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The primary aim of this lecture is to introduce you to linear programming. After a preliminary introduc-
tion to linear optimization and optimization in general, we will cover the basics of linear algebra needed for
this course.

Exercise 1. What is linear algebra?

We would like to answer the following questions in the first part.

– What is linear programming?
– Why should we study linear programming?
– What content will be covered in this course?

Before we look at these questions, consider the following problem (this problem is taken from the lecture
notes of Robert Sedgewick, Princeton University [2]). Suppose, we want to open a brewery which makes two
kinds of beer, light and dark. The amount of ingredients needed for the two beers is listed below.

corn(kg) hops(g) barley(kg) profit
dark(ltr) 5 4 35 15
light(ltr) 15 4 20 20

We have already bought some material (which can’t be returned); we have 480kg of corn, 160g of hop
and 1190kg of barley. The question is: what quantity of each kind should we make to maximize profit?

If we make only light beer, then 32 liter can be made and corn will be the bottleneck. If only dark one
is made, we get 34 liter with barley as the bottleneck. The profit in these cases is 640 and 510 respectively.

Trying out a few combinations, it is easy to see that we can possibly get more profit than 640. For
instance, if we make 31 liter of light beer, allows us to make 3 more liters of dark beer, with better profit.
This raises a very natural question, What is the best possible profit?

Let us formulate this problem mathematically. Suppose we make x liters of dark beer and y liters of light
beer. Obviously, both x and y should be positive. We can also write constraints imposed by our inventory
on x and y as equations.

In other words, x and y should satisfy the following constraints.

– 5x+ 15y ≤ 480
– 4x+ 4y ≤ 160
– 35x+ 20y ≤ 1190
– x, y ≥ 0

These are the only constraints we need to satisfy. So, our task reduces to finding x and y, which satisfy
the constraints above, maximizing the profit. Notice that the profit can be written as 15x+ 20y.

Exercise 2. How can we solve this problem?

We are lucky, there are only two variables and hence we can plot our constraints on the X-Y plane. If we
fix a profit, that equation can also be viewed as a line in this two dimensional space. Look at Fig. 1.

The set of x, y’s which satisfy all the constraints are depicted by the black area. Convince yourself that
any point is in this blackened area if and only if it satisfies all the constraints on x and y. So, we need to
find the point/points in the blackened area which maximizes our profit.

Let us assume that the best profit is z, our profit line becomes 15x + 20y = z. It can be viewed as a
sliding line (for varying values of z). We need to find the maximum z, such that, our profit line intersects
the blackened area with at least one point.



Fig. 1. Visual representation of beer making problem.

Exercise 3. Does the profit maximizing point need to be unique?

Now comes the main observation. Let us start with the line 15x+ 20y = 0 (zero profit). Moving the line
upwards (increasing the profit), at some instance the complete line will fall outside the blackened area. Just
before that, it should be hitting a vertex. In other words,
“There will be at least one vertex of black area which maximizes the profit.”

Exercise 4. Can you finish the solution now?

Comparing the profit at all vertices, we see that (12, 28) is the best possible solution for our beer problem.
The total profit obtained is 740 Rs.

Congratulations, you have solved your first linear programming problem. It is not hard to see that such
resource allocation problems appear a lot in our every-day life. Given a set of constraints over some variables,
we need to find the setting of variables which maximizes/minimizes the profit/loss respectively.

The general class of problems dealing with maximization/minimization of quantities under constraints is
studied in a subject called mathematical optimization.

1 Optimization

Optimization is a process of maximizing or minimizing a quantity under given constraints. Most of the prob-
lems in this world are optimization problems. You have to maximize (happiness/peace/money) or minimize
(poverty, anxiety, grief, wars etc.). Unfortunately, we are not solving any of those problems.

On a smaller scale, there are many real world problems where we need to optimize quantities and con-
straints that are expressible as mathematical functions. To take some examples: optimizing time in the
production cycle of an industry, optimizing tax in a tax-return, optimizing length in a tour are mathematical
optimization problems we encounter in our daily life.

Formally, any problem of the form:

min f0(x)

s.t. fi(x) ≤ bi i = 1, 2, · · · ,m

is called a mathematical optimization problem. Here,
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– x = (x1, x2, · · · , xn) is the set of variables, we need to find the values of these variables,
– f0(x) is the multivariate objective/optimization function and
– fi(x) ≤ bi (for any i) is called a constraint on variable x (in other words, constraint on the variables in

x).

The task here is to find the max/min value of f0(x) such that x satisfies all the constraints. An x satisfying
all the constraints is called a feasible solution. The set of all feasible x’s (x’s satisfying all the constraints) is
called the feasible region (remember the black area in beer problem).

S = {x : fi(x) ≤ bi ∀ i ∈ [m]}

A feasible solution x∗ is called an optimal solution if it has the smallest objective value among all the
feasible solutions. So, for any feasible z (fi(z) ≤ bi ∀ i ∈ [m]), we know,

f0(z) ≥ f0(x
∗),

since it is a minimization problem.

Exercise 5. Can you give some examples of mathematical optimization problems?

It is quite evident from the previous discussion that general optimization problems seem to be really hard.
Let us change the question: are there classes of optimization problems which can be solved easily and/or have
specific properties? Generally, these different classes differ in the kind of constraints and objective functions
that are allowed to be included in these problems. A natural question might be, what kind of classes should
be studied? A class of problems is interesting if:

– Many real world problems can be modeled in that class.
– Problems in the class are easily/efficiently solved.
– Problems in the class have nice properties (e.g., Duality), which can give us more information about the

structure of the problem (this will become clear later).

One of the prime example of such class is linear programming, the main focus for this course. It is the
class of problems where both, objective function and constraints, are linear functions of the variables. Linear
programming satisfies all the above properties and hence a natural candidate to be studied.

Using some standard manipulations (will be discussed later in the class), a linear program can always be
written in the form

min
∑

j cjxj = cTx

subject to aTi x = bi ∀i ∈ {1, 2, · · · ,m}
xj ≥ 0 ∀j ∈ {1, 2, · · · , n}

A more succinct representation can be obtained by arranging ai’s in a matrix A and bi’s in a vector b.
The linear program becomes,

min cTx (1)

subject to Ax = b

x ≥ 0

Note 1. Here, variable x can be thought of as a column vector with n entries.
So, a linear program is specified by three things: constraint matrix A, constraint vector b and objective

vector c. The feasible region of this linear program is the solution set of Ax = b intersected with positive
orthant (x ≥ 0).

This simple class of problems, linear programs, find a surprising large set of applications. To name a few,

3



– Finance: Portfolio management

– Management: Resource allocation

– Manufacturing: Production line optimization

– Telecommunications: Network design, routing

– Transportation: Traffic routing

– Computer science: Allocation of registers in compiler, and many more.

One way to realize the diversity of application is that the linear programming course is offered in depart-
ments as different as computer science, mathematics, optimization, industrial engineering, finance and social
sciences.

Our objective will be to understand why linear programming can be solved efficiently, how to solve
them and see some applications of them in the field of computer science. Even in computer science, linear
programming finds its applications in not just algorithms but machine learning, algorithmic game theory
and complexity theory. The focus of this course will be to view linear programs as a modelling tool for a
set of diverse problems in computer science. We will start by covering the basics of linear programming
techniques. In this process we will learn some linear algebra, definition and manipulation of linear programs
and convexity theory.

After these basics, we will be ready for duality theory of linear programs, one of the most beautiful
mathematical constructs in my humble opinion (given by John von Neumann). Duality theory provides us
a deep insight in the world of linear programs and gives us information about the structure of quantities
modeled by linear programs. In the process, we will look at some of the techniques to solve linear programs.

In the second half, our main focus will be to look at several applications of this class in theoretical com-
puter science. Specifically, we will look at applications in algorithms, complexity theory and approximation
theory. If time permits, we will look at one possible generalization of linear programs (called semidefinite
programs).

Algorithms to solve linear programs:

You might already know that there are many known algorithms for solving linear programs; like simplex,
ellipsoid and interior point method. Simplex method was one of the first methods to solve these programs.
But almost all initial versions have examples which will take too long (exponential time) to solve. It is an
open question if some version of simplex can run in polynomial time for all the instances. Since it is efficient
in practice, it is used in many places.

The first polynomial time algorithm was Ellipsoid algorithm. It is not found to be very efficient in practice.
Few years later, interior point method was developed and shown to be in polynomial time. Since it is efficient
in practice and is provably fast, it is implemented in a lot of places.

Because of the abundance of algorithms to solve linear programs, researchers were really excited about
this paradigm. There were many attempts to solve even NP hard problems (like traveling salesman problem)
using linear programming. Notice that this will prove one of the most fundamental questions of complexity
theory, P=NP. This is because we know that linear programs can be solved in polynomial time.

Recently there was a big result by Wolf et al., where they showed that most of these techniques are bound
to fail. They showed that the traveling salesman polytope or its extension will require exponential number
of constraints.

Convex optimization:

Convex optimization is a generalization of linear programming where the constraints and objective func-
tion are convex. It is interesting because most of the algorithms for linear programming can be generalized
to convex optimization too. More importantly, many more problems can be expressed in this framework
than linear programming. Many subclasses of convex optimization like semidefinite programming and least
square problem are also widely used and have important applications in various fields. If time permits, we
will cover basics of semidefinite programming.
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2 Linear Programming

Linear programming is one of the well studied classes of optimization problem. We already discussed that
a linear program is one which has linear objective and constraint functions. A linear constraint is a linear
expression with equalities or inequalities.

Exercise 6. What is a linear expression?

A linear program looks like

min
∑
j

cjxj

subject to aTi x ≤ bi ∀i ∈ {1, · · · ,m1}
aTi x ≥ bi ∀i ∈ {m1 + 1, · · · ,m2}
aTi x = bi ∀i ∈ {m2 + 1, · · · ,m}

Here the vectors c, a1, · · · , am ∈ Rn and scalars bi ∈ R are the problem parameters. Notice that
∑

i cixi

can also be written as cTx in vector notation.
The task here is to find the minimum value of cTx, s.t., x satisfies all the constraints. Like a general

optimization problem, an x satisfying all the constraints is called a feasible solution. The set of all feasible
x’s, satisfying all the constraints, is called the feasible region (remember the black area in beer problem).

S = {x : aTi x ≤ bi ∀i ∈ [m1], a
T
i x ≥ bi ∀i ∈ {m1 + 1, · · · ,m2}, aTi x = bi ∀i ∈ {m2 + 1, · · · ,m}}

A feasible solution x∗ will be called optimal, if it has the smallest objective value among all the feasible
solutions. So for any feasible z, we know,

cT z ≥ cTx∗.

Notice that the optimal solution need not be unique.

2.1 Examples

We have already seen one example, beer problem, in the introduction. Let us see a very similar problem and
generalize it.

Suppose there is a manufacturing company which makes two kinds of laptop, Apple and Dell. Every
Apple gives a profit of 10 Rs. and every Dell 5 Rs. It is clear that to maximize the profit the company should
make as many Apple computers as possible (assuming they can sell everything they build).

Though, life is not so simple, every Apple computer takes 20 people to build, on the contrary Dell just
takes 13. Similarly, an Apple needs 4 chips, but Dell needs only 1. At any particular day, the company has
at most 95 people and 28 chips for their disposal. How many Apple’s and Dell’s should the company make?
This problem is an instance of resource allocation problem.

From the mathematical point of view, the problem is quite clear,

max 10x1 + 5x2

s.t. 20x1 + 13x2 ≤ 95

4x1 + x2 ≤ 28

x1, x2 ≥ 0.

Here, x1 is the number of Apple’s and x2 is the number of Dell’s. In a real scenario, we want these to be
integers. Let’s not worry about this constraint yet. Though, we will see that these kind of constraints, that
variables should be integer, make certain problems really hard.
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In any case, the above optimization approach can be generalized to the following resource allocation
problem.

Suppose, a manufacturing unit wants to produce items i = 1, · · · , n using raw materials j = 1, · · ·m. The
cost of raw material j is γj and the price of item i is ρi. There is only bj amount of raw material j available.
Suppose a single unit of item i requires aij amount of raw material j.

Perspective 1: The manager’s job is,

max
∑

i(ρi −
∑

j aijγj)xj

s.t. ∀ j
∑

i aijxi ≤ bj

∀ i xi ≥ 0.

Notice that ρi −
∑

j aijγj can be thought of as the profit for item i, we call it ci. Suppose c is the vector
with co-ordinates ci, x with co-ordinates xi and a(j) is a vector with entries aij , then

max cTx

s.t. ∀ j aT(j)x ≤ bj

x ≥ 0.

Perspective 2: Let us look at the same resource allocation problem from another perspective. The total
amount of profit can be also be thought as the value of the inventory. Suppose, the manager wants to assign
some cost yj to every raw material in the inventory, so that the cost of his inventory is minimized (for budget
purposes). Though the catch is, he should be willing to sell the raw material at the same price to some other
competitor manufacturing unit.

These constraint imply, his assigned cost should not be smaller than the market price, yj ≥ γj (else the
competitors can directly buy from him instead of market) and also

∀ i
∑
j

aijyj ≥ ρi

Otherwise, the competitor can buy the raw material from his unit and make the items cheaper than the
market price. Hence, the problem becomes,

min
∑

j bjyj

s.t. ∀ i
∑

j aijyj ≥ ρi

∀ j yj ≥ γj .

If we make a change of variable here zj = yj − γj , the life will be much simpler,

min
∑

j bjzj

s.t. ∀ i
∑

j aijzj ≥ ci (2)

∀ j zj ≥ 0.

Notice that
∑

j bjγj is a constant and can be ignored in the optimization function. We again get a linear
program. The two perspectives of the resource allocation problem seem very different. We will see later that
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they are two sides of the same coin! These two programs are called dual of each other. It is not just that
there value is equal, lot more is known about the relationship between these programs. We will study duality
theory in detail later.

Approximate degree linear program Let us take another example, where it is not straight forward to see
the connection with linear programs. Mathematicians have always been interested in representing functions
in terms of polynomials, it allows them to study and understand functions better.

Suppose there is a Boolean function f : {0, 1}n → {0, 1}. The function can be viewed as f(x1, x2, · · · , xn),
where xi’s are Boolean variables. We would like a representation of f in terms of a real polynomial. In other
words, a polynomial p(x1, x2, · · · , xn) represents/approximates f iff

|p(x1, x2, · · · , xn)− f(x1, x2, · · · , xn)| ≤ 1/3 ∀x1, x2, · · · , xn ∈ {0, 1}.

Notice a few things. First, even though f only takes input from {0, 1}n, p can take input from Rn, but
we are only interested in its values at {0, 1}n. Second, the constant on the right hand side is arbitrary (1/3),
we can put any constant smaller than 1/2. Third, since we are only interested in Boolean values, x2

i = xi; so
we can assume that p has monomials where each individual degree of a variable is at most 1. That means,
each monomials corresponds to a subset S of [n], χS := Πi∈Sxi. Such polynomials are called multilinear
polynomials.

Another thing, there can be multiple p’s which represent f . We are interested in the one which has
minimum degree. In other words, we are interested in

d̃eg(f) = min
p represents f

degree of p.

Approximate degree has been used in many places, e.g., quantum computing, learning theory and cryp-
tography.

Can you write a linear program to find the approximate degree? Some thought will convince you (at least
intuitively) that minimizing degree does not seem possible using linear programs (for one, it is an integer).
Let us flip the question, how well can we approximate a function if we are restricted to degree d functions?
Mathematically, is it possible to find

ϵd = min{ϵ : ∃ p of degree d such that |p(x)− f(x)| ≤ ϵ ∀x ∈ {0, 1}n}.

It turns out that this is an optimization program.

min ϵ

s.t. |p(x)− f(x)| ≤ ϵ ∀x ∈ {0, 1}n

Exercise 7. Do you think this is a linear program? What are the variables?

This is indeed a linear program with ϵ and coefficients of p as variables (notice that x is not a variable in
this linear program). If we restrict p to have non-zero coefficients only when the monomial has degree less
than d then this linear program gives us ϵd.

Note 2. We will not worry about the size of the linear program, it has exponential constraints in n. We are
not planning to solve it. Just being able to write it as a linear program allows us to infer lot of properties of
approximate degree. Though, that will be explained later.

It turns out that this linear program and its dual linear program is immensely useful, it is the only way
known to lower bound approximate degree for non-symmetric functions. For a nice survey on approximate
degree, check [1].

The dual of this linear program is,
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max
∑

x∈{0,1}n

f(x)(ϕ2(x)− ϕ1(x))

s.t.
∑

x∈{0,1}n

ϕ1(x) + ϕ2(x) ≤ 1

∑
x∈{0,1}n

(ϕ2(x)− ϕ1(x))χS(x) = 0 ∀S ⊆ [n] : |S| ≤ d

ϕ1(x), ϕ2(x) ≥ 0 ∀x ∈ {−1, 1}n

Remember that χS is the monomial corresponding to set S.

Exercise 8. Can you figure out the number of variables and constraints in this linear program?

2.2 Converting one LP into another

In the introduction, we defined a standard form of an LP and said that we can convert any LP into standard
form. What does it mean to convert and LP into another?

Intuitively, it means that solving one LP gives us the solution for other LP too. What does it mean
mathematically? Suppose we are given two LP’s L1 and L2, when are they equivalent?

Two LP’s (L1 and L2) are equivalent iff

– Any optimal solution of L1 can be converted into a feasible solution of L2 with same objective value.

– Any optimal solution of L2 can be converted into a feasible solution of L1 with same objective value.

Note 3. The solutions for two LP’s having the same value can be defined in various ways, e.g., one could be
a simple monotone function of another.

For an example, consider a sequence of sets C1, C2, · · · , Cm ⊆ {0, 1}n. Define variables ux, vx for all
x ∈ {0, 1}n. Consider the LP,

max
∑

x ux + vx

s.t. ∀ i ∈ [m]
∑

x∈Ci
ux − vx ≤ |Ci|

∀ x : ux, vx ∈ R.

Exercise 9. What is the optimal value of this LP?

Observe that by change of variables, yx = ux + vx and zx = ux − vx, the LP converts to

max
∑

x yx

s.t. ∀ i ∈ [m]
∑

x∈Ci
zx ≤ |Ci|

∀ x : yx, zx ∈ R.

Now it is clear that value of zx doesn’t matter (we can set it to zero) and yx can be raised as high as
possible.

Exercise 10. Show that above two LP’s are equivalent. What if in the first LP, we had constraint ux, vx ≥ 0
for all x?
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Let us take a non-trivial example of equivalence. Remember the dual of the approximate degree linear
program.

max
∑

x∈{0,1}n

f(x)(ϕ2(x)− ϕ1(x))

s.t.
∑

x∈{0,1}n

ϕ1(x) + ϕ2(x) ≤ 1

∑
x∈{0,1}n

(ϕ2(x)− ϕ1(x))χS(x) = 0 ∀S ⊆ [n] : |S| ≤ d

ϕ1(x), ϕ2(x) ≥ 0 ∀x ∈ {−1, 1}n

A notation will help our life a bit, given two functions f, g : {0, 1}n → {0, 1}, define ⟨f |g⟩ =
∑

x∈{0,1}n f(x)g(x).

max ⟨f |ϕ2 − ϕ1⟩
s.t.

∑
x∈{−1,1}n

ϕ1(x) + ϕ2(x) ≤ 1

⟨ϕ2 − ϕ1|χS⟩ = 0 ∀S ⊆ [n] : |S| ≤ d

ϕ1(x), ϕ2(x) ≥ 0 ∀x ∈ {−1, 1}n

A trick will simplify the linear program considerably. Suppose, we reduce ϕ1(x) and ϕ2(x) by the same
quantity, keeping them positive. It remains a feasible solution (first and third constraint are still satisfied
and second is not affected) and the objective value does not change.

For every x, we reduce both till at least one becomes zero. Then, we can replace them by a single variable
ϕ(x), it is −ϕ1(x) if ϕ2(x) becomes zero first, and it is ϕ2(x) if ϕ1(x) becomes zero first. This gives the linear
program,

max ⟨f |ϕ⟩
s.t.

∑
x∈{−1,1}n

|ϕ(x)| ≤ 1

⟨ϕ|χS⟩ = 0 ∀S ⊆ [n] : |S| ≤ d

Exercise 11. Show that we can renormalize ϕ, s.t.,
∑

x |ϕ(x)| = 1, without changing the objective value of
the dual.

We get the final dual linear program,

max ⟨f |ϕ⟩
s.t. ∥ϕ∥1 = 1

⟨ϕ|χS⟩ = 0 ∀S : |S| ≤ d

Converting to standard form The next set of moves show how to convert different kind of linear con-
straints into the standard form.

– inequality into equality: Use extra non-negative variables.
– Inequality in the opposite direction: A constraint like dTx ≥ e can be converted to (−dT )x ≤ (−e).

Exercise 12. What if input variable is less than zero?

– No constraint on input variable: If xi is unconstrained, then xi = yi − zi, where yi, zi ≥ 0.

9



Exercise 13. Show that the two LP’s in this case would be equivalent in the sense described above.

– Strict inequalities: Not allowed in LP’s. Instead we solve the approximate version with inequalities.
– We don’t need to consider sup/inf and can only work with max/min. This can be justified using Fourier-

Motzkin elimination.

Using these manipulations in the paragraph above, a linear program can be converted into an equivalent
linear program of the form

min
∑

j cjxj = cTx

subject to aTi x = bi ∀i ∈ {1, 2, · · · ,m}
xj ≥ 0 ∀j ∈ {1, 2, · · · , n}

We will call this the standard form of the linear program. In the standard form, the vectors c, a1, · · · , am ∈
Rn and scalars bi ∈ R are the problem parameters. In other words, given these parameters, you can write a
complete linear program assuming it is in the standard form.

At this point, notice two things.

– All constraints and objective function are linear in variable x for the standard form.
– The beer problem almost looks like a program in standard form. Can you convert it into one?

Exercise 14. Convert all linear programs encountered till now into standard form.

A more succinct representation can be obtained by arranging ai’s in a matrix A and bi’s in a vector b.
The linear program becomes,

min cTx

subject to Ax = b

x ≥ 0

Note 4. Here, variable x can be thought of as a column vector with n entries.
Given the program in this standard format, how should we solve and find the optimal solution? It seems

like a difficult problem, let us simplify it. How about the case when there is no constraint x ≥ 0.

min cTx

subject to Ax = b

This should look familiar, actually an entire branch of mathematics is devoted to finding the solution of
Ax = b (and a few other basic questions). Our next step will be to learn a bit of linear algebra.

3 Linear algebra

Looking at the form of a linear program (Equation 1) the first obvious question is, do we even have a
non-empty feasible region (setting of variables satisfying all constraints) in every case? The answer to this
question depends on matrix A and vector b in the specification of the linear program.

First, we will go through the basics of linear algebra, it will not just help us answer the above question
but also give us more information about the feasible set. This means, we will learn about vector spaces,
linear independence, matrices and rank in this section.

The content below is mostly taken from Gilbert Strang’s book, Linear algebra and its applications [3]. This
brief introduction is supposed to be a reminder to the concepts of linear algebra, and is not a comprehensive
introduction. For a detailed introduction to these concepts, please refer to Strang’s book or any other
elementary book on linear algebra.

Note 5. For the simplicity of notation, I will use capital letters for matrices and small letters for vectors.
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3.1 System of linear equations

I believe that most of the areas in mathematics owe their existence to a problem. For linear algebra, one of
the central problem is to solve equation Ax = b. Here, A is an m× n matrix, x represents variables (column
matrix of dimension n×1) and b is a column vector with dimension m×1. This equation can also be viewed
as m linear equations in n variables.

Exercise 15. What cases are easy to solve? What if A is a diagonal matrix?

Let us look at a very simple example,
2x + y = 4
x + y = 3

You can deduce that the solution is x = 1, y = 2. What about,

2x + 2y = 5
x + y = 3

You can again prove that these set of equations does not have a solution. So, before solving Ax = b, the
first question we should ask is,

when does Ax = b have a solution?
We will develop a theory for this question. You might wonder, why develop a theory when you can answer

it just by inspection. The reason is, we want to answer this question when we have thousands of variable
and equations. The algorithmic answer to these questions is used widely in many industries today.

The theory originates by looking at those two equations in a different manner. Instead of looking at the
set of equations as two rows (linear equations), we will view them as column vectors and their combinations.

x

[
2
1

]
+ y

[
1
1

]
=

[
4
3

]
The system of linear equations question can be framed differently now. Does there exist a linear combi-

nation of two vectors,

[
2
1

]
and

[
1
1

]
, which equals

[
4
3

]
?

Vector spaces A vector space is a set of elements closed under addition and scalar multiplication (all linear
combinations). In other words, V is a vector space iff

∀ x, y ∈ V, α, β ∈ R : αx+ βy ∈ V.

In particular, it implies that for x, y ∈ V , x+ y and αx are members of the vector space.

Note 6. For reader with background in abstract algebra: we have defined the scalars (α, β) to be from real
numbers. But the vector space can be defined over any field by taking the scalars from that field.

There is a more formal definition with axioms about the binary operations and identity element. But
the definition above will provide enough intuition for us. The most common examples for a vector space are
Rn, Cn, the space of all m × n matrices over a field and the space of all real-valued functions from a fixed
domain. We will mostly be concerned with finite vector spaces over real number, Rn, in this course.

A subspace is a subset of a vector space which is also a vector space and hence closed under addition and
scalar multiplication. A span of a set of vectors S is the set of all possible linear combinations of vectors in
S. It forms a subspace and is denoted by Span(S).

Exercise 16. Give some examples of subspace of Rn. Prove that a span is a subspace.

Note 7. We will be interested in vector space Rn, but the following concepts are valid for general vector
spaces.
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Linear independence To understand the structure of a vector space, we need to understand how can all
the elements of a vector space be generated. In particular, is there a set of vectors whose span is the given
vector space? Using the definition of the vector space, the concept of linear dependence/independence comes
out.

Given a set of vectors v1, · · · , vn ∈ V , they are linearly dependent if and only if vector 0 can be expressed
as a linear combination of these vectors.

α1v1 + · · ·+ αnvn = 0, ∃i : αi ̸= 0.

This implies that at least some vector in the set can be represented as the linear combination of other
elements. On the other hand, the set is called linearly independent iff

α1v1 + · · ·+ αnvn = 0 ⇒ ∀i, αi = 0

Intuitively, if we need to find generators of a vector space, a linearly dependent set is redundant. But
a linearly independent set might not be able to generate all the elements of a vector space through linear
combinations. This motivates the definition of basis, which is, in essence, a maximal linearly independent
set of a vector space.

Definition 1. Basis: A subset S of a vector space V is called a basis iff S is linearly independent and any
vector in V can be represented as a linear combination of elements in S.

Other way to put the same definition would be, a basis is the minimal set of vectors such that their span
is the vector space itself.

Since any element in V can be represented as a linear combination of elements of S. This implies that
adding any v ∈ V \ S in S will make it linearly dependent (hence a basis is maximal linearly independent
set).

One of the basic theorems of linear algebra says that the cardinality of all the basis sets is always the
same and it is called the dimension of the vector space. Also given a linearly independent set of V , it can
be extended to form a complete basis of V (hint: keep adding linearly independent vectors till a basis is
obtained).

There is no mention about the uniqueness of the basis. There can be lot of basis sets for a given vector
space.

The span of k < n elements of a basis B1 of V (dimension n) need not be contained in the span of some
k′ (even n− 1) elements of B2. Consider the standard basis B = {e1, · · · , en} and vector x = (1, 1, · · · , 1)T .
Now x or the space spanned by x is not contained in span of any n− 1 vectors from B.

Inner product space All the examples we discussed above are not just vector spaces but inner product
spaces. That means they have an associated inner product. Again we won’t go into the formal definition.
Intuitively, inner product (dot product for Rn) allows us to introduce the concept of angles, lengths and
orthogonality between elements of vector space. We will use xT y to denote the inner product between x and
y.

Definition 2. Orthogonality: Two elements x, y of vector space V are called orthogonal iff xT y = 0.

Definition 3. Length: The length of a vector x ∈ V is defined to be ∥x∥ =
√
xTx.

Using orthogonality we can come up with a simpler representation of a vector space. This requires the
definition of orthonormal basis.

Definition 4. A basis B of vector space V is orthonormal iff,

– For any two elements x, y ∈ B, xT y = 0,
– For all elements x ∈ B, ∥x∥ = 1.

12



In this orthonormal basis, every vector can be represented as a usual column vector (n × 1 matrix)
with respect to this orthonormal basis. It will have co-ordinates corresponding to every basis vector and
operation between vectors like summation, scalar multiplication and inner product will make sense as the
usual operation on the column vectors.

Given any basis of a vector space, it can be converted into an orthonormal basis. Start with a vector of
the basis and normalize it (make it length 1). Take another vector, subtract the components in the direction
of already chosen vectors. Normalize the remaining vector and keep repeating this process. This process
always results in an orthonormal basis and is known as Gram-Schmidt Process.

3.2 Matrices

The next object of study (familiar to all of you) is called a matrix. An m × n matrix M over reals can be
thought of as a collection of mn real numbers arranged in m rows and n columns. The matrix is represented
as:

M =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


The i, j-th entry (entry in the i-th row and j-th column) is represented by aij .
A matrix can also be thought of as a collection of n column vectors. For a matrix A, AT denotes the

transpose of the matrix, where Aij = AT
ji. Let us look at some of the simple matrices used a lot in computer

science.

– Zero matrix: The matrix with all the entries 0. It acts trivially on every element and takes them to the
0 vector.

– Identity matrix: The matrix with 1’s on the diagonal and 0 otherwise. It takes v ∈ V to v itself.
– All 1’s matrix (J): All the entries of this matrix are 1.

There is another interpretation of matrices. Using the standard definition of a matrix multiplied by a
vector, Mv, the m× n matrix M can be thought of as a function from Rn to Rm.

Exercise 17. What is the action of matrix J?

In fact, the function associated with a matrix has very nice linearity property,

M(v + u) = Mv +Mu and M(αu) = αMu ∀α ∈ R.

3.3 Extra reading: linear operators

Given two vector spaces, V and W over R, a linear operator M : V → W is defined as an operator satisfying
the following properties.

– M(x+ y) = M(x) +M(y).
– M(αx) = αM(x), ∀α ∈ R.

For linear programming, the set of constraints can be thought of as linear operators on the variable
vector. These conditions imply that the zero of the vector space V is mapped to the zero of the vector space
W . Using the above two conditions,

M(α1x1 + · · ·+ αkxk) = α1M(x1) + · · ·+ αkM(xk)

13



Where x1, · · · , xk are elements of V and αi’s are in R. Assuming the linearity of an operator, it is enough
to specify the value of the linear operator on any basis of the vector space V . In other words, a linear operator
is uniquely defined by the values it takes on any particular basis of V .

Let us define the addition of two linear operators as (M +N)(u) = M(u) +N(u). Similarly, αM (scalar
multiplication) is defined to be the operator (αM)(u) = αM(u). The space of all linear operators from V to
W (denoted L(V,W )) is a vector space in itself. The space of linear operators from V to V will be denoted
by L(V ).

Exercise 18. Given the dimension of V and W , what is the dimension of the vector spaces L(V,W )?

Matrices as linear operators Given two vector spaces V = Rn,W = Rm and a matrix M of dimension
m× n, the operation x ∈ V → Mx ∈ W is a linear operation. So, a matrix acts as a linear operator on the
corresponding vector space.

To ask the converse, can any linear operator be specified by a matrix?
Let f be a linear operator from a vector space V (dimension n) to a vector space W (dimension m).

Suppose {e1, e2, · · · , en} is a basis for the vector space V . Denote the images of this basis under f as
{w1 = f(e1), w2 = f(e2) · · · , wn = f(en)}.

Exercise 19. What is the lower-bound/ upper-bound on the dimension of the vector space spanned by
{w1, w2, · · · , wn}?

Define Mf to be the matrix with columns w1, w2, · · · , wn. Notice that Mf is a matrix of dimension m×n.
It is a simple exercise to verify that the action of the matrix Mf on a vector v ∈ V is just Mfv. Here we
assume that v is expressed in the chosen basis {e1, e2, · · · , en}.

Exercise 20. Convince yourself that Mv is a linear combination of columns of M .

The easiest way to show that Mf acts similar to f is: notice that the matrix Mf and the operator f act
exactly the same on the basis elements of V . Since both the operations are linear, they are exactly the same
operation. This proves that any linear operation can be specified by a matrix.

The previous discussion does not depend upon the chosen basis. We can pick our favorite basis, and the
linear operator can similarly be written in the new basis as another matrix (The columns of this matrix are
images of the basis elements). In other words, given bases of V and W and a linear operator f , it has a
unique matrix representation.

To compute the action of a linear operator, express v ∈ V in the preferred basis and multiply it with
the matrix representation. The output will be in the chosen basis of W . We will use the two terms, linear
operator and matrix, interchangeably in future (bases will be clear from the context).

3.4 Kernel, image and rank

For a linear operator/matrix (viewed as an operator from V to W ), the kernel is defined to be the set of
vectors which map to 0.

ker(M) = {x ∈ V : Mx = 0}

Here 0 is a vector in space W .

Exercise 21. What is the kernel of the matrix J?

The image is the set of vectors which can be obtained through the action of the matrix on some element
of the vector space V .

img(M) = {x ∈ W : ∃y ∈ V, x = My}

Exercise 22. Show that img(M) and ker(M) are subspaces.
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Exercise 23. What is the image of J?

Notice that ker(M) is a subset of V , but img(M) is a subset of W . The dimension of img(M) is known
as the rank of M (rank(M)). The dimension of ker(M) is known as the nullity of M (nullity(M)). For a
matrix M ∈ L(V,W ), by the famous rank-nullity theorem,

rank(M) + nullity(M) = dim(V ).

Here dim(V ) is the dimension of the vector space V .

Proof. Suppose u1, · · · , uk is the basis for ker(M). We can extend it to the basis of V , u1, · · · , uk, vk+1, · · · , vn.
We need to prove that the dimension of img(M) is n − k. It can be proved by showing that the set
{Mvk+1, · · · ,Mvn} forms a basis of img(M).

Exercise 24. Prove that any vector in the image ofM can be expressed as linear combination ofMvk+1, · · · ,Mvn.
Also any linear combination of Mvk+1, · · · ,Mvn can’t be zero vector.

Given a vector v and a matrix M , it is easy to see that the vector Mv is a linear combination of columns
of M . To be more precise, Mv =

∑
i Mivi where Mi is the ith column of M and vi is the ith co-ordinate of

v. This implies that any element in the image of M is a linear combination of its columns.

Exercise 25. Prove the rank of a matrix is equal to the dimension of the vector space spanned by its columns
(column-space).

The dimension of the column space is sometimes referred to as the column-rank. We can similarly define
the row-rank, the dimension of the space spanned by the rows of the matrix. Luckily, row-rank turns out to
be equal to column-rank and we will call both of them as the rank of the matrix. This can be proved easily
using Gaussian elimination. We will give a visual proof of the theorem.

Proof. Given an m×n matrix M , say {c1, c2, · · · , ck} span the column space of M . Suppose, C be the m×k
matrix with columns {c1, c2, · · · , ck}. Then, there exist an k×n matrix R, s.t., CR = M . If {d1, d2, · · · , dk}
are the columns of R, then the equation CR = M can be viewed as,

...
...
...
...
...

c1 c2 · · ck
...

...
...
...
...




...
...
...
...
...

d1 d2 · · dn
...

...
...
...
...

 =


...

...
...
...

...
Cd1 Cd2 · · Cdn
...

...
...
...

...


Another way to view the same equation is,

C


· · · r1 · · ·
· · · r2 · · ·
· · · · · · ·
· · · · · · ·
· · · rk · · ·

 =


· · ·

∑
i C1iri · · ·

· · ·
∑

i C2iri · · ·
· · · · · · ·
· · · · · · ·
· · ·

∑
i Ckiri · · ·


This shows that the k columns of R span the row-space of M . Hence, row-rank is smaller than the

column-rank.

Exercise 26. Show that column-rank is less than row-rank by a similar argument.

Note 8. The column-rank is equal to row-rank. It does not mean that the row-space is same as the column-
space.

Using these characterizations of rank, it can be proved easily that rank(A) = rank(AT ) and rank(A +
B) ≤ rank(A) + rank(B).
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3.5 Solutions for linear equations

We are now in a position to talk about the solution set of equation Ax = b. We will start with the easier
case of b = 0. From the previous discussion, we are interested in the kernel of matrix A.

There are two cases, depending upon the rank of A.

– Non-singular: If A is full rank (the columns are linearly independent), implies the nullity of A is 0 by
rank-nullity theorem. This means that the kernel has dimension 0. In other words, there is only a trivial
solution x = 0 for Ax = 0.

– Singular: If A’s rank is not full (the columns are linearly dependent), then dimension of kernel is more
than 0. So, there are non-trivial solutions of Ax = 0 and they form a subspace of non-zero dimension.

To test whether the columns are linearly dependent or not (and solve linear equations), the established
method in practice is called Gaussian elimination. I assume that you know what Gaussian elimination is, so
we will describe it briefly.

The idea of Gaussian elimination is: it is easy to solve Ax = 0 if A is an upper-triangular matrix.

Exercise 27. Why is it easy to solve Ax = 0 when A is upper-triangular?

So, we reduce A to an upper triangular matrix, keeping its kernel the same. This is done using these two
elementary operations.

– Exchange any two rows Ri and Rj .
– Replace a row Rj by αRi +Rj for some α ∈ R.

Please convince yourself that these operations do not change the image or the kernel of the matrix A.
These steps/operations can be used to convert A into an upper triangular matrix. Remember that a column
of A represents a variable and a row represents an equation. The reduced matrix A looks like,

a11 a12 a13 a14 · · ·
0 a22 a23 a24 · · ·
0 0 0 a34 · · ·
...

...
...

...
...

0 0 · · · 0 aij · · ·


Notice that all diagonal entries need not be non-zero. You can achieve this by swapping the variables.

The leading entries (column numbers) of every row correspond to leading variables. They can be used with
elementary operations to make coefficients of leading variables 0 in every other equation. The reduced matrix
will look like, 

a11 0 0 · · · 0 · · ·
0 a22 0 · · · 0 · · ·
0 0 a33 0 0 · · ·
...

...
...

. . .
...

...
0 0 · · · 0 akk · · ·
0 0 · · · 0 · · · 0


Here, k is the rank of the matrix.

Exercise 28. Show that the number of leading variables is equal to rank of the matrix.

The remaining variables are called free variables and their number is equal to the nullity of the matrix
A. A solution of Ax = 0 can be obtained by setting free variables as you wish; the value of leading variable
is fixed by setting the free variables. This discussion shows that the kernel of A is a subspace with dimension
equal to the number of free variables (why?). Since every variable is either leading or free, this proves the
rank-nullity theorem in another way.

Given an n × n matrix, Gaussian elimination works in time O(n3). There are better algorithms known,
but Gaussian elimination will be enough for our purposes.

16



3.6 Solution set of Ax = b

Do you remember our original motivation for learning linear algebra? The standard form of a linear program
is,

min cTx

subject to Ax = b

x ≥ 0

We wanted to solve a simpler problem where the constraint x ≥ 0 was absent. We are now in a position
to describe the solution set of Ax = b. Next theorem relates the solution set of Ax = b with solution set of
Ax = 0 (we know this set from our discussion about linear algebra).

Theorem 1. Let S0 denote the solution set of Ax = 0 and the solution set of Ax = b be not empty. Then,
the solution set of Ax = b can be represented as,

x0 + S0 = {x0 + s : s ∈ S0}.

Here, x0 is fixed to be a solution of Ax = b.

Proof. The theorem follows from these observations,

– if x0 is a solution of Ax = b and y is a solution of Ax = 0 then x0 + y is a solution of Ax = b,
– if x0 is a solution of Ax = b and x1 is a solution of Ax = b then x1 − x0 is a solution of Ax = 0,

Given Ax = b, there are two cases, depending upon the rank of A.

– Non-singular: If A is full rank (the columns are linearly independent) then Ax = 0 has a unique trivial
solution. Also, columns of A span the whole space. So, there is a unique solution for every b.

– Singular: If A’s rank is not full (the columns are linearly dependent) then Ax = 0 has a non-trivial
subspace as solution set. If b does not fall in the span of columns of A then there is no solution.
Otherwise, pick any solution x0 of Ax = b. The complete solution set is x0+S0, where S0 is the solution
set of Ax = 0.

To find if b is in the span of A and what linear combination of columns of A will give b, run Gaussian
elimination on the combined matrix A′ = [Ab]. In case there is a row of reduced A′ with 0’s everywhere
except the last entry, there is no solution.

The above discussion shows that either Ax = b is in-feasible or its solution set is of the form x0 + S0,
where S0 is a subspace. The subspace S0 can easily be determined using Gaussian elimination.

Given this solution set, it is easy to solve the simpler linear programming problem.

min cTx

subject to Ax = b

Exercise 29. What happens if there is no solution of unique solution?

For the remaining case, suppose v1, v2, · · · , vk is a basis of S0. The feasible set is {x0 +
∑k

i=1 αivi : αi ∈
R ∀i}. This means we can get rid of constraints by substituting this form in the objective function. This

will give us a linear optimization function in αi’s,
∑k

i=1 c
′
iαi + d, without any constraints.
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Exercise 30. Describe the solution for unconstrained optimization program

min

k∑
i=1

c′iαi + d.

This shows that the removing constraint x ≥ 0 will make the problem easy. We need to put this constraint
back, though lessons learnt for this simpler problem will be useful in further discussions. Again, our strategy
will be to study the new feasible set. Indeed, most (probably all) solvers depply rely on the structure of the
feasible set for a linear program. Remember that we already know the solution set for Ax = b. Adding the
x ≥ 0 gives the feasible set a different structure. We will move to theory of convex sets next to study these
feasible sets.

Exercise 31. What does the feasible set look like in 2 dimensions? How about 3 dimensions?

4 Assignment

Exercise 32. When A is singular, under what conditions will we have no solution for the system Ax = b?

Exercise 33. Read about Gaussian elimination.

Exercise 34. Prove that rank(A) = rank(A∗A).

Hint: rank(A) ≥ rank(A∗A) is easy. For the other direction, reduce A to its reduced row echelon form.

Exercise 35. Show that vTAw =
∑

ij Aijviwj , where A is a matrix and v, w are vectors.

Exercise 36. Prove that Trace(AB) = Trace(BA).

Exercise 37. Show that trace(A(vT v)) = vTAv, where A is a matrix and v is a vector.

Exercise 38. What is the least square optimization problem? Read about it.

Exercise 39. Show that every linear program can be converted into this kind of standard form.

max cTx

s.t. Ax ≤ b

x ≥ 0.

Exercise 40. Consider a two player game with a matrix M (of dimension n× n). The two players, call them
row player and column player, have n strategies each. Row player gets an output Mij when she plays strategy
i and column player strategy j. We want to find probabilities p1, p2, · · · , pn for row player which optimizes
her output.

Show that this problem can be formulated as a linear program.
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