
Lecture 13: Query complexity

Rajat Mittal

IIT Kanpur

After going through Grover’s algorithm and some of its variations, let us prove that Grover’s algorithm
is optimal for the search problem. This, in an intuitive sense, also shows that quantum computing is not
simply computing everything in parallel. If that was the case, we should be able to do search in just one step.

The argument in the next section shows the limitation of a quantum computer and is one of the fun-
damental result in quantum complexity theory. This argument will bound the time required for search by
bounding the number of queries to the search oracle (query complexity). We will briefly discuss the query
complexity framework in the end and see general techniques to give bounds in this framework.

1 Optimality of Grover search

We have shown that the search problem can be solved with O(
√
n) oracle queries. Can we do better?

In this section, we will show that Grover search is optimal. That means, we will prove that any quantum
algorithm with less queries will not be able to give the correct answer with high probability.

Let us first see if we can formally argue that a classical deterministic algorithm will take n queries for
unstructured search. Suppose the best algorithm does only n− 1 queries (remember that the algorithm can
decide which queries to do depending upon the output of previous queries). We look at the algorithm when
we answer all queries with unmarked element. After n−1 queries, algorithm still hasn’t looked at one index,
say i. Then the answer to the two inputs, all unmarked elements and marked element at the i-th place is
same for the algorithm. This means the algorithm doesn’t work for a particular input, a contradiction.

A slightly more detailed argument can prove that a randomized algorithm will take Ω(n) queries. What
about a quantum algorithm? We know Grover search can do better, O(

√
n).

Why can’t we make Grover’s algorithm faster than O(
√
n)?

Remember that we defined two states in Grover’s algorithm, state |M⟩ = |x0⟩ (marked state) and
|U⟩ = 1√

2n−1

∑
x ̸=x0 |x⟩ (equal superposition over unmarked states). The first approach could be to say that

if we start with a state close to |U⟩, a query can only move the vector a small distance (or make a small
rotation). Ultimately we should end up in state |M⟩, which is very far away from |U⟩. So lot of queries are
required.

The problem with this argument is, the algorithm doesn’t need to start with something close to |U⟩. On
the other hand, a priori, algorithm doesn’t know which element is marked. We want to use the fact (like
the argument against a deterministic algorithm) that the algorithm works on all inputs. Since the algorithm
should work for all oracles Ox, we should be able to pick an Ox where x is far from the starting state of the
algorithm. In other words, whatever be the starting state of the algorithm, there should exist some marked
x such that the marked state is far from the starting state.

We will restrict our attention to input x’s with Hamming weight 1. In other words, x can be identified
with the index where it is 1. The following argument shows that any algorithm which finds x (or the index
where it is 1) using Ox, with high probability, will use at least O(

√
n) queries.

Note 1. The following argument shows that any algorithm which returns the correct answer on every input
of Hamming weight at most 1 will take at least O(

√
n) queries. Grover accomplishes much more; it works

for all inputs (even when Hamming weight is bigger than 1).

A generic algorithm in the query framework:

Let us see how a generic algorithm progresses in this framework of queries from an oracle. Any generic
algorithm will start with a state |ψ⟩ and apply unitaries (independent of input) and oracle (dependent on
input) one after another. If there are l oracle queries, the final state can be written as,

|ψx
l ⟩ = UlOxUl−1Ox · · ·U1Ox|ψ⟩.

Exercise 1. Why is this the most general form of a quantum algorithm?

If there was no oracle then the state would have been,

|ψl⟩ = UlUl−1 · · ·U1|ψ⟩.

The idea for the lower bound of Ω(
√
n):

The idea of the lower bound is (assuming we have done only a small number of queries),

– If the algorithm succeeds with high probability, then for all x, the state |ψx
l ⟩ should be close to |x⟩. Since

the state |ψl⟩ cannot be close to many |x⟩’s, the state |ψl⟩ and |ψx
l ⟩, for almost all x’s, should be far.

– The state |ψl⟩ and |ψx
l ⟩, for almost all x’s, should be close as we have done only small number of queries.

Notice that they are same for l = 0.

Hence, we arrive at the contradiction. It is important that we consider all x’s, otherwise the argument
will not work.

To prove it formally, consider the potential function,

Φl =
∑

x:|x|=1

∥ψx
l − ψl∥2.

Notice that the summation is over x’s whose Hamming weight is only 1, there are only n such x’s.
Suppose a successful algorithm takes L queries, the lower bound will follow from two parts,

– ΦL ≥ O(n), since algorithm succeeds with probability ≥ 1/2.
– After l queries, Φl ≤ 4l2 (since one query can’t change Φl by a large amount).

Exercise 2. Show that the lower bound follows from the two parts.

Exercise 3. Read about Cauchy-Schwarz inequality.

1.1 ΦL ≥ O(n)

We know that,

ΦL =
∑
x

∥ψx
L − ψL∥2.

The idea is, ψx
L is close to x, so many ψx

L’s will be far from ψL, making ΦL big.
First, we will deal with a simpler situation, assume ψx

L = x. The following lemma just relies on the fact
that ψL is a constant vector (does not depend on x).

Lemma 1. For any unit vector |ψ⟩,∑
x

∥x− ψ∥2 ≥ 2n− 2
√
n = O(n).

2

Proof. First we will write |ψ⟩ in the basis of x,

|ψ⟩ =
∑
x

ax|x⟩.

Here
∑

x |ax|
2
= 1. Then looking at the concerned quantity,

∑
x

∥x− ψ∥2 =
∑
x

∑
y ̸=x

|ay|2 + |1− ax|2
 .

Simplifying, ∑
x

∥x− ψ∥2 = (n− 1) +
∑
x

|1− ax|2 ≥ 2n− 2
∑
x

|ax|.

Applying Cauchy-Schwarz on the last term, we get the required result.

Exercise 4. Prove that,
∑

x |ax| ≤
√
n.

Now we generalize: even if ψx
L is close to x (and not exactly x as in Lem. 1), we will show that ΦL is

O(n). Similar to the style of previous proof, let ψL be equal to
∑

x αx|x⟩.

Exercise 5. Show that there are at most 2 indices x, such that, |αx| ≥ 1/
√
2.

If there are any such x’s, we ignore them while calculating ΦL (still the proof below will work). So, we
can safely assume |αx| ≤ 1/

√
2.

We also know that ψx
L gives x with probability at least 1/2. This means, the projection of ψx

L on |x⟩
should be at least 1/

√
2. Let (ψx

L)y denote the projection of ψx
L on y.

Then, looking at the expression for ΦL,

ΦL =
∑
x

∥ψx
L − ψ∥2 =

∑
x

∑
y ̸=x

|(ψx
L)y − αy|2 + |(ψx

L)x − αx|2
 .

We use the assumptions: |αx| ≤ 1/
√
2 and (ψx

L)x ≥ 1/
√
2.

∑
x

∥ψx
L − ψ∥2 ≥

∑
x

∑
y ̸=x

|(ψx
L)y − αy|2 +

∣∣∣1/√2− αx

∣∣∣2
 .

Simplifying, ∑
x

∥x− ψ∥2 ≥
∑
x

∣∣∣1/√2− αx

∣∣∣2 = O(n)− 2
∑
x

|αx|.

(Follows because the number of x’s are at least n− 2).

Apply Cauchy-Schwarz on the last term (
∑

x |αx|2 ≤ 1),

ΦL ≥ O(n)−O(
√
n) ≥ O(n).

3

1.2 Φl ≤ 4l2

Now, we need to prove that Φl does not increase much after the application of a query. We will prove this
by induction on l, note that Φ0 = 0.

We will express Φl+1 in terms of Φl (notice that a unitary does not change the distance between two
vectors),

Φl+1 =
∑
x

∥Oxψ
x
l − ψl∥2

=
∑
x

∥Oxψ
x
l −Oxψl +Oxψl − ψl∥2

≤
∑
x

(
∥Ox(ψ

x
l − ψl)∥2 + 2∥Ox(ψ

x
l − ψl)∥∥(Ox − I)ψl∥+ ∥(Ox − I)ψl∥2

)

≤ 4l2 + 4l

√√√√(∑
x

∥(Ox − I)ψl∥2
)

+
∑
x

∥(Ox − I)ψl∥2 (using Cauchy-Schwarz).

(1)

The quantity
∑

x ∥(Ox − I)ψl∥2 can be upper bounded because ψl is a fixed vector. Thinking of x as an

index, Ox puts a negative sign in front of the amplitude of x. We get,
∑

x ∥(Ox − I)ψl∥2 = 4
(∑

x |⟨x|ψl⟩|2
)
.

Substituting in the previous equation,

Φl+1 ≤ 4l2 + 8l

√√√√(∑
x

|⟨x|ψl⟩|2
)

+ 4
∑
x

|⟨x|ψl⟩|2.

The sum
(∑

x |⟨x|ψl⟩|2
)
is 1, so

Φl+1 ≤ 4l2 + 8l + 4 ≤ 4(l + 1)2.

Exercise 6. Make sure that you can prove every part of the argument above.

2 Quantum query complexity

The decision problem of search, whether there is a marked element or not, can be thought of as computing
the boolean OR function.

Exercise 7. Convince yourself that this is the case. Notice that name of elements is not important, only if
they are marked or not.

The search problem can be posed as, given an input x ∈ {0, 1}n, find if there is a 1 or not. We are given
an oracle which gives xi on input i. The number of queries needed to compute OR of x, is called the query
complexity of OR.

This question can be posed for different functions too, like parity or majority of bits. In general, given
a function f : {0, 1}n → {0, 1} and an oracle to query the input, query complexity of f is the minimum
number of queries required to compute f in the bounded error setting. In other words, it is the number of
queries used in the worst case by the best algorithm for f . Query complexity is important because it is a
good substitute of time complexity in many cases.

The decision problem for search (OR) might seem simple, but we will show below that even this requires
O(

√
n) queries. In the process, polynomial method will be introduced, one of the main techniques to lower

bound the query complexity of a general function f . The other technique, adversary method, is given as
extra reading.

4

From Grover search and the lower bound through polynomial method, the query complexity of OR is
Θ(

√
n).

Query complexity framework: Let us look at the query complexity framework more formally. We are
interested in computing a function f : {0, 1}n → {0, 1} on a quantum computer. Unlike the classical case,
input is hidden using an oracle: Ox on input i gives the i-th bit xi.

An algorithm A computes f with bounded error iff it gives the correct answer with probability more than
2/3. The algorithm applies oracle queries and unitaries (independent of the input) in succession. The query
complexity of A is the number of queries required by A on the worst input.

The query complexity of f , Qϵ(f), is the query complexity of the best algorithm.

Qϵ(f) = min
A

max
x∈{0,1}n

(number of queries used by A on input x).

Here, minimum is taken over all A’s which can compute f in the bounded error setting.

2.1 Polynomial method

Polynomial method is the first lower bounding technique for query complexity, i.e., it allows us to prove
statements like:

“ Any algorithm which computes f (bounded error setting) should make Ω(·) number of queries.”
The main idea behind polynomial method is, the amplitudes of the final state in a t-query algorithm are

polynomials of input variables (x1, x2, · · · , xn) with degree at most t. Before we prove the main idea, let us
see, how it implies a lower bound on the query complexity.

Since we are considering decision problems, the final stage of a quantum algorithm will make a mea-
surement on the final state. Some of the basis states (of measurement) will be accepting states. If the
measurement falls in the accepting states, algorithm outputs 1, otherwise 0. The probability of being in the
accepting states is a polynomial of degree at most 2t using the main idea.

Exercise 8. Prove the above statement.

Let pA(x) denote the probability of acceptance of x under an algorithm A. Remember that it is a
polynomial with degree less than 2t. If A computes f then,

– pA(x) ≥ 2/3 if f(x) = 1,
– pA(x) ≤ 1/3 if f(x) = 0.

Intuitively, pA(x) is close to f(x) for all inputs x. In other words, pAapproximates the function f very
nicely. Mathematicians have looked at many different notions of approximating a function f . It is a well
studied field in mathematics. Let us take a look at the definition of our interest.

A polynomial p approximates f iff |f(x)− p(x)| ≤ 1/3 for all x. The smallest degree of a polynomial p

which approximates f is called the approximate degree of f . It is denoted by d̃eg(f).

Exercise 9. Why are we taking smallest degree?

Again, this field has been studied in detail and we already have many bounds and techniques on ap-
proximate degrees of different f . For instance, it is known that OR on n variables has approximate degree√
n.
From this definition of approximation, it is clear that pA(x) approximates f and has degree at most 2t.

So, 2t should be bigger than d̃eg(f). That means, d̃eg(f)/2 is a lower bound on the query complexity of f .

Theorem 1. The quantum query complexity of a function f is lower bounded by its approximate degree.

Qϵ(f) = Ω(d̃eg(f))

Applying this theorem to OR, we can show that the query complexity of OR is Ω(
√
n).

5

Proof of the main idea. We want to show that the amplitude of any state, after t queries in an algorithm,
is a polynomial of degree at most t in variables x1, x2, · · · , xn. Initially, with 0 queries, the state |ψ⟩ is
independent of x and hence every amplitude is a 0 degree polynomial.

Remember that the state after t queries can be written as,

|ψx
t ⟩ = UtOxUl−1Ox · · ·U1Ox|ψ⟩.

Since a unitary is a fixed linear operator, it does not increase the degree of polynomials representing ampli-
tudes (Why?).

Proof follows by induction, by showing that after each query the degree of the polynomial representing
amplitude can increase by at most 1 (and amplitudes still remains a polynomial). We know the action of the
oracle,

Ox|i, b, z⟩ = |i, b⊕ xi, z⟩,
where z is a basis state of the workspace.

A simple manipulation gives,

Ox|i, b, z⟩ = xi|i, b̄, z⟩+ (1− xi)|i, b, z⟩.

So, a query can only increase the degree of the polynomial representing amplitudes by 1. This finishes
the proof of the main idea.

Exercise 10. Is this increase necessary?

2.2 Extra reading: Adversary method

The proof for optimality of Grover search can be thought of as an argument between the algorithm and an
adversary. The algorithm claims that it can solve OR with less than

√
n queries.

The adversary picks pairs of input which have different output and says that the algorithm should produce
lot of difference (the potential function) between these pairs of input. But one query can’t produce much
difference. So summing up, o(

√
n) queries won’t be able to produce required difference.

For the case of OR function the input pairs were 0, x, where 0 is all 0 string and x is a string with exactly
one 1.

We will see a generic form of this Adversary method. It is very important to come up with these pairs of
inputs where function value differs.

Suppose we want to give a lower bound on the query complexity of a function f : {0, 1}n → {0, 1}. To
encode the input pairs, we will keep a matrix W with rows and columns indexed by inputs x. W (x, y) gives
a non-negative weight to the input pair we are considering, with W (x, y) = 0 if f(x) = f(y).

Suppose the state of the algorithm after l queries to input x is |ψx
l ⟩. We will define the potential function

in a very similar way as before,

Φl =
∑
x,y

Wx,yβxβy⟨ψx
l |ψ

y
l ⟩,

where β is the eigenvector corresponding to the maximum eigenvalue (absolute value).

Total change in Φl Again we know that Φ0 =
∑

x,yWx,yβxβy.

Exercise 11. Prove that Φ0 = ∥W∥.

Say the algorithm takes t queries. If the algorithm succeeds with probability ϵ, then |ψx
l ⟩ will be close to

|f(x)⟩, maximum angle θ such that sin2 θ = ϵ. Similarly |ψy
l ⟩ will be close to |f(y)⟩. If f(x) ̸= f(y) then |ψy

l ⟩
will be at least at an angle of π/2− 2θ with |ψx

l ⟩. Hence,

⟨ψx
l |ψ

y
l ⟩ ≤ 2

√
ϵ(1− ϵ).

6

Exercise 12. Formally prove the argument in the paragraph above.

So the total change in Φl is Ω(∥W∥). We will upper bound the change because of every query and hence
prove a lower bound on the number of queries.

Change through one query After l + 1 queries the state on input x is Ul+1Ox|ψx
l ⟩. Where Ul+1 is

independent of input x. So,

Φl+1 − Φl ≤
∑
x,y

Wx,yβxβy|⟨ψx
l |ψ

y
l ⟩ − ⟨Oxψ

x
l |Oyψ

y
l ⟩|. (2)

The term in the summation can be simplified to,

|⟨ψy
l |OyOx − I|ψx

l ⟩| ≤
∑

i:xi ̸=yi

2|αx,i||αy,i|.

Here αx,i is the amplitude of |i⟩ in |ψx
l ⟩, so

∑
i |αx,i|2 = 1.

From Eq. 2,

Φl+1 − Φl ≤
∑
x,y

2Wx,yβxβy
∑

i:xi ̸=yi

|αx,iαy,i|.

For convenience, define a matrix ∆i of the same dimensions as W , s.t., ∆i(x, y) is 1 if xi ̸= yi and 0
otherwise. So,

Φl+1 − Φl ≤ 2
∑
x,y

∑
i

(W ◦∆i)x,yβxβy|αx,iαy,i|.

Here, W ◦∆i denotes the matrix obtained by taking entry-wise multiplication of W and ∆i.
Again, say vi is a vector indexed by x, s.t., vi(x) = βx|αx,i|.
The change in potential can be bounded as,

Φl+1 − Φl ≤ 2
∑
x,y

∑
i

(W ◦∆i)x,yvi(x)vi(y)

= 2
∑
i

∑
x,y

(W ◦∆i)x,yvi(x)vi(y)

≤ 2
∑
i

∥W ◦∆i∥∥vi∥2

≤ 2max
i

∥W ◦∆i∥

(3)

The last equation is true because
∑

i ∥vi∥
2
= 1.

Exercise 13. Prove that
∑

i ∥vi∥
2
= 1.

From Sec. 2.2 and the bound on change through every query, we get the following theorem.

Theorem 2. Given a function f : {0, 1}n → {0, 1} and a 2n × 2n matrix W (positive entry-wise), such that
Wx,y = 0 if f(x) = f(y). The query complexity of f is,

Ω

(
∥W∥

maxi ∥W ◦∆i∥

)
.

To give a lower bound, we need to come up with a good W . Generally the idea is to put more weight on
pairs which differ on small number of bits but there function value is different. You can prove a lower bound
on OR using this theorem, the weight on input pairs can be figured out by the proof of optimality of Grover
search. This is given as an exercise in the assignment.

7

3 Assignment

Exercise 14. Prove that the query complexity of OR is Ω(
√
n) using Thm. 2.

Exercise 15. What is the approximate degree of f : [n] → 0, 1, where f is 0 if and only if input is odd.

Exercise 16. Construct a polynomial which exactly represents a function f : {0, 1}n → R.

References

8

	Lecture 13: Query complexity

