
Lecture 10: Factorization on a quantum computer

Rajat Mittal

IIT Kanpur

We have already seen examples of HSP’s and saw that they can be solved on a finite Abelian group.
Shor’s algorithm for integer factorization is one of the leading results in the field of quantum computing; it
works by noticing that factorization can be reduced to order finding. The second observation is that order
finding is an HSP over Z (Abelian but not a finite group), still the HSP algorithm can be modified to work
for Z. We will see both steps, reduction to order finding and then quantum algorithm for order finding.

1 Reduction of factorization to order finding

We will introduce the two problems first.

Factorization: As one would guess, the problem is to find a non-trivial factor of a composite number n.
Notice that the input size is log n and hence we are looking for algorithms which run in polylog(n) time.
Since the number of factors are at most log n, we can find all factors of n by applying this algorithm at most
log n times.

Order finding over a group G: Given an element g in a group G, find the order of g in G (smallest r, s.t.,
gr = 1). It turns out that order finding is an HSP over Z, you will prove this in the assignment.

Since group Z is not finite, the HSP algorithm needs to be modified slightly to solve order finding. In
section 2, the quantum algorithm for order finding will be described.

In this section, we will reduce the factorization of n to order-finding in the group Z∗
n. The group Z∗

n

denotes the set of all elements of Zn coprime to n with multiplication as operation. In other words, we are
just asking, given n and a (coprime to n), what it the smallest r such that ar = 1 mod n.

Exercise 1. What is the order of 2 in Z∗
7? What is its order in Z∗

16?

Notice a subtlety here, factorization reduces to order finding over Z∗
n (a finite group). Though, order

finding over a group (including Z∗
n) is same as solving HSP over Z (an infinite group).

Coming back to factorization, We will first get rid of the trivial cases. It can be easily checked if the
number is even or if n = mk (take the square root, cubic root etc. up to log n).

Exercise 2. How can we find square root (and other roots) efficiently?

This allows us to assume that the input to the factorization problem, n, is a number of type kk′, where k
and k′ are co-prime and odd. We are interested in finding a non-trivial factor of n (not 1 or n). As mentioned
earlier, we can repeat the procedure to find the complete factorization. The reduction shows that if we can
solve order finding on Z∗

n, then we can find a non-trivial factor of n (where n is of above type).
The basic idea of the reduction is to find a non-trivial square root b of 1, i.e.,

b : b2 = 1 mod n, b ̸= ±1 mod n

Look at the possible square roots of 1 mod n, i.e., b for which b2 = 1 mod n. Clearly there are two
trivial solutions, b = ±1 mod n. Though, if there exists a square root b ̸= ±1 mod n, then b2−1 is divisible
by n and b± 1 is not. In this case, gcd(b± 1, n) will give non-trivial factors of n.

The reduction from factorization to order-finding basically searches for such a non-trivial square root b.
The algorithm takes a random a < n and finds its order r. If r is even and ar/2 ̸= ±1 mod n, we have found
a non-trivial square root.

Check if n is even or of the form n = mk ;
Pick an a, s.t., gcd(a, n) = 1 (else we have already found a non-trivial factor of n) ;
for i = 1, · · · do

Find the order of a and call it r (use the quantum algorithm for order-finding) ;
if r is odd or ar/2 = −1 mod n then

Pick another a co-prime to n ;
else

Found b = ar/2 ̸= ±1 mod n, square root of 1 ;
Find the non-trivial factors from gcd(b± 1, n) ;
Break;

end
end

Algorithm 1: Algorithm for factorization using order-finding

Exercise 3. What if a is not in Z∗
n?

Exercise 4. Look at Algorithm 1, and convince yourself that it will output a non-trivial factor.

We are only left to prove that this algorithm works with high probability. That is equivalent to showing
that there are enough a’s such that,

– order r of a is even,
– and b = ar/2 ̸= ±1 mod n.

Exercise 5. Can it happen that ar/2 = 1 mod n?

Note 1. The quantum algorithm is a probabilistic algorithm, hence showing that there are enough good a’s
works.

Following theorem proves that there are enough good a’s. It follows from Chinese remaindering and
standard number theory arguments. A casual reader can directly skip to the algorithm for order finding.

Theorem 1. Suppose n is a product of two co-prime numbers k, k′ > 1. For a randomly chosen a, the
probability that a has an even order r and ar/2 ̸= −1 mod n is at least 1/4.

Before we prove the theorem, we will prove a lemma about numbers of the form q = pk. We introduce
the notation, pow2(z), the highest power of 2 that divides any number z. Let m := ϕ(q) denote the value of
Euler’s totient function on q, also the size of group Z∗

q .

Lemma 1. For a random element from Z∗
q , its order r satisfies pow2(r) = pow2(m) with probability exactly

1/2.

Proof. It is easy to calculate Euler function ϕ(q).

Exercise 6. Show, m = pk−1(p− 1).

Note 2. Read about Euler’s totient function ϕ, if you don’t know it.
Suppose l = pow2(m) (m is even and hence l ≥ 1). We need to show, for a random co-prime element to

q, exactly half of them have order r for which pow2(r) = l.
By theorem 2 in Sec. 1.1, Z×

q is cyclic. Let g be a generator of Z∗
q (smallest m, s.t., gm = 1 mod q).

We know that gt has order,

ord(gt) =
m

gcd(m, t)
.

If t is odd, then gcd(m, t) is odd and pow2(r) = l. Similarly, if t is even then gcd(m, t) is even and
pow2(r) < l. Since half the t’s are odd and half even, lemma follows.

2

Proof of Thm. 1. Now consider the prime factorization n = pi11 · · · piss . By Chinese remainder theorem,

Z∗
n
∼= Z∗

p
i1
1

× · · · × Z∗
pis
s
.

So, to randomly chose a, it is equivalent to pick random a1, · · · , as from the respective Z∗
pi ’s. Say, rj are

the orders of aj modulo p
ij
j . Then, r is the LCM of rj ’s by Chinese remainder theorem.

Claim. Suppose the order r of a is odd or ar/2 = −1 mod n. Then, pow2(rj) is same for all j.

Proof. The order is odd iff all rj ’s are odd. Otherwise, if ar/2 = −1 mod p
ij
j then none of rj divide r/2 (we

use the fact that pi’s are not 2).
All rj ’s divide r but not r/2, so pow2(rj) is the same (equal to pow2(r)).

From lemma 1, with half the probability, The order rj of aj will be such that pow2(rj) = lj (where

lj = pow2(p
ij−1
j (pj − 1))). Call the case when pow2(rj) = lj as the “first” case and other the “second” case.

We know that both cases happen with probability 1/2.
Notice that lj ’s only depend on n. If all lj are equal, pick a1’s from first case and a2’s from the second

case. If they are unequal, say l1 ̸= l2, then pick a1, a2 from the first case.
In either scenario, rj ’s can’t be all equal. Which implies r is even and a

r
2 ̸= 1 mod n (by claim). Since

we have only fixed at most 2 cases out of s, the probability is at least 1/4.

Hence the reduction from factorization to order finding is complete.

1.1 Extra reading: Zpk is cyclic

The proof of the following theorem is given for completeness. Interested readers can take a look.

Theorem 2. If n = pk for some power k of an odd prime p then G = Z×
n is cyclic.

Note 3. This is not true for even prime, Z×
8 is not cyclic.

Exercise 7. Find out where did we use the fact that p is odd.

Proof. Assume that t = pk−1(p− 1), the order of the group G.
We know that Z×

p is cyclic [2], and hence have a generator g. We will use g to come up with a generator
of G. First notice that,

(g + p)p−1 = gp−1 + (p− 1)gp−2p ̸= gp−1 mod p2.

So either (g+p)p−1 or gp−1 is not 1 mod p2. We can assume the latter case, otherwise replace g by g+p
in the argument below.

So gp−1 = 1 + k1p where p ∤ k1. So using binomial theorem,

gp(p−1) = (1 + k1p)
p = 1 + k2p

2,

where p ∤ k2.

Exercise 8. Continuing this process, show that,

gp
e−1(p−1) = 1 + kep

e,

with p ∤ ke.

From the previous exercise gt = 1 mod pk but gt/p ̸= 1 mod pk. The only possible order of g then is
pk−1d where d is a divisor of p− 1 (because the order has to divide t, Lagrange’s theorem).

If the order is pk−1d, then

gp
k−1d = 1 mod pk = 1 mod p.

But gp = g mod p (why?). That implies gd = 1 mod p. Since p− 1 is the order of g modulo p (g is the
generator), implies d = p− 1. Hence proved.

3

2 Order finding algorithm

You will prove in the assignment that order finding can be thought of as an HSP over Z. Since Z is
not finite (though abelian), we will solve it by a seemingly different technique (this perspective of fac-
toring algorithm is due to Kitaev). The explanation here is inspired from John Watrous’s course notes
(https://cs.uwaterloo.ca/ watrous/QC-notes/QC-notes.10.pdf). In assignment, you will show that this tech-
nique is very similar to solving HSP over a finite abelian group (also look at the circuit for order finding
given below). You can read about the usual approach (HSP based) from multiple sources, e.g., [3] and [1].

For factorization, we need to solve order finding over group Z∗
n. That means, given an a co-prime to n,

we need to find the smallest positive r for which ar = 1 mod n.

Note 4. Order finding is not an HSP over Z∗
n but on Z.

Let us take a look at the algorithm for order finding using phase estimation. Suppose, we are interested
in finding the order of a modulo n (a and n are given and they are coprime).

Exercise 9. How can we efficiently find if two numbers are coprime?

First approach:

Let k be the smallest number, such that, 2k ≥ n. Consider the Hilbert space C2k spanned by |b⟩, where
b ranges from 0 to 2k − 1. Define the unitary operator,

U |b⟩ = |ab mod n⟩ for b ∈ Z∗
n.

The unitary is not completely specified, but we are only interested in these basis states. The action on the
other basis states can be assumed to be identity.

Exercise 10. Show that it is a unitary operator because a is coprime to n. How can we implement this
unitary?

Since a has order r, it can be observed that Ur = I. From spectral decomposition, the eigenvalues of
U have to be rth roots of unity. In other words, possible eigenvalues of U are e2πi

s
r , where s is an integer

between 0 and r − 1. The following exercise explicitly finds the eigenvalues and eigenvectors of U .

Exercise 11. Show that |us⟩ is an eigenvector of U with the eigenvalue e2πi
s
r . Where,

|us⟩ =
1√
r

r−1∑
j=0

e2πij
s
r |aj mod n⟩.

This analysis seems to suggest a very simple algorithm given s and the eigenvector |us⟩. We can apply
phase estimation on the unitary U with state |us⟩. The output will be a good approximation of s

r , we

can get r from this information. Notice that the powers U2j can be implemented using repeated squaring.
Unfortunately, we don’t have state |us⟩ for any s.

Modified approach:

The idea would be to apply phase estimation on a superposition of eigenvectors. By linearity, we will
get a particular eigenvalue with probability according to the amplitude of the corresponding eigenvector in
superposition (we saw this in the phase estimation lecture). It turns out that the state |1⟩ (which we can
definitely prepare) can be written as a linear combination of these eigenvectors. In fact, it is an easy exercise
to prove that,

1√
r

r−1∑
s=0

|us⟩ = |1⟩.

4

Notice that even the amplitude on each eigenvector is same! We will apply phase estimation on |1⟩ for
unitary U ; we will get a good approximations of s

r , with equal probability for all s. How can we obtain r
from s

r?
We can repeat this phase estimation multiple times and obtain various approximations of s/r for different

s (all s occur with equal probability). These actually correspond to different characters trivial on the subgroup
rZ. As in all hidden subgroup problems, we need to find our subgroup from these characters. The strategy
for finite Abelian group will not work here.

Finishing the algorithm, classical part:

Our remaining task is to find r given multiple approximations to various s
r . The next insight is the

following theorem about continued fractions (for reference, look at [3]). It shows that given a good enough
approximation to an s

r , where s and r are coprime, there exist a continued fractions algorithm which can
recover s and r from this approximation.

Theorem 3 ([3]). Suppose s
r is a rational number in the lowest form (no common factor between s and r),

s.t., ∣∣∣s
r
− ϕ

∣∣∣ ≤ 1

2r2
.

If r < n, then s, r can be obtained in poly(L) time from ϕ, where L = ⌈log n⌉.

Note 5. The continued fractions algorithm is a very beautiful mathematical fact. Unfortunately, it will not
be covered in this course due to lack of time. To read more about the continued fractions algorithm, please
refer to [3] and references therein.

The consequence of continued fraction theorem is: if we get a good enough approximation of s/r (for an
s coprime to r), we can find r. Let us take care of these two issues.

Exercise 12. It will be helpful if you remember the details of phase estimation. Please take a look at the
notes for phase estimation.

– Precision: Since r ≤ n, it is sufficient to get an approximation which is 1
2n2 close. That means, we need

the first 2L+1 bits of phase to be correct (remember L = ⌈log n⌉). So, we need to run phase estimation
on 2L+ 1+ f(ϵ) qubits and it will give us phase with probability 1− ϵ (this follows from our discussion

on phase estimation). We can extend U to C22L+1

by trivial action on other basis states.

Exercise 13. Do you remember the definition of U? What was its action on basis states?

– Coprime s: Can you think of a way to find an s coprime to r? It will again be our usual trick, find lots of
s, one of them will be coprime to r. Prime number theorem states that the number of primes less than
n are around O(n

logn).

Exercise 14. Show that the number of s, co-prime to r, are at least O(1
L) fraction of total s using prime

number theorem.

If we have O(L) different s (picked randomly), with high probability one of them will be coprime to r.
Continued fraction algorithm on that s/r will give us the order r.

Exercise 15. Can you summarize the complete algorithm for factorization now? Try to draw a circuit for it.

Hence the order finding algorithm can be summed up as: repeat the phase estimation on U at least O(L)
times. The precision for phase estimation would be 2L + 1 + f(ϵ). The circuit for order finding is given in
Fig. 1.

5

Fig. 1. Order finding algorithm

3 Assignment

Exercise 16. Lemma 2. Given a positive number α, let there exists a sequence of rationals pn

qn
, such that,

|qnα− pn| ≠ 0 tends to zero. Then, α is irrational.
Prove the lemma by showing that if α = a/b then |qnα− pn| ≥ 1/b. Using the lemma, show that e is

irrational.

Exercise 17. We had claimed that order finding is an HSP.

– Show that gj ̸= gk if 0 ≤ j < k < r. Where r is the order of g.
– Show that order finding is an HSP in Z.

Exercise 18. Using Chinese remainder theorem, show that there exists a b, such that, b2 = 1 mod n and b ̸=
±1 mod n. Here n contains at least two distinct primes in its factorization.

Exercise 19. Why is the phase estimation algorithm for order finding, described above, is same as the HSP
algorithm.

Exercise 20. This exercise is kind of a sanity check on continued fractions algorithm. Show that there is no
other rational number s′

r′ , where r′ < r and ∣∣∣∣s′r′ − ϕ

∣∣∣∣ ≤ 1

2r2
.

References

1. A. Childs. Quantum algorithms, 2013.
2. R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 1997.
3. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge, 2010.

6

	Lecture 10: Factorization on a quantum computer

