IIT Kanpur

Lecture 1: Introduction

Scribe: Anindya Ganguly Lecture: Rajat Mittal

October 22, 2021

1 Domain of a Boolean Functions

Domain of a Boolean functions is either $\{-1,1\}^{n}$ or $\{0,1\}^{n}$. Till the date, we had visualized this as a Boolean hypercube. However, we do not thought it as an algebraic structure like group or field.

Definition of $\mathbb{F}_{2}: \mathbb{F}_{2}=\{0,1\} \bmod 2$ operation under addition and multiplication.
Definition of \mathbb{F}_{2}^{n} : It is a n-bit binary string. Note that, it is not a finite field. Since \mathbb{F}_{2}^{n} does not form an integral domain. However this forms a vector space. In this vector space constant are only 0 , and 1.

The number of elements of \mathbb{F}_{2}^{n}-vector space is 2^{n} and bases vectors are the standard bases vector. Dot product of any two vectors $x=\left(x_{i}\right)_{i=1}^{n} ; x=\left(x_{i}\right)_{i=1}^{n}$ is defined as $\sum_{i=1}^{n} x_{i} y_{i} \bmod 2$

2 Subspaces in \mathbb{F}_{2}^{n}

Every subset of \mathbb{F}_{2}^{n} is not a subspace. For example, consider $\{00 \cdots 0,10 \cdots 0,00 \cdots 1\}$. See some two non-identity element does not belongs to the set. The subset follows the axioms of subspace are known as subspace of \mathbb{F}_{2}^{n}. Trivially, $\{(000 \cdots 0)\}$ is a zero dimension subspace. See, $S^{\prime}=\{(000 \cdots 0), \alpha\}$ is a dimension one subspace having two elements, where α is any n-bit binary string. In the similar fashion we may conclude that a k-dimension has 2^{k} elements. Since any vector v in this subspace can be written as $\alpha=\sum_{i=1}^{n} \alpha_{i} v_{i}$; where $\left(v_{i}\right)_{i=1}^{n}$ are basis vectors and α_{i} 's are scalar. For details one may visit [2].

3 Orthogonal Complement

Let A be a subspace of \mathbb{F}_{2}^{n}. Then orthogonal complement of A is denoted by A^{\perp} and defined as set of all vectors for which dot product will vanish. Mathematically we can express it as

$$
A^{\perp}=\left\{\gamma \in \mathbb{F}_{2}^{n}: \gamma \cdot x \quad \forall x \in A\right\}
$$

It can be easily establish that A^{\perp} is a subspace of \mathbb{F}_{2}^{n}. To prove the statement take any two vectors α, β from A^{\perp}. Then $(c \alpha+\beta) \cdot x=c \alpha \cdot x+\beta \cdot x=0$. This shows that $c \alpha+\beta \in A^{\perp}$.

Assume that, dimension of the subspace A is k, then dimension of A^{\perp} is $n-k$. Therefore, A^{\perp} has 2^{n-k} elements. So the mathematical formula for dimension of $A^{\perp}=$ dimension of vector space - dimension of subspace A.Right now we are interested in $\left(A^{\perp}\right)^{\perp}$. Surprisingly, $\left(A^{\perp}\right)^{\perp}=A$.

Proof:

* $A \subseteq\left(A^{\perp}\right)^{\perp}$: Let $w \in A$, then $\langle w, v\rangle=0 \forall v \in A^{\perp}$. Hence $w \in\left(A^{\perp}\right)^{\perp}$.
* To complete the proof we use $\operatorname{dim} A+\operatorname{dim} A^{\perp}=n$. It is enough to show that $\operatorname{dim} A=\operatorname{dim}\left(A^{\perp}\right)^{\perp}$.

$$
\operatorname{dim}\left(A^{\perp}\right)^{\perp}=n-\operatorname{dim} A^{\perp}=n-(n-\operatorname{dim} A)=\operatorname{dim} A
$$

Hence we have establish the fact.

Subcube of \mathbb{F}_{2}^{n}

This concept is coming from our intuition of hypercube.
Definition: Set of inputs where certain co-ordinates are fixed. For example, $\{000,100\}$ is a subcube of \mathbb{F}_{2}^{n}. See here we are assign $x_{2}=0 ; x_{3}=0$. Now if we fix k-variables out of n, then size of subcube is 2^{n-k}. Set of the inputs in decision tree is a good example for subcube.

Next genuine question comes in our mind is Is every subcube is a subspace? The answer is no. Also, a subspace need not be a subcube. For example take $\{00 \cdots 0,11 \cdots 1\}$. Clearly it is a subspace, but it is not a subcube. Because it can not possible to set any subset of variable such that only two elements get a subspace.

Affine Subspace

The only subspace of \mathbb{R}^{2} are line passing through the origin. However, any line passing parallel to these also a kind of subspace. This can be thought as translation of subspaces. Such subspaces are known as affine subspaces. Therefore, the mathematical definition for an affine subsapce A is

$$
A=H+a=\{x+a: x \in H\}
$$

where H is a known subspace and a is the translation. Note that, affine subspace are not in general forms a

Figure 1: Affine Subspace (red line)
subspace. However subcube is an affine subspace. Now we give an example which is an affine subspace but not a subspace and not a subcube. Consider the subspace $H=\{00 \cdots 0,11 \cdots 1\}$ along with the translation $a=1010 \cdots 01$. Then,

$$
H+a=\{101010 \cdots 01,010101 \cdots 0\}
$$

This $H+a$ does not form a subspace and also does not form a subcube. The relation between affine subspace, subcube and subspace reflects on the diagram.

Figure 2: Relation between subcube subspace and affine subspace

Parities

Now we define paritie in different way.

$$
\chi_{S}(x)=\Pi_{i \in S} x_{i}
$$

Let say γ be the indicator of the subset S. Take an example: $n=5$, and $S=\left\{x_{1}, x_{2}, x_{3}\right\}$ then $\gamma=11010$ is the indicator variable. It is obvious to index the Fourier characters $\chi_{S}: \mathbb{F}_{2}^{n} \rightarrow\{-1,1\}$ not by subsets $S \subseteq[n]$ but by their 0-1 indicator vectors $v \in \mathbb{F}_{2}^{n}$; hence

$$
\chi_{\gamma}(x)=(-1)^{\gamma \cdot x}
$$

where the dot product is performed in \mathbb{F}_{2}^{n}. We are looking to the value of $\chi_{\beta} \chi_{\gamma}$; where S_{β}, and S_{γ} are subsets corresponding to β and γ. Then

$$
\chi_{\beta} \chi_{\gamma}=\chi_{\beta+\gamma} \quad \forall \beta, \gamma
$$

where $S_{\beta \Delta \gamma}$ is the set corresponding to $\beta+\gamma$.
We know that the characters form a group under multiplication, this group isomorphic to the group \mathbb{F}_{2}^{n} under multiplication. To avoid confusion let define this group as $\widehat{\mathbb{F}_{2}^{n}}$. Next write the Fourier expression of $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$ as:

$$
f(x)=\sum_{\gamma \in \widehat{\mathbb{F}_{2}^{n}}} \hat{f}(\gamma) \chi_{\gamma}(x)
$$

The Fourier transform of f is visualized as a $\hat{f}: \widehat{\mathbb{F}_{2}^{n}} \rightarrow \mathbb{R}$. It is possible to measure its complexity with 2-norms.

$$
\hat{\| f} f \hat{\|}_{2}=\|\hat{f}\|_{2}^{2}=\sum_{\gamma \in \widehat{\mathbb{F}_{2}^{n}}}(\hat{f}(\gamma))^{2}
$$

It is the Parseval's identity. Now we focused on $\| f \hat{\|}_{1}$.

$$
\hat{\|} f \hat{\|}_{1}=\sum_{\gamma}|\hat{f}(\gamma)|
$$

Clearly this value is always greater than or equal to 1 . Question is how big it will or can we bound it using some inequality. Take a help from Cauchy-Schwarz inequality

$$
\sum_{\gamma}|\hat{f}(\gamma)| \geq \sqrt{2^{n}}
$$

Indicator function for a subspace

Recall our subspace A of \mathbb{F}_{2}^{n}. Now indicator function for a subspace is $\mathbf{1}_{A}: \mathbb{F}_{2}^{n} \rightarrow\{0,1\}$ and it is defined as

$$
\mathbf{1}_{A} \begin{cases}1 & \text { if } x \in A \tag{1}\\ 0 & \text { if } x \notin A\end{cases}
$$

Remark: Since $A=\left(A^{\perp}\right)^{\perp}$, so $x \in A$ iff $\gamma \cdot x \quad \forall x \in A^{\perp}$.
Fourier expression for the indicator function $\mathbf{1}_{A}$ is expressed as

$$
\mathbf{1}_{A}=\frac{1}{2^{k}} \sum_{\gamma \in A^{\perp}} x_{\gamma},
$$

where k is the dimension of A^{\perp}, that is the co-dimension of A.
Aim is to establish this expression correctly represent $\mathbf{1}_{A}$. That is if $x \in A$, then $\mathbf{1}_{A}=1$ otherwise $\mathbf{1}_{A}=0$.

$$
\begin{aligned}
1 \in A \Rightarrow \chi_{\gamma}(x)= & (-1)^{\gamma \cdot x}=1(\text { because } \gamma \cdot x=0 \quad \forall \gamma) \\
& \chi_{\gamma}(x)=1 \quad \forall \gamma \in A^{\perp} \\
& \Rightarrow \mathbf{1}_{A}=\frac{1}{2^{k}} \cdot 2^{k}=1
\end{aligned}
$$

Now $x \notin A \Rightarrow$ there exist $\gamma \in A^{\perp}$ such that $\gamma \cdot x=1$

$$
\begin{gathered}
A^{\perp}=\cup_{y}(y, y+\gamma) \\
\mathbf{1}_{A}(x)=\frac{1}{2^{k}} \sum_{\gamma \in A^{\perp}} \chi_{\gamma}=\frac{1}{2^{k}}\left[\sum_{y} \chi_{y}(x)+\sum_{y} \chi_{y+\gamma}(x)\right] \\
=\frac{1}{2^{k}}\left[(-1)^{y \cdot x}+(-1)^{y \cdot x+x \cdot \gamma}\right]=0
\end{gathered}
$$

Hence the result.
Acknowledgement Thanks to the [1].

References

[1] O'Donnell, Ryan. Analysis of boolean functions. Cambridge University Press, 2014.
[2] Strang, Gilbert, et al. Introduction to linear algebra. Vol. 3. Wellesley, MA: Wellesley-Cambridge Press, 1993.

