrices

A matrix M is called positive semidefinite (psd) if it is symmetric and all its eigenvalues are non-negative.
If all eigenvalues are strictly positive then it is called a positive definite matrix.

In many references, you might find another definition of positive semidefiniteness. A matrix M ∈ L(V )
will be called positive semidefinite iff,

1. M is symmetric,
2. vTMv ≥ 0 for all v ∈ V .

The two definitions for positive semidefinite matrix turn out be equivalent. In the next theorem, we
identify many different definitions of positive semidefinite (psd) matrices to be equivalent.

Theorem 5. For a symmetric n× n matrix M ∈ L(V ), following are equivalent.

1. vTMv ≥ 0 for all v ∈ V .
2. All the eigenvalues are non-negative.
3. There exist a matrix B, s.t., BTB = M .
4. M is the Gram matrix of vectors u1, · · · , un ∈ U , where U is some vector space.

∀i, j : Mi,j = uT
i uj

Note 3. The vector space U (space of vectors for Gram matrix) is not the same as V , space over which M
acts. In general, they might have different dimensions.

Proof. 1 ⇒ 2: Say λ is an eigenvalue of M . Then there exist eigenvector v ∈ V , s.t., Mv = λv. So vTMv =
λvT v ≥ 0. Since vT v is positive for all v, implies λ is non-negative.

2 ⇒ 3: Since the matrix M is symmetric, it has a spectral decomposition.

M =
∑
i

λixix
T
i

Define yi =
√
λixi (this definition is possible because λi’s are non-negative). Then,

M =
∑
i

yiy
T
i .

Define B to be the matrix whose rows are yi. Then it is clear that BTB = M .
3 ⇒ 4: We are given a matrix B, s.t., BTB = M . Say the columns of B are v1, · · · , vn. Then, from the

definition of matrix multiplication,
∀i, j : Mi,j = vTi vj

Exercise 10. Convince yourself that M is a gram matrix of v1 · · · , vn.

4 ⇒ 1: Suppose M is the gram matrix of vectors u1, · · · , un. Then,

xTMx =
∑
i,j

Mi,jxixj =
∑
i,j

xixj(v
T
i vj),

5



where xi is the ith element of vector x. Define y =
∑

i xivi, then,

0 ≥ yT y =
∑
i,j

xixj(v
T
i vj) = xTMx.

Hence xTMx ≥ 0 for all x.

Exercise 11. Prove that 2 ⇒ 1 and 3 ⇒ 1 directly.

Remark: A matrix M of the form M =
∑

i xix
T
i is positive semidefinite (Exercise: Prove it), even if xi’s

are not orthogonal to each other.
Remark: A matrix of the form yxT is a rank one matrix. It is rank one because all columns are scalar

multiples of y. Similarly, all rank one matrices can be expressed in this form.

Exercise 12. A rank one matrix yxT is positive semi-definite iff y is a positive scalar multiple of x.

From the construction in the proof for matrix B such that BTB = M , B’s columns are orthogonal.
In general, any matrix of the form BTB is positive semi-definite. The matrix B need not have orthogonal
columns (it can even be rectangular).

This representation, BTB = M is not unique, but there always exists a matrix B with orthogonal columns
for M , s.t., BTB = M . This decomposition (with B having orthogonal columns) is unique (gives spectral
decomposition). The positive semidefinite B, s.t., BTB = M , is called the square root of M .

Exercise 13. Prove that the square root of a matrix is unique.

Hint: Use the spectral decomposition to find one of the square root. Suppose A is any square root of M .
Then use the spectral decomposition of A and show the square root is unique (remember the decomposition
to eigenspaces is unique) .

2.1 Some examples

– An n×n identity matrix is positive semidefinite. It has rank n. All the eigenvalues are 1 and every vector
is an eigenvector. It is the only symmetric matrix with all eigenvalues 1 (prove it).

– The all 1’s matrix J (n× n) is a rank one psd matrix. It has one eigenvalue n and rest are zero.
– The matrix

M =

(
1 −1
−1 1

)
,

is positive semidefinite. Because, the quadratic form xTMx = (x1−x2)
2, where x1, x2 are two components

of x.
– Let λ be the maximum eigenvalue for a matrix M . The matrix λ′I − M , where λ′ ≥ λ is positive

semidefinite.

Exercise 14. What is the maximum value of xTMx for a unit vector x?

2.2 Extra reading: properties of semidefinite matrices

Principal submatrix A principal submatrix P of a matrix M is obtained by selecting a subset of rows and
the same subset of columns. If M is positive semidefinite then all its principal submatrices are also positive
semidefinite.

This follows by considering the quadratic form xTMx and looking at the components of x corresponding
to the defining subset of principal submatrix. The converse is trivially true.

Exercise 15. Show that the determinant of a psd matrix is non-negative. Hence, show that all the principal
minors are non-negative. Actually the converse also holds true, i.e., if all the principal minors are non-negative
then the matrix is positive semidefinite.
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Diagonal elements If the matrix is positive semidefinite then its diagonal elements should dominate the
non-diagonal elements. The quadratic form for M is,

xTMx =
∑
i,j

Mi,jxixj . (1)

Here xi’s are the respective components of x. If M is positive semidefinite then Eqn. 1 should be non-
negative for every choice of x.

By choosing x to be a standard basis vector ei, we get Mii ≥ 0, ∀i. Hence, all diagonal elements are
non-negative and tr(M) ≥ 0.

If x is chosen to have only two nonzero entries, let’s say 1 at i and −1 at j position, then Eqn. 1 implies,

Mi,j ≤
Mii +Mjj

2
.

A stronger version can be obtained (remember AM-GM inequality) by observing that the determinant
of 2 × 2 submatrix (i, j rows and columns) is non-negative. Notice that the determinant of any positive
semidefinite matrix is non-negative (all eigenvalues are non-negative).

Mi,j ≤
√

MiiMjj .

This shows that any off diagonal element is less than or equal to either the diagonal element in its row
or in its column.

Composition of semidefinite matrices

– The direct sum matrix A⊕B, (
A 0
0 B

)
,

is positive semidefinite iff A and B both are positive semidefinite. This can most easily be seen by looking
at the quadratic form xT (A⊕B)x. Divide x into x1 and x2 of the required dimensions, then

xT (A⊕B)x = xT
1 Ax1 + xT

2 Bx2.

– The tensor product A ⊗ B is positive semidefinite iff A and B are both positive semidefinite or both
are negative semidefinite. This follows from the fact that given the eigenvalues λ1, · · · , λn for A and
µ1, · · · , µm for B; the eigenvalues of A⊗B are

∀i, j : λiµj .

– The sum of two psd matrices is psd.
– The product of two positive semidefinite matrices need not be positive semidefinite.

Exercise 16. Give an example of two positive semidefinite matrices whose product is not positive semidef-
inite.

– The Hadamard product of two positive semidefinite matrices A and B, A◦B, is also positive semidefinite.
Since A and B are positive semidefinite, they are Gram matrix of some vectors u1, · · · , un and v1, · · · vn.
The Hadamard product will be the Gram matrix of ui ⊗ vi’s.

– The inverse of a positive definite matrix is positive definite. The eigenvalues of the inverse are inverses
of the eigenvalues.

– The matrix PTMP is positive semidefinite if M is positive semidefinite.
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2.3 Positive semidefinite cone

Consider the vector space of real symmetric n× n matrices, R
n(n+1)

2 . What kind of structure does the set of
psd matrices form in this space?

If M,N are positive semidefinite, then αM + βN is also psd for α, β ≥ 0. Hence, the set of positive

semidefinite matrices is a convex cone in R
n(n+1)

2 . The cone is denoted as Sn.
This cone has more nice properties. If M ⪰ 0 then −M is not positive semi-definite. So, the cone Sn

does not contain a line. Also, if we look at the positive definite matrices. They form the interior of the cone.
Identity is positive definite, so interior is not empty.

Hence, Sn is a convex cone that does not contain a line and has non-empty interior. Such cones are called
proper cones; in other words, Sn is proper. We can define a generalized inequality with respect to such a
proper cone.

M ⪰ N ⇔ M −N ⪰ 0 ⇔ M −N ∈ Sn

Note 4. In general, any proper cone C gives rise to a generalized inequality, M ⪰ N ⇔ M − N ∈ C. The
simplest case is when C is positive orthant (x ≥ 0). In this case, generalized inequality corresponds to our
usual inequality.

The positive semidefinite cone is generated by all rank one matrices xxT . They form the extreme rays
of the cone. As mentioned before, the positive definite matrices lie in the interior of the cone. The positive
semidefinite matrices with at least one zero eigenvalue are on the boundary.

3 Semidefinite programs (SDP)

Let A • B = tr(ATB) be the Hadamard product between two matrices. It can be viewed as the standard
inner product of A,B in n2 dimensional vector space.

A semidefinite program (SDP) in a standard form looks like,

max C •X
s.t. Ai •X = bi, i = 1, · · · ,m

X ⪰ 0.

In the semidefinite program above, X is the variable matrix of dimension n× n. The matrix C is called
the cost or objective matrix. Ai’s are the constraint matrices. C and Ai’s have the same dimension as X
(n× n). bi’s are scalars and the vector b (with bi) as components is known as constraint vector.

Note 5. Only change from a linear program: instead of variables being in a positive orthant, they should be
in positive semidefinite cone.

Many of the standard tricks used in linear programming to convert non-standard form into standard form
can also be used here. For example, converting inequalities into equalities, changing minimum to maximum
and change of variables.

Let us take a look at the following program,

max Tr(X)

s.t. X =

(
1 x
1 x

)
⪰ 0.

Show that it is a semidefinite program. In other words, what are the constraint matrices and constraint
vector?

Exercise 17. Find the value of this semidefinite program.

Generalizing the above example, a semidefinite program can be viewed as,
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– variables xi,j arranged in a matrix X,
– linear constraints and objective over these variable xi,j ,
– and the positive semidefinite constraint X ⪰ 0.

You will prove in the assignment that the positive semidefinite constraint can be viewed as infinite number
of linear constraints in variables xi,j .

Exercise 18. Find the value of this semidefinite program.

inf /min x1

s.t.

(
x1 1
1 x2

)
⪰ 0.

3.1 Equivalent definitions

In general, many totally different looking programs can be transformed into an sdp.

Form with positive semidefinite constraints Another standard form for sdp’s is,

min bT y

s.t.
∑m

i=1 yiAi − C ⪰ 0.

Let us prove that this form can be converted to the standard form.
Denote the matrix

∑
i yiAi − C by a new variable matrix Z. Now the matrix variable in the program is

Z and we also have scalar variables yi’s. The linear constraints can be changed into

∀ i, j; zij = (
∑
k

yk(Ak)ij)− Ci,j .

Here zij are the entries of matrix Z. So, the program changes to,

min bT y

s.t. ∀ i, j; zij = (
∑

k yk(Ak)ij)− Ci,j

Z ⪰ 0

It almost looks like the standard form but variables yi’s do not occur in the semidefinite constraint.
Use the old trick, convert unrestricted variables to positive variables. Replace yi by two positive variables,

i.e., yi = y′i − y′′i and y′i, y
′′
i ≥ 0. Now, these positive variables y′i, y

′′
i can be put in a separate block and

included in the semidefinite constraint.

min
∑

k bk(y
′
k − y′′k )

s.t. ∀ i, j; zij = (
∑

k(y
′
k − y′′k )(Ak)ij)− Ci,j

Z =



Z 0 0 0 0 0 0
0 y′1 · · · 0 0 0 0

0
...

. . .
... 0 0 0

0 0 0 y′m 0 0 0
0 0 0 0 y′′1 · · · 0

0 0 0 0
...

. . .
...

0 0 0 0 0 0 y′′m


⪰ 0

You will show in the assignment that we don’t need explicit constraints to force the off-diagonal entries
to be zero.
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Gram matrix formulation An n×n positive semidefinite matrix X can be expressed as the Gram matrix
of vectors u1, u2, · · · , un. Write the variable matrix X as the gram matrix of u1, · · · , un ∈ Rk. Notice,
u1, u2, · · · , un ∈ Rk are vector variables without any constraint on k.

Then, the semidefinite program looks like,

max
∑

ij Ciju
T
i uj

s.t.
∑

ij A
(k)
ij uT

i uj = bk, ∀k = 1, · · · ,m

We have removed the X ⪰ 0 constraint from the new form.
The new form can be understood as,

– u1, u2, · · · , un as vector variables,
– and linear constraints over the inner product of these vector variables.

This form is specially useful in combinatorial optimization. The reason is, many problems can be expressed
as integer programs in combinatorial optimization. When you relax these variables to be vectors instead of
integers, this form arises naturally. We will see such an example later in the course.

Note 6. This is not a linear program, since constraints are on the inner-products.

3.2 Examples

Minimizing the maximum eigenvalue Suppose, we are given a matrix M(x), which depends affinely on
the variables in x. That means every entry in M(x) can be written as an affine function of variables in x
(M(x)ij = a1x1 + · · ·+ anxn + b). The problem is to minimize the maximum eigenvalue of M(x) over all x,
i.e.,

min
x

max
i

λi(M(x))

Clearly, this is not in the standard form of SDP. The trick here is to introduce another variable η to change
minmax to only min. Suppose λmax(M) represents the maximum eigenvalue of M , then

min η

s.t. η ≥ λmax(M(x))

Now, we use the fact that λmaxI −M(x) ⪰ 0. Hence,

min η

s.t. ηI −M(x) ⪰ 0

This is one of the alternative form discussed in the last section (why?). Here the variables are (η, x).

Exercise 19. Write an SDP to find the maximum eigenvalue of a matrix M .

Linear programs as a special case Linear programming is a special case of sdp’s. It is obtained by
restricting matrices to be diagonal in the standard form of semidefinite programming. Suppose the linear
program is,

max cTx

s.t. aTi x = bi, ∀i = 1, · · · ,m
x ≥ 0.
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Look at the semidefinite program,

max C •X
s.t. Ai •X = bi, ∀i = 1, · · · ,m

X ⪰ 0;

Here, C is the diagonal matrix with entries from c and Ai’s are the diagonal matrices with diagonals ai.
Then the above mentioned two programs are actually equal.

Given a solution of the linear program, it can be converted into a solution for semidefinite program by
taking X to be the diagonal matrix with diagonal x. Similarly, if X is any solution for the semidefinite
program, then x = diag(X) will be a solution for the linear program with the same objective value.

Hence, any linear program can be converted into a semidefinite program by taking corresponding diagonal
matrices for the constraints as well as the objective matrix.

Sum of squares If a polynomial p(x1, x2, · · · , xn) can be written as a sum of squares then it is clearly
positive for all values of variable x. In general, this gives a sufficient condition for positivity of the polynomial.

To check whether a polynomial can be written as a sum of squares turns out to be a semidefinite
programming feasibility problem. Notice that a polynomial (of degree d) can be written as the dot product
between two vectors p(x) = pTxd. Here, xd is the list of all ≤ d degree monomials. In other words, p is the
vector of coefficients corresponding to those monomials.

Suppose p(x) =
∑

i qi(x)
2, i.e., it can be written as the sum of squares. Say the degree of p is 2d. Hence,

p(x) =
∑
i

qi(x)
2 =

∑
i

xT
d q

T
i qixd = xT

d (
∑
i

qTi qi)xd

This shows that a polynomial is a sum of squares, iff, it can be written as xT
d Qxd for some positive

semidefinite Q. So, a polynomial is a sum of squares iff

p(x) = xT
d Qxd

Q ⪰ 0.

It might be confusing that why this is a semidefinite program. First, the constraint p(x) = xT
d Qxd is a

linear constraint on the elements of Q (variables for us). These constraints can be obtained by comparing
coefficient of each monomial of p.

Also the absence of max/min might be confusing. This kind of problem without objective function and
only constraint is called a semidefinite programming feasibility problem. It is a special case of semidefinite
programming (why ?).

This semidefinite program is important in giving bounds on the minimum value of a polynomial. Consider,

maxλ

s.t. p(x)− λ = xT
d Qxd

Q ⪰ 0.

The value of this program (say s∗) satisfies p(x) ≥ s∗ for all x. So, it gives a lower bound on the minimum
value of the polynomial.

This might not be the minimum value of p, i.e., biggest s such that p(x) ≥ s for all x; since the
representation as sum of squares is only a sufficient condition for positivity. Though if n = 1, it is known to
give the tight bound.
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4 Duality theory for semidefinite programming

We have already seen the strong connections of dual and primal program in case of linear programming.
Similar connections exist in the world of semidefinite programming. To extend the theory of duality for
semidefinite program, we need the concept of dual cone.

In this section, we will introduce dual cones, learn how to take dual of a general cone program and apply
this knowledge to semidefinite programming. Please note that strong duality does not need to always hold
in the case of a semidefinite program, as was the case in linear programs.

4.1 Dual cone

Exercise 20. What is the definition of a cone, convex cone and a finitely generated cone?

Given a cone C in Rn, we can define the dual of cone C by

C∗ = {y ∈ Rn : yTx ≥ 0, ∀x ∈ C}

Here yTx is the inner product on Rn.
Suppose y ∈ C∗, then the entire cone C lies on one side of the hyperplane normal to y (passing through

origin). The cone C contains origin (0). In other words, the hyperplane with normal y (passing through
origin) is a supporting hyperplane at 0.

Exercise 21. Read about supporting hyperplane.

Given two hyperplanes which are supporting at 0, their convex combination (convex combination of
normals) will also give a supporting hyperplane. Geometrically, the convex combination will lie in between
the original two hyperplanes. Hence,

y1, y2 ∈ C∗ → θy1 + (1− θ)y2 ∈ C∗, ∀θ ∈ {0, 1}

It is again easy to see (by this geometric picture),

y ∈ C∗, θ ≥ 0 ⇒ θy ∈ C∗.

So the dual cone is a convex cone irrespective of whether the original cone was convex or not. Notice
from the definition, the dual cone is always closed (all limits exist in the dual cone). Actually, the starting
set C need not be a cone. For any set C, we can define the dual and it will be a convex cone.

Exercise 22. Can you describe, what will be the dual cone of a set C?

Exercise 23. Show that if C ⊆ D, then D∗ ⊆ C∗.

Examples Let us find the dual of some cones.

– Subspace: First, we can show that a linear subspace L (all linear combinations are present in the set) is
a cone. We leave it as an easy exercise.
A vector y is in L∗ iff yTx ≥ 0, ∀x ∈ L. But in a subspace, if x is present then so is −x.
So,

yTx = 0, ∀x ∈ L.

Hence, the dual cone to the subspace contains all vectors normal to it and nothing else.
– Positive orthant (Rn

+): We discussed that this set is a cone before and the usual ≥ inequality is the
generalized inequality with respect to this cone.

Exercise 24. Show that the positive orthant is the dual cone of itself
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Such cones are called self dual cones.
– Set of all positive semidefinite matrices are called the positive semidefinite cone. We will show later that

it is also a self dual cone.
– Another interesting case of a dual cone is the case of a finitely generated cone. Suppose we are given a

cone C = cone(x1, · · · , xk). How will its dual cone look?

C∗ = {y : yTx ≥ 0, ∀x ∈ C}

Clearly, for all the generators of C (x1, · · · , xk), y
Txi ≥ 0. Since any element of the cone is a conic

combination of these vectors, this condition is actually sufficient too. So,

C∗ = {y : yTxi ≥ 0, i = 1, · · · , k}.

Notice that this gives the definition of cone in terms of inequalities. Affine Weyl theorem tells us that
these two are equivalent formulations. So, C∗ is also a finitely generated cone.
It is important to note that the generators of the original cone are the inequalities for the dual cone and
vice versa. So, it is easy to specify the dual cone in the case of finitely generated cone.

Exercise 25. What will be the dual cone in R2 of a finitely generated cone which is generated by two
vectors.

Dual of the dual cone The natural question is, what is the dual cone of C∗ for a closed convex cone C?
Suppose x ∈ C and y ∈ C∗, then we know yTx ≥ 0. Since this condition is symmetric, we get that every

element of C will be in C∗∗, i.e., C ⊆ C∗∗. We will show that these two sets are indeed equal.
For the other direction, we need to show that any element x not in C has negative inner product with at

least one y ∈ C∗.
Suppose x /∈ C, then by Farkas lemma, there exists a hyperplane which separates the point x and the

cone C. So there exists y, s.t.,
yTx < 0 ≤ yT z, ∀z ∈ C.

Then, y ∈ C∗ by definition of dual cone. We also know, yTx < 0, so x /∈ C∗∗. Hence, for a closed convex
cone C,

C = C∗∗.

Exercise 26. Dual cone can be defined for arbitrary sets also. What will be the dual of the dual in this case?

As discussed last time, we will mostly be interested in proper cones. Remember that they are convex,
closed cones which do not contain any line and have nonempty interior. It is known that the dual of a proper
cone is a proper cone. Using a proper cone S, we can define corresponding generalized inequality as a partial
order.

x ≥ y ⇔ x− y ∈ S

Exercise 27. Show that the positive orthant is a proper cone. What is the generalized inequality with respect
to that cone?

4.2 Sn is a self dual cone

The inner product in the space of matrices is the • operation between matrices.

A •B =
∑
i,j

AijBij = tr(ATB)

The dual cone of Sn is the cone S ′
n, s.t.,

S ′
n = {M : M •N ≥ 0, ∀N ∈ Sn}

It was proved before that the Hadamard product of two positive semidefinite matrices is also positive
semidefinite.

13



Exercise 28. If you don’t remember the proof, try it now.

The easy exercise below shows that if M,N are positive semidefinite, then M •N ≥ 0.

Exercise 29. If M ◦N ⪰ 0, prove that M •N ≥ 0.

Hence, every positive semidefinite matrix is part of the dual cone S ′
n. It implies

Sn ⊆ S ′
n. (2)

Now consider a symmetric matrix M /∈ Sn. There exist at least one negative eigenvalue λ and an
eigenvector v corresponding to it. So,

0 > λ = vTMv = M • (vvT ).

Since vvT is a psd matrix (why?), this implies that M /∈ S ′
n. Hence,

S ′
n ⊆ Sn. (3)

From Eqn. 2 and Eqn. 3, we get S ′
n = Sn. The cone of positive semidefinite cone is a self dual cone.

4.3 Dual for a cone program

Let us see how the dual of a general cone program can be obtained. We are given an optimization program,

max cTx

s.t. Ax ≤ b

x ∈ S (S is some cone.)

For this case, say we take the linear combination y of the rows of matrix A. Then, we want yT b to be an
upper bound on the value of cTx for any feasible x. One possible way is to satisfy,

cTx ≤ yTAx ≤ yT b.

For the second inequality, y should be positive and for the first one yTA − c ∈ S∗. Here, S∗ is the dual
cone of S. So, the dual program looks like,

min yT b

s.t. yTA− c ∈ S∗

y ≥ 0,

Let’s look at the two programs slightly differently.

max cTx

s.t. Ax− b ≤ 0 ⇔ Ax− b ∈ C

x ∈ S. (S,C are cones)

min yT b

s.t. yTA− c ∈ S∗

−y ∈ C∗,

Cone C is the cone of all negative vectors, Rn
−.

If the given program is a maximization problem, then if the primal variable is in cone S then the dual
constraint is the membership in S∗. If the primal constraint is membership in cone C then the negative of
dual variable is in cone C∗. For the minimization problem the relationship is opposite.
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Primal variable in S Primal constraint in C
Max Dual constraint in S∗ Negative of dual variable in C∗

Min Negative of Dual constraint in S∗ Dual variable in C∗

Exercise 30. Check and verify the table.

4.4 Dual of a semidefinite program

We can take the dual of the standard form of SDP using the technique discussed in the previous section.

Primal

maxC •X
s.t. Ai •X = bi ∀i

X ∈ Sn

Dual

min yT b

s.t.
∑
i

yiAi − C ∈ Sn

The dual variable y is unconstrained because there is equality in the primal constraint. The dual program
is in the second standard form previously discussed in the class. You will verify in the assignment that dual
of the dual is the primal SDP.

Exercise 31. What is the dual of the following program?

max
∑

(i,j)∈E
1−yT

i yj

2

s.t. ∥yi∥ = 1 ∀i (4)

From the formulation of a dual program, it turns out that the dual program gave an upper/lower bound
depending on whether the problem was maximization/minimization respectively.

Are these bounds tight? It turns out that these bounds are tight in most cases of interest (like linear
programming). The bounds are not tight in a few contrived cases.

When the primal and dual values agree, strong duality is said to hold. Slater’s conditions provide an easy
way to show strong duality for an SDP.

Theorem 6 (Slater’s condition). Given a semidefinite program in standard form with parameters C,Ai, b,
suppose the feasible set of primal is P and feasible set of dual is D. Then strong duality holds if either

– If D ≠ ∅ and there exists a strictly feasible X ∈ P, i.e., X ≻ 0, Ai •X = bi ∀i.
or

– If P ≠ ∅ and there exists a strictly feasible y ∈ D, i.e.,
∑

i yiAi − C ≻ 0.

If interested, you can read more about them in any standard text on convex programming, for example [1].

Weak duality and complementary slackness It is instructive to see the direct proof of weak duality.
Given any feasible solution X for primal and y for dual,

C •X ≤ (
∑
i

yiAi) •X =
∑
i

yibi = yT b. (5)

Notice that the above equation implies, all feasible solutions of dual give an upper bound on the optimal
value of primal. Similarly any feasible solution for primal gives a lower bound on the optimal value of dual.
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Suppose the optimal value of primal is p∗, attained at X∗. Similarly the optimal value of dual is d∗ and
obtained for y∗. Weak duality implies that p∗ ≤ d∗. Assume that this two values are equal, i.e., p∗ = d∗

(strong duality). Then from Eqn. 5,

C •X = (
∑
i

yiAi) •X

⇒ (
∑
i

yiAi − C) •X = 0

The condition above is called the complementary slackness condition. So, for optimal X∗, y∗ with strong
duality, the complementary slackness condition holds. Conversely, if X, y are feasible solutions of primal and
dual respectively and satisfy the complementary slackness condition then strong duality holds and p∗ = d∗.

Exercise 32. What does the complementary slackness condition tell us in case of linear programming?

The above discussion is done for semidefinite program, but with little more effort can be generalized to
cone programs.

5 SDP for maximum cut problem

Before we finish, let us look at an application of semidefinite programming, giving the best known approxi-
mation algorithm for max-cut problem.

This algorithm was discovered by Goemans and Williamson in 1990’s and it gave rise to various other
approximation algorithms using similar techniques. The algorithm and the analysis is not difficult, but it
introduced a bunch of new ideas.

5.1 Max cut

You have already seen the minimum cut problem in a directed graph. We consider the problem of finding
maximum cut in an undirected graph.

Given an undirected graph G = (V,E), the max-cut problem asks for a subset S ⊆ V such that the
number of edges going from S to S̄ are maximized.

Many problems in the real world can be formulated as a max-cut instance. For example, suppose the
graph gives information about the friendships in a set of students. More concretely, the vertices correspond
to students in the class and there is an edge present between two students if they are friends.

The problem is to put them in two different classroom so that the number of friendships (edges) across
the two rooms is maximized (one measure to stop copying). This is essentially solving a max-cut problem
on the given graph.

The max-cut problem seems very similar to min-cut discussed in the course before. We saw some algo-
rithms for the min cut problem. Can those algorithms be used to solve max-cut problem?

One natural approach is to solve min-cut problem in the complementary graph. We take the original
graph and switch edges, i.e., we will have edges where there were no edges in the original graph and vice
versa.

Exercise 33. Show that this strategy does not work.

5.2 Integer programming formulation

Our first approach would be to look at the integer linear program (ILP) for s-t min-cut and convert it into
an ILP for max-cut. For simplicity, we assume that the capacity of every edge is 1.
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Fig. 1. A cut with edges in solid line, S1 = S and S2 = S̄

max
∑

(u,v)∈E

du,v

s.t. du,v ≥ pu − pv ∀(u, v) ∈ E

pu, du,v ∈ {0, 1} ∀u ∈ V, (u, v) ∈ E

Notice that the variables pu indicate the side of cut vertex u is on. Similarly, duv indicates if the edge
(u, v) is part of the cut or not.

Exercise 34. Since this is a maximization problem, show that the optimal value is |E| irrespective of the
graph.

We can make another attempt to create an ILP without a trivial solution.

max
∑

(u,v)∈E

du,v

s.t. du,v ≤ pu + pv ∀(u, v) ∈ E

du,v ≤ 2− (pu + pv) ∀(u, v) ∈ E

pu, du,v ∈ {0, 1} ∀u ∈ V, (u, v) ∈ E

This will give us a solution of max-cut but is hard to solve. We relax it to an LP.

max
∑

(u,v)∈E

du,v

s.t. du,v ≤ pu + pv ∀(u, v) ∈ E

du,v ≤ 2− (pu + pv) ∀(u, v) ∈ E

pu, du,v ∈ [0, 1] ∀u ∈ V, (u, v) ∈ E

Notice the only change, variables are in [0, 1] instead of being integers. Unfortunately, this LP also suffers
a setback, its optimal value is |E| irrespective of the graph.

Exercise 35. Show that pu = 1/2 is a feasible solution for the above LP. What should be the values of
variables duv?
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The next idea is to let go of linear programming and target semidefinite programming. An integer program
is an optimization problem where variables are constrained to be a set of integers. We will create an integer
program for max-cut, whose relaxation will be an SDP.

Given a graph G = (V,E), which has |V | = n vertices and |E| = m edges, introduce variable yi for every
vertex i ∈ [n]. Say, yi = 1 if the vertex is assigned to S1 and yi = −1 if it is assigned to S2. Then the task is
to maximize the number of edges between S1 and S2.

If the edge i, j is part of the cut (between S1 and S2), yiyj = −1 otherwise it is +1. Then
∑

(i,j)∈E
1−yiyj

2
counts the number of edges in the cut. Hence, the following integer program gives us the maximum cut.

max
∑

(i,j)∈E
1−yiyj

2

s.t. yi ∈ {−1, 1} ∀i (6)

We have seen before that NP hard problems can be formulated as integer programs. Hence, we can’t
hope to solve integer programs efficiently (in general).

Even the specific problem of max-cut is known to be NP-hard. So, we do not expect to have a polynomial
time algorithm for this problem. Instead, we are interested in finding an approximation algorithm for this
problem.

Remember, an approximation algorithm outputs a solution which is provably not far from the optimal
solution. In our case, we are interested in an algorithm which outputs a cut S, s.t.,

number of edges in S ≥ c. number of edges in max-cut.

Here, c ≤ 1 is a constant and the algorithm will be called a c-approximation algorithm.
You will show in the assignment that a random cut will have half the edges of the graph and hence will

give a randomized .5-approximation algorithm. Can we improve this factor of half? Goemans and Williamson
improved this factor to around .87 using semidefinite programming.

Exercise 36. Can you give a deterministic algorithm which gets at least half the edges?

6 SDP relaxation and rounding

Goeman and Williamson gave a randomized algorithm for max-cut with approximation factor of around .87.
The main ideas/steps for Goemans and Williamson is the following.

1. Convert the integer program into a semidefinite program.
2. Solve the semidefinite program.
3. Then, convert the solution of SDP into an integer solution ({−1,+1}) again.

This is similar to the technique for designing approximation algorithm of set cover.
Again, the first step of converting the integer program into an SDP is known as relaxation. A relaxation of

an optimization program is another optimization program which, ideally, is easier to solve and every solution
of original program is also a solution of the new program with the same (or related) objective value.

In the case of Eqn. 6, we change the domain of yi’s to be unit vectors instead of integers {−1,+1}.

max
∑

(i,j)∈E
1−yT

i yj

2

s.t. ∥yi∥ = 1 ∀i (7)

Only change from the integer program is that the yi’s are vectors instead of integers in the new program.

Exercise 37. Show that the relaxed program is an SDP.
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It is clear that any solution of Eqn. 6 will still be a solution of Eqn. 7 with same objective value. We just
need to consider the integers as one dimensional vectors. Hence, the objective value of the SDP is at least
the value of the integer program. The SDP (Eqn. 7) is called the relaxation of the integer program Eqn. 6.

Since the SDP can be solved in polynomial time (with some precision), the solutions of Eqn. 7 can be
obtained 1. Our next goal is to convert these vector solutions into integer ({−1,+1}) solutions. The process
of converting vector solution into integers is called rounding.

The SDP value in general will be higher than the integer program. So, while rounding a solution, we
expect to lose some factor in the objective. The gap between the SDP value and the integer program value
is known as the integrality gap of the relaxation.

Exercise 38. What kind of rounding techniques can be possible?

If the solutions were integers, one idea would be put positive numbers on one side and negative numbers
on other side. When solutions are vectors, we can say that if a vector lies on one side of the hyperplane, it
is one side otherwise on the other side.

Exercise 39. Which hyperplane should we choose?

Notice that the SDP solutions are invariant under rotation, since the value only depends on inner products.
The rounding technique given by Goemans and Williamson is very simple and is a randomized rounding
procedure. It is done by choosing a random hyperplane, if vectors lie on one side of the hyperplane (say
positive) then they are assigned +1 otherwise −1.

The complete Goemans and Williamson algorithm can be written as,

1. Given a graph G, solve the SDP relaxation, Eqn. 7, for that graph and obtain the solution {y1, · · · , yn}.
2. Say the vectors yi belong to Rn. Choose a random vector v ∈ Rn.

3. If yTi v ≥ 0 then y′i = 1 otherwise y′i = −1.

How good is this algorithm? Does it produce a cut? If yes, what is the relation between max-cut and the
cut obtained by rounding?

The new integer assignment y′i specifies a cut. Vertices with y′i = 1 go on one side of the cut and y′i = −1
go on the other side. What about the value of this cut?

If it can be shown that
∑

(i,j)∈E

1−y′
iy

′
j

2 is a significant proportion of
∑

(i,j)∈E
1−yT

i yj

2 , we will get a good
approximation algorithm.

Exercise 40. What could be the best possible upper bound on

∑
(i,j)∈E

1−y′
iy

′
j

2∑
(i,j)∈E

1−yT
i yj

2

We know that
∑

(i,j)∈E
1−yT

i yj

2 for optimal y is greater than the value of max-cut (why?). We want to
show that the ratio, ∑

(i,j)∈E

1−y′
iy

′
j

2∑
(i,j)∈E

1−yT
i yj

2

,

is close to 1 with high probability for all possible graphs (worst case bound).

1 The same algorithms as for linear programs work for SDP’s, we will not discuss these algorithms in this course.
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7 Analysis of the algorithm

The optimum value of the SDP is

S =
∑

(i,j)∈E

1− yTi yj
2

.

We will show that the rounded solution {y′1, · · · , y′n} has expected value at least cS with c ≈ .8785. The
expectation is taken over random choice of the hyperplane. The idea is, if yTi yj is small, there is a big angle
between them. In that case most of the v’s will separate yi and yj , giving value y′iy

′
j to be close to −1.

Since there are n vectors, we can assume that they live in Rn.

The expected value of the integer solution, using linearity of expectation, can be written as,

Ev∈Rn

∑
(i,j)∈E

1− y′iy
′
j

2
=

∑
(i,j)∈E

Ev∈Rn

1− y′iy
′
j

2
.

To calculate this, we need the probability that a random v separates vectors yi and yj .

Ev∈Rn

1− y′iy
′
j

2
= Prv∈Rn(y′i ̸= y′j)

The angle between vectors yi and yj is cos−1 yTi yj (they are unit vectors). Hence, the probability that a
random v separates them is

cos−1 yTi yj
π

.

Fig. 2. Random hyperplane separating two vectors

So, the expected value is ∑
(i,j)∈E

cos−1 yTi yj
π

Now use the change of variable yTi yj = cos θij .

20



∑
(i,j)∈E

cos−1 yT
i yj

π

=
∑

(i,j)∈E
θij
π

= 1
π

∑
(i,j)∈E

θij
1−cos θij (1− yTi yj)

≥
(
min0≤θ≤π

2θ
π(1−cos θ)

)
S

≥ cS

Exercise 41. Give a lower bound on c = min0≤θ≤π
2θ

π(1−cos θ) .

Using calculus we can show that c ≥ .8785. Hence,

E(Obj(y′i)) ≥ c Obj(yi) ≥ c max− cut(G).

Here Obj(x) denotes the objective value for the solution x and max− cut(G) is the maximum cut in G.
The second inequality follows from the fact that SDP is relaxation of original maximum cut integer program.
Hence, the algorithm given above is a c approximation algorithm for max-cut. Like before, we can use Markov
inequality to convert the statement into: with high probablity we will get a big cut.

Exercise 42. Convince yourself that above equation implies a c-approximation algorithm for max-cut.

Consequences of the algorithm One consequence from the previous analysis is that the SDP gives a
nearly tight bound on the value of the integer program. In general, once an optimization program is relaxed,
there is no guarantee about the value of the relaxed program. The feasible set is increased and hence the
objective value can be arbitrarily higher (in case of maximization problem) or lower (minimization problems)
as compared to the optimum value of the original program.

The rounding provides a proof that the relaxed value is comparable to the original value. In the case of
max-cut, the SDP value is definitely at least the value of integer program. Rounding shows that the SDP
value is less than 1

c Obj(y′i), which is less than 1
c max− cut(G).

This shows that SDP gives a pretty tight bound on the value of the integer program.

max− cut(G) ≤ Opt(SDP ) ≤ 1

c
max− cut(G).

8 Assignment

Exercise 43. Prove that if λ is a root of the characteristic polynomial, then there exist at least one eigenvector
for λ.

Exercise 44. Show that the matrix M and MT have the same singular values.

Exercise 45. Read about polar decomposition and prove it using singular value decomposition.

Exercise 46. Read about tensor product of two matrices in Wikipedia.

Exercise 47. What are the eigenvalues of A ⊗ B, where A,B are symmetric matrices and ⊗ denotes the
tensor product?

Exercise 48. Give a characterization of the linear operators over V ⊗W in terms of linear operators over V
and W . Remember that they form a vector space.

Exercise 49. Show that ⟨v|A|w⟩ =
∑

ij Aijv
∗
i wj .
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Exercise 50. The multiplicity of a root of characteristic polynomial is known as the algebraic multiplicity. The
dimension of the eigenspace of that root is known as the geometric multiplicity. It is known that geometric
multiplicity is less than algebraic multiplicity.

Show that the geometric multiplicity is same as algebraic multiplicity for a symmetric matrix M .

Exercise 51. Show that semidefinite program can be viewed as an optimization problem with linear cost
function and infinite linear constraints.

Exercise 52. Prove that we don’t need to put the explicit constraint that the off-diagonal entries (blocks)
are zero, when we converted form with positive semidefinite constraint into standard form.

Exercise 53. Prove that for a single variate polynomial p, it is positive iff it can be written as a sum of
squares (Hint: Look at the factorization of p in complex domain).

Exercise 54. Show that the following problem can be converted into a SDP.

min (cT x)2

dT x

s.t. Ax+ b ≥ 0

Here, x is a vector and c, d are vectors of the same dimension as x.

Exercise 55. Show that the programs given in the counterexample to strong duality section are dual of each
other.

Exercise 56. Convert the dual of the standard SDP into the standard form, take dual and show that you get
the original SDP.

Exercise 57. Remember the SDP for finding the maximum eigenvalue of a matrix M . Take its dual and show
that it computes the maximum eigenvalue (without using duality).

Exercise 58. Learn about Lovasz theta number and the associated semidefinite program. Show that it is a
relaxation of maximum independent set problem.

Exercise 59. Given an undirected graph G = (V,E), show that a random cut in a graph will have expected

value |E|
2 . How does this give a randomized approximation algorithm with factor .5?

Exercise 60. Give a deterministic .5 approximation algorithm for max-cut.

Hint: use induction.
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