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This lecture will define measurements in the quantum world, i.e., how do we get an output from a quantum
system? As before, we need to learn a bit of linear algebra first.

1 Positive semidefinite matrices

Remember that a matrixM is normal ifMM∗ =M∗M . By spectral theorem, these are equivalent to matrices
which have an orthonormal basis of eigenvectors. There was no restriction on the kind of eigenvalues for a
normal matrix (they could have been any complex number). We got Hermitian matrix (when eigenvalues
are real) and unitary matrix (eigenvalues have absolute value 1), when eigenvalues were restricted.

Exercise 1. Prove that a normal matrix is unitary if and only if all eigenvalues have absolute value 1.

A further restriction on eigenvalues of a Hermitian matrix gives us a positive semidefinite matrix. A
matrix M is positive semidefinite if it is Hermitian and all its eigenvalues are non-negative. If all eigenvalues
are strictly positive then it is called a positive definite matrix.

Exercise 2. Show that the matrix |0⟩⟨0| is a positive semidefinite matrix. What are its eigenvalues?

We give multiple characterizations of a positive semidefinite matrix.

Theorem 1. For a Hermitian n× n matrix M ∈ L(V ), following are equivalent.

1. ⟨v|M |v⟩ ≥ 0 for all |v⟩ ∈ V .
2. All eigenvalues of M are non-negative.
3. There exists a matrix B, s.t., B∗B =M (matrix B need not be square).

Proof. 1 ⇒ 2 : Say, λ is an eigenvalue of M . Then, there exists an eigenvector |v⟩ ∈ V , s.t., M |v⟩ = λ|v⟩. So,

0 ≤ ⟨v|M |v⟩ = λ⟨v|v⟩.

Since ⟨v|v⟩ is positive for all |v⟩, implies the eigenvalue λ is non-negative.
2 ⇒ 3 : Since the matrix M is Hermitian, it has a spectral decomposition.

M =
∑
i

λi|xi⟩⟨xi|

Define |yi⟩ =
√
λi|xi⟩. This definition is possible because λi’s are non-negative. Then,

M =
∑
i

|yi⟩⟨yi|.

Exercise 3. What is the problem with λi being negative, we have allowed complex numbers?

Define B∗ to be the matrix whose columns are yi. Then it is clear that B∗B =M . From this construction,
B’s columns are orthogonal.

Note 1. In general, any matrix of the form B∗B is positive semi-definite. The matrix B need not have
orthogonal columns (it can even be rectangular).

Though, there can be multiple matrices M1,M2 · · · such that M∗
1M1 =M∗

2M2 = · · · (give an example).
This decomposition is unique if B is positive semidefinite. The positive semidefinite B, s.t., B∗B = M ,

is called the square root of M .



Exercise 4. Prove that the square root of a matrix is unique.

Hint: Use the spectral decomposition to find one of the square root. Suppose A is any square root of M .
Then use the spectral decomposition of A and show the square root is unique (remember the decomposition
to eigenspaces is unique) .

3 ⇒ 1 : We are given a matrix B, s.t., B∗B =M . Then,

⟨v|M |v⟩ = ⟨Bv|Bv⟩ ≥ 0.

Exercise 5. Prove 2 ⇒ 1 directly.

Note 2. A matrix M of the form M =
∑
i |xi⟩⟨xi| is positive semidefinite, even if xi’s are not orthogonal to

each other (prove it).

Note 3. A matrix of the form |y⟩⟨x| is a rank one matrix. It is rank one because all columns are scalar
multiples of |y⟩. Similarly, all rank one matrices can be expressed in this form.

The following figure (Fig. 1) shows how these special classes are related to each other.

Set of all nxn matrices
Normal matrices

Unitary
matrices

Hermitian
matrices

PSD
matrices

?
Fig. 1. World of normal matrices

Exercise 6. Identify the area marked with “?” in Fig. 1.

1.1 Projectors

A subclass of interest, of positive semidefinite matrices is called projectors. A normal matrix P is called a
projector if and only if P 2 = P .
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Exercise 7. Show that matrix |0⟩⟨0| is a projector.

Like the classes seen before, it is not difficult to give a characterization of projectors in terms of their
eigenvalues. Suppose, the spectral decomposition of P gives

P =
∑
i

λi|xi⟩⟨xi|.

We know that |xi⟩’s form an orthonormal basis. Calculating the square,

P =
∑
i

λ2i |xi⟩⟨xi|.

Since spectral decomposition of P 2 is unique and P 2 = P , we get that λ2i = λi. So, any eigenvalue of a
projector is either 0 or 1. In the assignment you will show that if all eigenvalues of a matrix are either 0 or
1, then it is a projector. We get the alternate characterization:

Theorem 2. A normal matrix P is a projector if and only if all its eigenvalues belong to the set {0, 1}.

From spectral decomposition, you can observe that any projector P can be written as P =
∑k
i=1 |xi⟩⟨xi|,

where xi’s are orthonormal (though need not form a complete basis). You can extend these set of vectors to
get a basis {|x1⟩, |x2⟩, · · · , |xk⟩, |yk+1⟩, · · · , |yn⟩}. Any vector in Cn can be written as a linear combination
of this basis.

|ψ⟩ =
k∑
i=1

αi|xi⟩+
n∑

i=k+1

βi|yi⟩.

Applying projector P on vector |ψ⟩, we get,

P |ψ⟩ =
k∑
i=1

αi|xi⟩.

In other words, projector P keeps the part on xi’s as it is and zeroes out the part on yi’s. It projects on
to the subspace spanned by xi’s, and hence it is called a projector. This gives another characterization of
an n × n projector in one to one correspondence with a subspace of Cn. A projector for a subspace S is a
matrix which acts as identity on all vectors inside S, and zeroes out anything that is orthogonal to S. Since
a projector is a linear operator, this specifies its action on the complete space.

Exercise 8. Given any orthonormal basis {x1, x2, · · · , xk} of a subspace S, show that the projector on S is,

PS =

k∑
i=1

|xi⟩⟨xi|.

Exercise 9. Let P be a projector, show that I − P is also a projector.

2 Measurement of the system

We have talked about the state of the system and how it evolves. To be able to compute, we should be
able to observe/measure the properties of this system too. It turns out that measurement is an integral part
of quantum mechanics. Not only does it allow us to determine properties of the quantum system, but it
significantly alters the system too.

Before we discuss the third postulate describing the measurements, try to recall if we have seen any
measurement before?
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With high probability you might have seen it. It is mentioned in many places that if the state is |ψ⟩ =
α|0⟩+ β|1⟩, then it will give |0⟩ with probability |α|2 and |1⟩ with probability |β|2. That basically meant, if

we measure the state in the standard basis {|0⟩, |1⟩}, then the output will be 0 with probability |α|2 and 1

with probability |β|2.
What happens to the state |ψ⟩ itself? It turns out that the final state will be |0⟩ if the output is 0, and

|1⟩ if the output is 1. It is as though the state |ψ⟩ is projected onto the space spanned by |0⟩ or |1⟩.

Note 4. If the state remained |ψ⟩ after measurement, we could have performed this measurement multiple
times. The statistics obtained would have given us idea about |α| and |β|. As we mentioned before, this
can’t be done with just one copy of |ψ⟩. We will see later that a quantum state cannot be copied (no-cloning
theorem)

The fact that state gets projected into a basis state, provides the intuition behind the definition of
projective measurements. It is a subclass of general measurements we will define later. We would like to say,
any partition of the vector space (where the state lives) can be a possible measurement.

Let |ψ⟩ ∈ Cn be a state and suppose P1, P2, · · · , Pk are some projectors on orthogonal subspaces which

span the space Cn. A measurement on |ψ⟩ using these projections will give state Pi|ψ⟩
∥Pi|ψ⟩∥ with probability

∥Pi|ψ⟩∥2. We divide by ∥Pi|ψ⟩∥ so that the resulting state is a unit vector.

Exercise 10. Check that this definition matches with one qubit projection in the standard basis defined
above.

Projective measurements: More formally, a projective measurement is described by a Hermitian operator,

M =
∑
i

miPi,
∑
i

Pi = I.

Here, Pi’s are projectors; for all i, Pi is normal and P 2
i = Pi. If we measure state |ψ⟩ with M , we get value

mi with probability ∥Pi|ψ⟩∥2 = ⟨ψ|Pi|ψ⟩ and the resulting state is Pi|ψ⟩
∥Pi|ψ⟩∥ .

Notice that

– a projector Pi is a positive semi-definite matrices,
– the condition

∑
i Pi = I and the fact that Pi’s are projectors, imply PiPj = 0 for all pairs {i, j}.

In other words, Pi are orthogonal projectors whose corresponding subspaces span the entire space.

Exercise 11. Show that I ⪰ Pi ⪰ 0. Where A ⪰ B means A−B is positive semidefinite matrix.

This definition of projective measurement and the subsequent definition of other kind of measurements
is taken as a postulate. We will not worry about, why are measurements defined this way? Though, note
that it agrees with the intuition we had about measurement (projecting into subspaces).

When we say that the state is measured in the basis {v1, v2, · · · , vn}; it means the projections are,

{P1 = |v1⟩⟨v1|, P2 = |v2⟩⟨v2|, · · · , Pk = |vk⟩⟨vk|}.

In this case, it is easy to come up with the average value of the measurement. You will show in the assignment,
the average value of measurement M on |ψ⟩ is ⟨ψ|M |ψ⟩.

Third postulate: As we hinted above, a more general class of measurements can be defined. This gives us our
third postulate.

Postulate 3: A state |ψ⟩ can be measured with measurement operators {M1,M2, · · · ,Mk}. The linear oper-
ators Mi’s should satisfy

∑
iM

∗
iMi = I. The probability of obtaining outcome i is p(i) := ⟨ψ|M∗

iMi|ψ⟩, and
the state after measurement is Mi|ψ⟩√

p(i)
.
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Exercise 12. Prove that the condition
∑
iM

∗
iMi = I is equivalent to the fact that measurement probabilities

sum up to 1.

Exercise 13. Show that projective measurements are a special case of measurements defined in the postulate.

Exercise 14. Find a measurement that is not projective.

Notice that the individual measurement operators are not unitary. We made the resulting vector a unit
vector by dividing it with its norm.

It turns out that given ancilla (additional quantum system) we can simulate any general measurement
operator using unitary operators and projective measurements 2.2.

2.1 POVM

For the complete specification of measurement postulate, we defined the probability of getting an outcome
and the state of the system after the measurement. Sometimes, we are not interested in the state after the
measurement, for instance, measurement is the last step in the algorithm. In that case there is an easier
description of measurements.

Notice that the probability in the third postulate only depends upon matrices M∗
iMi and not the indi-

vidual matrices Mi. So, we only need to specify Ei := M∗
iMi to get the probabilities of outcomes. These

matrices Ei’s are called the POVM elements for the measurement.

Note 5. POVM is an abbreviation and stands for positive-operator valued measure.
Now, we can understand the third postulate in terms of POVM’s without worrying about the individual

matrices Mi’s. Suppose, we are given {E1, E2, · · · , Ek}, such that,
∑
iEi = I and Ei ⪰ 0 for all i. Then, the

POVM measurement {Ei}i on |ψ⟩ gives outcome i with probability ⟨ψ|Ei|ψ⟩.

Exercise 15. What are the POVM elements for the projective measurement.

Exercise 16. Show that the state |ψ⟩ and the state eiθ|ψ⟩ have the same measurement statistics for any
measurement.

Such states, differing from each other by an extra eiθ factor, are said to have a global phase difference
and are identical for quantum computing purposes. This is because no measurement can distinguish between
these two states. You should not get confused by this and the pair of states α0|0⟩+α1|1⟩ and α0|0⟩+eiθα1|1⟩,
they differ by a local phase and can be distinguished. For example, |+⟩ := |0⟩ + |1⟩ and |−⟩ := |0⟩ − |1⟩
have a local phase, but they are definitely not identical. You will see that we will use these states, and their
difference, are used a lot in quantum computing.

2.2 Extra reading: General measurements using projective measurements

We can use fourth postulate to simulate generalized measurement using projective measurements and unitary
operators. Suppose, we would like to perform measurements {Mi : 1 ≤ i ≤ k} on a Hilbert space H. Consider
a state space M with basis {|1⟩, |2⟩, · · · , |k⟩}.

Note 6. Such extra spaces are needed in quantum computation because it is reversible and are known as
ancilla systems.

Exercise 17. Read about ancilla bit in quantum computation.

Pick a fixed state |0⟩ in the state space M and define a unitary U on the space H ⊗M ,

U |ψ⟩|0⟩ =
∑
i

Mi|ψ⟩|i⟩.
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Exercise 18. Show that U preserves the norm between states of the form |ψ⟩|0⟩.

Exercise 19. Show that U can be extended to a unitary operator on the entire space.

Then, the projective measurements can be defined as Pi := IH ⊗ |i⟩⟨i|.

Exercise 20. Show that the probability of obtaining i using the general measurement on |ψ⟩ is same as the
probability of getting i when U |ψ⟩|0⟩ is measured with {Pi}.

Hence the probability p(i) of obtaining the outcome i matches with the generalized measurement. The
combined state of the system using the measurement postulate is,

PiU |ψ⟩|0⟩√
p(i)

=
Mi|ψ⟩|i⟩√

p(i)
.

Suppose, the outcome from the measurement is i. Then, the state of system M is |i⟩ and state of system

H is Mi|ψ⟩√
p(i)

after the measurement. Notice that the state and the probability of the outcome of the projective

measurement matches with the generalized measurement. In other words, we are able to a simulate general
measurement using ancilla system, unitary operator and projective measurement.

Remember the Deutsch’s problem, we wanted to find whether f(0) = f(1) or not. Even if we have the
state 1√

2
(|0, f(0)⟩ + |1, f(1)⟩), we can’t figure out if f(0) = f(1) or not. A measurement will only tell us

the value of f(0) or f(1). We can still figure this question out in one query! That will be explained in next
chapter.

3 Assignment

Exercise 21. Show that a matrixM is positive semi-definite if it is the Gram matrix of vectors |u1⟩, · · · , |un⟩.
That is,

Mij = ⟨ui|uj⟩.

Exercise 22. Show that the property of being positive semidefinite, Hermitian and unitary is preserved under
a unitary basis transformation.

Exercise 23. Show that a normal matrix is a projector if and only if all its eigenvalues belong to the set
{0, 1}.

Exercise 24. Given an orthonormal basis {|x1⟩, |x2⟩, · · · , |xn⟩} of the space Cn, show that
∑
i |xi⟩⟨xi| = I.
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