IIT Kanpur

# Lecture 1: Introduction

Scribe: Anindya Ganguly Lecture: Rajat Mittal

October 22, 2021

### 1 Domain of a Boolean Functions

Domain of a Boolean functions is either  $\{-1, 1\}^n$  or  $\{0, 1\}^n$ . Till the date, we had visualized this as a Boolean hypercube. However, we do not thought it as an algebraic structure like group or field.

Definition of  $\mathbb{F}_2$ :  $\mathbb{F}_2 = \{0, 1\} \mod 2$  operation under addition and multiplication.

Definition of  $\mathbb{F}_2^n$ : It is a *n*-bit binary string. Note that, it is not a finite field. Since  $\mathbb{F}_2^n$  does not form an integral domain. However this forms a vector space. In this vector space constant are only 0, and 1.

The number of elements of  $\mathbb{F}_2^n$ -vector space is  $2^n$  and bases vectors are the standard bases vector. Dot product of any two vectors  $x = (x_i)_{i=1}^n$ ;  $x = (x_i)_{i=1}^n$  is defined as  $\sum_{i=1}^n x_i y_i \mod 2$ 

# 2 Subspaces in $\mathbb{F}_2^n$

Every subset of  $\mathbb{F}_2^n$  is not a subspace. For example, consider  $\{00\cdots 0, 10\cdots 0, 00\cdots 1\}$ . See some two non-identity element does not belongs to the set. The subset follows the axioms of subspace are known as subspace of  $\mathbb{F}_2^n$ . Trivially,  $\{(000\cdots 0)\}$  is a zero dimension subspace. See,  $S' = \{(000\cdots 0), \alpha\}$  is a dimension one subspace having two elements, where  $\alpha$  is any *n*-bit binary string. In the similar fashion we may conclude that a *k*-dimension has  $2^k$  elements. Since any vector *v* in this subspace can be written as  $\alpha = \sum_{i=1}^n \alpha_i v_i$ ; where  $(v_i)_{i=1}^n$  are basis vectors and  $\alpha_i$ 's are scalar. For details one may visit [2].

## **3** Orthogonal Complement

Let A be a subspace of  $\mathbb{F}_2^n$ . Then orthogonal complement of A is denoted by  $A^{\perp}$  and defined as set of all vectors for which dot product will vanish. Mathematically we can express it as

$$A^{\perp} = \{ \gamma \in \mathbb{F}_2^n : \gamma \cdot x \; \forall x \in A \}$$

It can be easily establish that  $A^{\perp}$  is a subspace of  $\mathbb{F}_2^n$ . To prove the statement take any two vectors  $\alpha, \beta$  from  $A^{\perp}$ . Then  $(c\alpha + \beta) \cdot x = c\alpha \cdot x + \beta \cdot x = 0$ . This shows that  $c\alpha + \beta \in A^{\perp}$ .

Assume that, dimension of the subspace A is k, then dimension of  $A^{\perp}$  is n - k. Therefore,  $A^{\perp}$  has  $2^{n-k}$  elements. So the mathematical formula for dimension of  $A^{\perp}$  = dimension of vector space – dimension of subspace A.Right now we are interested in  $(A^{\perp})^{\perp}$ . Surprisingly,  $(A^{\perp})^{\perp} = A$ .

Proof:

\* 
$$A \subseteq (A^{\perp})^{\perp}$$
: Let  $w \in A$ , then  $\langle w, v \rangle = 0 \ \forall v \in A^{\perp}$ . Hence  $w \in (A^{\perp})^{\perp}$ .

\* To complete the proof we use dim  $A + \dim A^{\perp} = n$ . It is enough to show that dim  $A = \dim (A^{\perp})^{\perp}$ .

dim 
$$(A^{\perp})^{\perp} = n - \dim A^{\perp} = n - (n - \dim A) = \dim A$$

Hence we have establish the fact.

#### Subcube of $\mathbb{F}_2^n$

This concept is coming from our intuition of hypercube.

Definition: Set of inputs where certain co-ordinates are fixed. For example,  $\{000, 100\}$  is a subcube of  $\mathbb{F}_2^n$ . See here we are assign  $x_2 = 0$ ;  $x_3 = 0$ . Now if we fix k-variables out of n, then size of subcube is  $2^{n-k}$ . Set of the inputs in decision tree is a good example for subcube.

Next genuine question comes in our mind is *Is every subcube is a subspace?* The answer is no. Also, a subspace need not be a subcube. For example take  $\{00 \cdots 0, 11 \cdots 1\}$ . Clearly it is a subspace, but it is not a subcube. Because it can not possible to set any subset of variable such that only two elements get a subspace.

#### Affine Subspace

The only subspace of  $\mathbb{R}^2$  are line passing through the origin. However, any line passing parallel to these also a kind of subspace. This can be thought as translation of subspaces. Such subspaces are known as *affine* subspaces. Therefore, the mathematical definition for an affine subspace A is

$$A = H + a = \{x + a : x \in H\}$$

where H is a known subspace and a is the translation. Note that, affine subspace are not in general forms a



Figure 1: Affine Subspace (red line)

subspace. However subcube is an affine subspace. Now we give an example which is an affine subspace but not a subspace and not a subcube. Consider the subspace  $H = \{00 \cdots 0, 11 \cdots 1\}$  along with the translation  $a = 1010 \cdots 01$ . Then,

$$H + a = \{101010 \cdots 01, \ 010101 \cdots 0\}.$$

This H+a does not form a subspace and also does not form a subcube. The relation between affine subspace, subcube and subspace reflects on the diagram.



Figure 2: Relation between subcube subspace and affine subspace

#### **Parities**

Now we define paritie in different way.

$$\chi_S(x) = \prod_{i \in S} x_i$$

Let say  $\gamma$  be the indicator of the subset S. Take an example: n = 5, and  $S = \{x_1, x_2, x_3\}$  then  $\gamma = 11010$ is the indicator variable. It is obvious to index the Fourier characters  $\chi_S : \mathbb{F}_2^n \to \{-1, 1\}$  not by subsets  $S \subseteq [n]$  but by their 0-1 indicator vectors  $v \in \mathbb{F}_2^n$ ; hence

$$\chi_{\gamma}(x) = (-1)^{\gamma \cdot x}$$

where the dot product is performed in  $\mathbb{F}_2^n$ . We are looking to the value of  $\chi_\beta \chi_\gamma$ ; where  $S_\beta$ , and  $S_\gamma$  are subsets corresponding to  $\beta$  and  $\gamma$ . Then

$$\chi_{\beta}\chi_{\gamma} = \chi_{\beta+\gamma} \quad \forall \beta, \ \gamma$$

where  $S_{\beta\Delta\gamma}$  is the set corresponding to  $\beta + \gamma$ .

We know that the characters form a group under multiplication, this group isomorphic to the group  $\mathbb{F}_2^n$ under multiplication. To avoid confusion let define this group as  $\widehat{\mathbb{F}_2^n}$ . Next write the Fourier expression of  $f: \mathbb{F}_2^n \to \mathbb{R}$  as:

$$f(x) = \sum_{\gamma \in \widehat{\mathbb{F}_2^n}} \widehat{f}(\gamma) \chi_{\gamma}(x)$$

The Fourier transform of f is visualized as a  $\hat{f}: \widehat{\mathbb{F}_2^n} \to \mathbb{R}$ . It is possible to measure its complexity with 2-norms.

$$\hat{\|}f\hat{\|}_2 = \|\hat{f}\|_2^2 = \sum_{\gamma \in \widehat{\mathbb{F}_2^n}} (\hat{f}(\gamma))^2.$$

It is the Parseval's identity. Now we focused on  $\|f\|_1$ .

$$\|\hat{f}\|_1 = \sum_{\gamma} |\hat{f}(\gamma)|.$$

Clearly this value is always greater than or equal to 1. Question is how big it will or can we bound it using some inequality. Take a help from Cauchy-Schwarz inequality

$$\sum_{\gamma} |\hat{f}(\gamma)| \ge \sqrt{2^n}$$

#### Indicator function for a subspace

Recall our subspace A of  $\mathbb{F}_2^n$ . Now indicator function for a subspace is  $\mathbf{1}_A : \mathbb{F}_2^n \to \{0, 1\}$  and it is defined as

$$\mathbf{1}_{A} \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$
(1)

Remark: Since  $A = (A^{\perp})^{\perp}$ , so  $x \in A$  iff  $\gamma \cdot x \quad \forall x \in A^{\perp}$ .

Fourier expression for the indicator function  $\mathbf{1}_A$  is expressed as

$$\mathbf{1}_A = \frac{1}{2^k} \sum_{\gamma \in A^\perp} x_\gamma,$$

where k is the dimension of  $A^{\perp}$ , that is the co-dimension of A.

Aim is to establish this expression correctly represent  $\mathbf{1}_A$ . That is if  $x \in A$ , then  $\mathbf{1}_A = 1$  otherwise  $\mathbf{1}_A = 0$ .  $1 \in A \Rightarrow \chi_{*}(x) = (-1)^{\gamma \cdot x} = 1$  (because  $\gamma \cdot x = 0$   $\forall \gamma$ )

$$\begin{split} \mathbf{l} \in A \Rightarrow \ \chi_{\gamma}(x) &= (-1)^{\gamma \cdot x} = 1 \ (\text{ because } \gamma \cdot x = 0 \ \forall \gamma \ ) \\ \chi_{\gamma}(x) &= 1 \ \forall \gamma \in A^{\perp} \\ \Rightarrow \mathbf{1}_{A} &= \frac{1}{2k} \cdot 2^{k} = 1 \end{split}$$

Now  $x \notin A \Rightarrow$  there exist  $\gamma \in A^{\perp}$  such that  $\gamma \cdot x = 1$ 

$$A^{\perp} = \cup_y \ (y, y + \gamma)$$

$$\mathbf{1}_{A}(x) = \frac{1}{2^{k}} \sum_{\gamma \in A^{\perp}} \chi_{\gamma} = \frac{1}{2^{k}} \left[ \sum_{y} \chi_{y}(x) + \sum_{y} \chi_{y+\gamma}(x) \right]$$
$$= \frac{1}{2^{k}} \left[ (-1)^{y \cdot x} + (-1)^{y \cdot x + x \cdot \gamma} \right] = 0$$

Hence the result.

Acknowledgement Thanks to the [1].

# References

- [1] O'Donnell, Ryan. Analysis of boolean functions. Cambridge University Press, 2014.
- [2] Strang, Gilbert, et al. Introduction to linear algebra. Vol. 3. Wellesley, MA: Wellesley-Cambridge Press, 1993.