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Previously, we designed an ILP and an LP for min-cut. It turned out that both had the same value.
Specifically, it happened because the constraint matrix was totally unimodular. It is known that the vertices
of the feasible region of Ax ≥ b is integral, if matrix A is unimodular. We will not cover the proof of this
fact in this course.

Exercise 1. Read about totally unimodular matrices. The proof of above fact can be found at [2].

Clearly constraint matrix need not be totally unimodular. In general, when we move from ILP to LP for
a problem, they will not have the same optimal value. Even in such cases, relaxing an ILP to LP might help.
The LP might be a close approximation to the value of ILP. We will take the example of set cover in this
section. By relaxing ILP of set cover to LP, we will be able to get an approximation algorithm for it.

1 Set cover problem

The main ideas of this section are taken from Luca Trevisan’s lecture note [1]. Let us describe set cover
problem and the concept of approximation algorithm first.

Set cover problem: Given a finite set U and its subsets S1, S2, · · · , Sn, sets Si1 , Si2 , · · · , Sik cover U if
and only if every element of U is contained in at least one of these sets. We will denote a set cover of U by a
set I ⊆ [n], indicating the indices of the subsets of U picked. For example, I = {i1, i2 · · · , ik} would be the
solution if sets Si1 , Si2 , · · · , Sik cover U . The set cover problem is to find a set cover I with minimum size.

To take an example, U could be the set of all students and Si is set of students who play game i. We
need to minimize number of sports to keep in the school such that every student has a game to play.

Notice that the number of sets is denoted by n, it can be different from the number of elements in U .
Similarly I, our solution set, is a subset of [n]. Hence, i ∈ [n] corresponds to the set Si and not the i-th
element of U .

We can consider the weighted version too, where each subset Si(1 ≤ i ≤ n) is assigned a weight wi. In
this case, we need to minimize the weighted sum of sets picked by I. To continue with the example above,
wi could denote the cost of having game i at the school.

Exercise 2. Can you give an ILP for set cover?

We will denote by xi, if set Si is part of the cover or not. The ILP is,

min wixi

s.t.
∑

i:u∈Si

xi ≥ 1 ∀u ∈ U

xi ∈ {0, 1}.

Exercise 3. Verify that the ILP captures set cover problem (a solution of ILP is a solution of set cover and
vice versa). What will be the ILP for non-weighted version?

Approximation algorithm: An approximation algorithm outputs a solution which is provably not far
from the optimal solution. In our case, we are interested in an algorithm which outputs a set cover I, s.t.,

|I| ≤ c. Optimal of set-cover problem.

Here, c ≥ 1 is a constant and the algorithm will be called a c-approximation algorithm for set cover.



Exercise 4. The sign of inequality and property of c will change if we had a maximization problem. Can you
define the notion of approximation, like above, for a maximization problem?

Most of the times, our approximation algorithm will be a randomized algorithm. What this means is,
at some stages of the algorithm, a step/decision will depend on a random number/coin toss. In these cases,
we want to correctly answer (give a good approximation in case of approximation algorithms) with high
probability over the randomness of the algorithm.

Notice that the probability is not over input but the randomness of the algorithm. In other words, for
every input we will answer correctly with high probability over the randomness of the algorithm. In our
case, we will show that the expected value of the outcome (for this randomized algorithm) approximates the
optimal, where the expectation is taken over randomness of the algorithm. This statement can be converted
into: outcome of the algorithm will approximate the optimal with high probability (using tools like Markov
inequality and Chernoff bounds).

1.1 LP relaxation and algorithm

To give an approximation algorithm, the first step is to convert the ILP into an LP, known as relaxation. A
relaxation of an optimization program is another optimization program which, ideally, is easier to solve and
every solution of original program is also a solution of the new program with the same (or related) objective
value.

A relaxation of the ILP for set cover can be obtained by replacing integer constraint with linear constraint
0 ≤ xi ≤ 1.

min wixi

s.t.
∑

i:u∈Si

xi ≥ 1 ∀u ∈ U

xi ∈ [0, 1].

Again, we know that val(ILP ) ≤ val(LP ), because the feasible region of LP is bigger. Can it be equal
like minimum cut?

Let U = {1, 2, 3} and S1 = {1, 2}, S2 = {2, 3}, S3 = {3, 1}. It is clear that we need at least two sets to
cover U entirely.

Exercise 5. Find a feasible solution of the LP for this example, with a value better than 2.

This was expected, set cover is an NP-hard problem. We don’t expect that an LP can characterize an
NP-hard problem (why?).

So, the LP value is not equal to the ILP value. Can we at least get an approximate solution of set cover
using this LP? Lovász gave a randomized algorithm for set-cover with approximation factor of O(log(|U |)).
We list the main idea (steps) of the algorithm.

1. Convert the integer linear program into a linear program.
2. Solve the linear program using any of the polynomial time solvers.
3. Then, convert the solution of LP into an integer solution ({0, 1}) again.

We have already done the first step, second step is taken care of by interior point/ellipsoid method.

Exercise 6. Why did we not talk about simplex method?

The last ingredient is called rounding, converting the fractional solution of LP (0 ≤ xi ≤ 1) into an
integer solution (xi ∈ {0, 1}).

This rounding step might result in lose of objective value, we will analyze the rounding and prove that
our resulting solution is still close to value of LP solution. In other words, we will prove,

val(Algo) ≤ O(log(|U |))val(LP ) and val(LP ) ≤ val(Algo).
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Since algorithm returns a set cover, second inequality is obvious (why?). Notice that the LP solution has
value higher than the ILP solution, our solution will be close to ILP optimal too.

val(Algo) ≤ O(log(|U |))val(ILP )

This gives a log(|U |)-factor approximation algorithm for set-cover.

1.2 Rounding of LP solution

What is the objective of rounding? Let xi’s be the optimal solution of LP. That means, we will get a value
xi for every set Si. Our task is to decide for all Si;s, whether Si is an element of the set cover using these
values xi.

If xi ∈ {0, 1}, then this decision was easy — if xi = 1 then pick the set Si, otherwise ignore it. Unfortu-
nately, LP can output any value between 0 and 1 for these xi’s. We only know that

∑
i:u∈Si

xi ≥ 1 for all
u ∈ U .

Exercise 7. We also know that
∑

i wixi is not bigger than the weight of the best set cover. Why?

Our first attempt of rounding could be, if xi is higher than 1/2 then we pick the set Si, otherwise we
ignore it. Actually, the threshold 1/2 is arbitrary, we can choose any threshold between 0 and 1.

Let us look at the following example which shows that the above rounding will not work. Let U be any
set with n elements and all its subsets of size 3 are possible sets for set cover. One possible solution for this
problem is xi =

1

(n2)
for every subset Si.

Exercise 8. Why did we choose this particular value of xi?

As we increase n, the value of xi goes below any threshold. For big enough n, our rounding will not pick
any set.

The next attempt is to view xi’s as probability, i.e., xi denotes the probability that set Si should be in
set cover. What rounding does this viewpoint give? Simply put, we pick each set Si in our set cover with
probability xi independently (remember, we are targeting a randomized algorithm).

Note 1. This can be done by picking a random number between 0 and 1 and comparing it with xi.
We need to check two things: our solution should not have high weight and it should be a set cover.

Exercise 9. What is the expected value of our solution?

Since weight wi is picked with probability xi, the expected value of our solution is
∑

i wixi. This is the
LP value of set cover and is the best possible value. Though, are we sure that every element of U is covered
in the solution?

What is the probability that a particular element is covered/uncovered? Let us assume that the element,
say u, is in sets S1, S2, · · · , Sk. The probability that set S1 is not picked is 1−x1. Since, we are picking each
set independently, the probability that u is not covered is,

(1− x1)(1− x2) · · · (1− xk).

Obviously, this probability is not necessarily zero. That means, the solution given by our rounding might
not be a set cover. We need to show that our solution is a set cover with high probability.

First, let us put a bound on the probability that an element of U is not covered. Using the approximation
(1− x) ≤ e−x (Taylor series for e−x), an element is uncovered with probability,

(1− x1)(1− x2) · · · (1− xk) ≤ e−(x1+x2+···+xk) ≤ e−1.

Since there are |U | elements, the only bound on the probability of our solution not being a set cover
is |U | 1e . This probability is too large. One way to take care of this is, repeat the whole process again and
include the new sets picked in our set cover. We don’t need to repeat it just twice, we can repeat it till the
probability of error becomes small.

The new rounding algorithm is,
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1. Start with I = ∅.
2. Repeat the following step t times. Here t is a parameter which will be fixed later.
3. For all sets Si, pick them with probability xi independently. If a set is picked and is not already in I,

include it in I.
4. Output I as the set cover.

What is the probability that the resulting I is still not a set cover? An element will not be covered with
probability at most e−t (why?). So, I will not be a set cover with probability at most |U |e−t. This probability
can be made a small constant with t = ln(|U |) +O(1) repetitions.

That is great, but what about the weight of I. Every round (repetition) can increase the weight by at
most

∑
i wixi. Using linearity of expectation, the expected value of the set cover is at most O(log(|U |)) times

the value of LP.
Summarizing, the algorithm outputs a set cover with high probability (any constant close to 1). The

expected weight of the output is at most O(log(|U |))val(LP ). In other words,

val(E(Algo)) ≤ O(log(|U |))val(LP ) ≤ O(log(|U |))val(E(Algo)).

The second inequality is obvious because any set cover is a feasible solution of LP.
Also, since LP solution has value higher than ILP solution, our expected weight will be close to ILP

optimal too.
val(E(Algo)) ≤ O(log(|U |))val(ILP ).

To convert this statement into an algorithm which works with high probability, we use Markov’s inequality.
It states that for any positive random variable X,

Pr[X > cE[X]] ≤ 1/c.

Exercise 10. What will be X in our case?

If we pick random variable to be the output of the algorithm, Markov’s inequality gives that

val(Algo) ≤ O(log(|U |))val(ILP ),

with probability more than 1 − 1/c. Notice that the constant(c) of Markov’s inequality gets absorbed in
O(log(|U |)).

Exercise 11. Why is this enough? What value of c will you choose?

2 Assignment

Exercise 12. Read about randomized algorithms.

Exercise 13. Show that you can create arbitrary large gap between LP and ILP value of set cover.
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