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In the last lecture, we were introduced to the topic of an approximate polynomial of a Boolean function,
and approximate degree can be used to find lower bounds of quantum query complexity (Qε(f)). We have also
seen a method to lower bound approximate degree of symmetric functions using symmetrization and forming

a univariate polynomial, using which we derived that d̃eg1/3(PARITY ) = n and d̃eg1/3(OR) = Ω(
√
n)

(d̃eg1/3(OR) is indeed Θ(
√
n) using the bound on number of queries in Grover search algorithm).

In this lecture, we will start a new topic called partial functions, and how their properties might differ
from total functions.

1 Partial functions

Let g : {0, 1}n → {0, 1} be a Boolean function. Its domain is the complete Boolean hypercube {0, 1}n. Such
a function is called a total function. Most of the functions we have seen till now are total functions. But in
many cases, we do not need to specify the function on the entire Boolean hypercube.

A function f : D → {0, 1} where D ⊆ {0, 1}n is the domain of f is called a partial Boolean function.
Notice that, f needs to be specified only for x ∈ D. For all x ∈ {0, 1}n/D, we do not care about the value f(x).
Do not confuse into thinking that partial parities are partial functions. Partial parities are total functions as
their domain is the entire Boolean hypercube {0, 1}n and the function is specified for each x ∈ {0, 1}n. One
major importance of partial functions is that they are analogs of promise problems in Complexity Theory.
Promise comes from the fact that the input to these problems is promised to be from a subset of {0, 1}∗. We
do not care about the output for inputs outside this subset. Such problems are common/natural and thus
useful in Approximation Theory and Complexity. Goldreich[1] is a nice survey on promise problems.

1.1 Some examples of partial functions

– Promise-OR: Defined on only those inputs which have Hamming weight either 0 or 1, that is the set
{x ∈ {0, 1}n : |x| = 0 or |x| = 1}. So there are n+ 1 inputs on which this function is specified.
Recall that when we derived R1/3(OR) = Ω(n), the hard distribution only included inputs having
hamming weights 0 or 1. Hence, using similar arguments as OR, we can derive that D(Promise-OR)= n
and R1/3(Promise-OR)= Ω(n).

– Gap Majority: Defined on only those inputs which have Hamming weight either n
2 +
√
n or n

2 −
√
n.

If |x| = n
2 +
√
n, then gapmajn(x) = −1, and if |x| = n

2 −
√
n, then gapmajn(x) = 1, where gapmajn is

the Gap Majority function.
Recall that the composition of Rε, that is Rε(f ◦g) = Rε(f)·Rε(g) is still an open problem. It was recently
proven that if Rε(f ◦ gapmajn) = Rε(f) · Rε(gapmajn) is true, then Rε(f ◦ g) = Rε(f) · Rε(g) is also
true for any other inner function g [2]. Thus, we need to only examine the case when the inner function
is gapmajn to conclude whether the outer function f will compose or not. Indeed for any symmetric
function f , Rε(f ◦ gapmajn) = Rε(f) ·Rε(gapmajn) holds true.

– Graph properties on special kinds of graphs like planar graphs, connected graphs, etc.: Recall that any
graph with n vertices can be specified using a binary string of length

(
n
2

)
. So, the set of representations

of special kinds of graphs such as planar or connected graphs is a subset of {0, 1}(
n
2). Thus, the input to

the algorithm is promised to be belonging to such subsets. The graph property or the algorithm can be
seen as partial functions.



We have seen the importance and usefulness of partial functions, but we need to be careful while dealing
with partial functions. This is because it may happen that some properties or results are true for total
functions, but are not true for partial functions. So, be careful while using such results or making arguments
for partial functions. In the rest of the lecture, we will see such cases.

1.2 Approximate degree of Promise-OR

We have already seen that D(Promise-OR)= n and R1/3(Promise-OR)= Ω(n) which are no better than that

for OR, but what can we say about d̃eg1/3(Promise-OR), is it lower than d̃eg1/3(OR)? Let f be a partial
function defined on domain D ⊆ {0, 1}n. Let the approximating polynomial of f be p. One obvious condition
which must satisfy is that |p(x) − f(x)| ≤ 1/3 ∀ x ∈ D. But we should also specify the behaviour of p on
any x ∈ {0, 1}n/D. For this, we have the following two cases:

1. Unbounded approximate degree, d̃eg
u

1/3(f): p(x) can be any value ∀ x ∈ {0, 1}n/D.

2. Bounded approximate degree, d̃eg
b

1/3(f): −1/3 ≤ p(x) ≤ 4/3 ∀ x ∈ {0, 1}n/D.

Clearly, d̃eg
u

1/3(f) ≤ d̃eg
b

1/3(f) as there are more constraints in the bounded case. So, the bounded case
will be better if we want to lower bound some quantity, such as Q1/3(f) as done in the last lecture. Also, we
are talking about approximate polynomials for Boolean functions, it makes more sense in some applications
if p(x) is at least bounded for non-domain inputs. It can have any value on non-domain inputs but inside a
bounded range. Recall, while lower bounding quantum query complexity, the probability of acceptance was
a polynomial and as its a probability measure, the range must be [0, 1] for all inputs.

Now, for Promise-OR, the unbounded approximate degree is 1. Consider the polynomial p(x) = x1 +
x2 + · · · + xn whose degree is 1. We can easily see that on all inputs x such that |x| = 0 or |x| = 1, p(x) is

indeed equal to Promise-OR(x). Thus, d̃eg
u

0 (Promise-OR)=1.

Now we will show that d̃eg
b

1/3(Promise-OR)=Ω(
√
n), which is the same as that for OR. Recall that while

proving d̃eg1/3(OR) = Ω(
√
n), we used only two things. Firstly, the approximate polynomial P should stay

in between a narrow band, i.e. P (w) ∈ [2/3, 4/3] ∀ w ∈ {1, 2, . . . , n} (w is the hamming weight of the input
and P is the approximate polynomial for OR) and P (0) ∈ [−1/3, 1/3]. A similar thing must hold true for
the bounded case as well. The approximate polynomial G of Promise-OR should stay in between a narrow
band [−1/3, 4/3] ∀ w. Secondly, there should be a sharp derivative. In the case of OR, the share derivative
was in between w = 0 and w = 1, the same thing is true for the bounded case as well as the domain includes
inputs with w = 0 and w = 1. Any polynomial satisfying these conditions must have degree Ω(

√
n) as seen

in the last lecture. Thus, we get d̃eg
b

1/3(Promise-OR)=Ω(
√
n).

Indeed one can see that similar argument hold for any non-constant total symmetric function f . Clearly
the range of the approximating polynomial needs to be bounded, and as f is non-constant, there exists some
hamming weights t and t + 1 where the function changes its value from 0 to 1 or vice versa providing the
sharp derivative. Thus, the approximate degree of any non-constant symmetric total function is at least

Ω(
√
n), that is d̃egε(f) ≥ Ω(

√
n).

Note: As t goes closer and closer to n/2, the approximate degree keeps rising. Specifically for MAJn, t is
closest to n/2 (t = n/2 for even n) and its approximating degree is Θ(n).

So we saw how properties of partial functions might differ for the approximate degree. Now, let us study
a theorem that is true for total functions but not true for partial functions.
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2 Rε(f) of non-constant symmetric functions

Query complexity of any constant function is 0. So let us focus on non-constant symmetric functions. We have
seen that Rε(OR) = Ω(n). We will prove in this section that Rε(f) = Ω(n) for any symmetric non-constant
total function f . In this section, we will talk about total functions unless mentioned otherwise.

Note: D(f) = n for all symmetric non-constant function f . As f is not constant, without loss of generality
there exists some t < n for which f(x) = 0 (∀ x : |x| = t) and f(x) = 1 (∀ x : |x| = t + 1) (or equivalently
vice versa). Now the adversary argument answers the first t queries as 1, and all the further queries until
and including n− 1th query as 0. Thus, the final output value depends upon the nth queried bit.

Let f be a non constant symmetric function. So there exist some t such that f(x) = b (∀ x : |x| = t) and
f(x) = 1− b (∀ x : |x| = t− 1). Without loss of generality we can assume that ∃t ≤ n

2 such that f(x) = 1 (∀
x : |x| = t) and f(x) = 0 (∀ x : |x| = t− 1). We can assume this because if the function value is 0 at a higher
Hamming weight (that is t), and 1 at a lower Hamming weight (that is t− 1), then we can simply consider
the complement of that function as g = 1− f . And if such a t > n/2, we can simply relabel 0 as 1 and 1 as
0. Thus we have

∃t ≤ n

2
:f(x) = 1 ∀x : |x| = t

f(x) = 0 ∀x : |x| = t− 1

and we want to prove that Rε(f) = Ω(n). As for the case OR, we will use Yao’s Minimax Lemma by
constructing a hard distribution. Looking at the above condition, we can intuitively identify that the hard
distribution µ on the inputs x will be

µ(x) =
1

2 ·
(
n
t

) = p1 ∀x : |x| = t

µ(x) =
1

2 ·
(
n
t−1

) = p2 ∀x : |x| = t− 1

µ(x) = 0 for all other x

Following Yao’s Minimax Lemma, we want to show that for any deterministic tree D of depth at most cn
(for some constant c)

Prx∼µ[D(x) 6= f(x)] > ε

for some constant ε. From which we can conclude that Rε(f) > cn =⇒ Rε(f) = Ω(n). For convenience let
us consider a deterministic tree D of depth n/100 (that is c = 1/100). Now equivalently we can also consider
that D is a complete binary tree of depth n/100. This is because we can extend any leaf l outputing b at
depth less than n/100 to a depth equal to n/100 by simply answering b at any leaf in the subtree rooted at
l. So every path in D from root to any leaf will be of length n/100.
We will now have the following three cases:

1. Case 1: t ≥ n/50
The depth of D is n/100. So for any path from the root to any leaf of the tree, we can see at most n/100
1’s. Now, this path can be extended to inputs with Hamming weight t as well as to inputs with Hamming
weight t− 1. Let l be a leaf of the tree. Let set Al be the set of inputs x which have taken the path from
the root to leaf l and has |x| = t. Let set Bl be the set of inputs x which have taken the path from the
root to leaf l and has |x| = t− 1.
The leaf l can answer correctly to inputs either in set Al or to the inputs in set Bl.
Let the number of 1’s seen on the path from root to leaf l be y, and l is at depth n/100. So for any
x ∈ Al, x has the remaining t− y 1’s in the rest 99n/100 bits. So

|Al| =
( 99n

100

t− y

)
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and similarly

|Al| =
( 99n

100

t− 1− y

)
Each input in Al has probability p1 and each input in Bl has probability p2. The error probability for
inputs reaching leaf l will be

ε = min

(
p1|Al|

p1|Al|+ p2|Bl|
,

p2|Bl|
p1|Al|+ p2|Bl|

)
The above quantity is a constant. See Appendix for exact calculations. So, for any leaf, we are computing
the answer incorrectly for a constant fraction of inputs, which implies the tree D is computing an incorrect
answer for a constant fraction of inputs.

2. Case 2: t ≤ 100
Here we will have a similar argument to that of when we proved the same for OR. Now consider the
path from the root to leaf l which has all 0’s. l is at depth n/100 as D is a complete binary tree. Let set
Al be the set of inputs x which have taken this path from the root to leaf l and has |x| = t. Let set Bl
be the set of inputs x which have taken this path from the root to leaf l and has |x| = t− 1.
If l answers 1, then it would answer incorrectly for all inputs in Bl, and if l answers 0, then it would
answer incorrectly for all inputs in Al. Thus, the overall error will at least be

ε = min (p1|Al|, p2|Bl|)

|Al| =
(
99n/100

t

)
and |Bl| =

(
99n/100
t−1

)
. We can easily conclude that ε will be a constant if t ≤ 100. See

Appendix for exact calculations.

3. Case 3: 100 < t < n/50
This is a tricky case. We will only give an intuitive argument for this case. D is a complete binary tree
of depth n/100. Now let say t = n/100. The optimal tree will assign 1 at a leaf which we reach from the
root by following all 1’s. So at this leaf, all the inputs are answered correctly. For the leaves to which
we arrive seeing most of the inputs as 1, we simply consider that D is answering correctly on all inputs
reaching such leaves. But for all other leaves, D is answering incorrectly for a constant fraction of inputs.

In other words, let for inputs following the path in which we have the number of 1’s between 7t/8 and
t be answered correctly by D. The fraction of such inputs will be very small. The number of such paths
will be

(
n/100
7t/8

)
+
(
n/100
7t/8+1

)
+ · · ·+

(
n/100
t

)
and corresponding weight will be small. Note that we can choose

a much higher constant than 7/8 such as 0.9999 which will make this quantity even smaller.

Now, look at all the paths from the root to any leaf where the number of 1’s is less than 7t/8. Most of

the inputs will lie on such paths. The total number of such paths will be
(
n/100

0

)
+
(
n/100

1

)
+ · · ·+

(
n/100
7t/8−1

)
.

Note that we can further increase the constant from 7/8 to 0.9999 to further strengthen this claim.
On those leaves to which we reach following such paths will have a constant probability of answering
incorrectly. This can be shown by a similar argument as Case 1 above. Let l be such a leaf that has seen
y < 7t/8 1’s. We follow the same procedure as Case 1 and form sets Al, Bl. l can only answer correctly
to inputs belonging to one of the two sets which will give rise to incorrect answers on a constant fraction
of inputs at this leaf. Since such leaves form the bulk of the inputs, overall error will also be a constant
due to answering incorrectly for a constant fraction of inputs. In a way, Case 3 can be seen as a mixture
of Cases 1 and 2, where we assume that D will answer correctly on paths with a high number of 1’s but
they will constitute a lower fraction of weights. The other paths will form the bulk of the inputs and will
answer incorrectly for a constant fraction of inputs.
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So any deterministic tree D of depth n/100 is answering incorrectly to a constant fraction of all inputs
according to the distribution µ. Thus, finally we have proven that Rε(f) = Ω(n) for a non constant symmetric
function f . Recall our first assumption about the existence of Hamming weight t ≤ n/2 such that f(x) = 1
(∀ x : |x| = t) and f(x) = 0 (∀ x : |x| = t − 1). This is true only for total symmetric functions, and may
not hold true for partial functions. Thus, the above proof may not hold true for a partial function. Take this
example of a partial function g: g(x) = 1 ∀ x : |x| ≥ 2n/3 and g(x) = 0 ∀ x : |x| ≤ n/3. We can see that
Rε(g) = O(1). Toss a coin a constant number of times, if heads come up more than half the number of times,
we answer 1, and if tails come up more than half the number of times, we answer 0. Each toss of the coin is
analogous to querying a bit. If the number of heads is more than half the total number of tosses, then the
probability of |x| ≥ 2n/3 is greater than the probability of |x| ≤ n/3. If the number of heads is less than
half the total number of tosses, then the probability of |x| ≥ 2n/3 is less than the probability of |x| ≤ n/3,
and thus this randomized algorithm will succeed with high probability. So we observe a drastic change in Rε
when we moved from total functions to partial functions.

As stated above, the existence of such a t for total functions is essential for proving the above theorem.
For total functions, if f(x) 6= f(y) for some x, y, then the path connecting x and y in the Boolean hypercube
must contain two points z and w such that f(z) 6= f(w) and their Hamming distance is 1. But this need not
be true for partial functions and thus many proofs break down for partial functions. This is the missing link.

3 Appendix

In Section 2, for Case 1: t ≥ n/50, we have

ε = min

(
p1|Al|

p1|Al|+ p2|Bl|
,

p2|Bl|
p1|Al|+ p2|Bl|

)
Let us show that the first term inside the min() is O(1) (that is a constant), a similar procedure will follow
for the second term as well.

p1|Al|
p1|Al|+ p2|Bl|

=

1

2(n
t)

(
99n/100
t−y

)
1

2(n
t)

(
99n/100
t−y

)
+ 1

2( n
t−1)

(
99n/100
t−y−1

)
=

99n
100 !

( 99n
100 −(t−y))!(t−y)!

99n
100 !

( 99n
100 −(t−y))!(t−y)!

+
(n
t)

( n
t−1)

99n
100 !

( 99n
100 −(t−y)+1)!(t−y−1)!

=

1
t−y

1
t−y + n−t+1

t
1

99n
100 −(t−y)+1

=
1

1 +
(
1− y

t

)
n−t+1

n−t+1+(y− n
100 )

=
1

1 + 1−(y/t)

1+
y− n

100
n−t+1

Now we have n/2 ≥ t ≥ n/50 and y ≤ n/100, and thus the above quantity will be a constant.

For Case 2: t ≤ 100, we have

ε = min (p1|Al|, p2|Bl|)
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Lets compute p1|Al| and show that its O(1) (p2|Bl| would be similarly O(1))

p1|Al| =
(
99n/100

t

)
2
(
n
t

)
=

99n
100 !(n− t)!t!

2 · n!t!( 99n
100 − t)!

=
1

2

(99n/100)(99n/100− 1) · · · (99n/100− t+ 1)

(n)(n− 1) . . . (n− t+ 1)

For large n and t ≤ 100, the above quantity is O(1).
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