
Lecture 12: Sensitivity, related measures and Huang’s proof

Rajat Mittal

IIT Kanpur

We will introduce a few other complexity measures on Boolean function related to the decision tree model:
sensitivity, block sensitivity and certificate complexity. All of these measures and other measures introduced
before, with the exception of sensitivity, were known to be polynomially related from a long time.

We will give one proof (out of many possible) of this polynomial relationship. In a breakthrough, Huang [2]
recently showed that even sensitivity is polynomially related to all these measures (called sensitivity con-
jecture). For a perspective on this result, the conjecture was open for around 30 years, and finally Huang
settled it by giving a beautiful proof which can arguably fit in one page.

1 Sensitivity and related measures

Once again, our central object of study is a Boolean function f : {0, 1}n → {0, 1}, where every input x is a
string of n bits. A position in the input x can be indexed by an i ∈ [n].

Fix a Boolean function f : {0, 1}n → {0, 1}. For an index i ∈ [n], define xi to be the input where the
i-th bit is flipped in x. An index i is called sensitive for input x if f(x) 6= f(xi). The local sensitivity s(f, x)
at an input x is the number of sensitive indices in the input x. The sensitivity of the function, s(f), is the
maximum possible sensitivity s(f, x) over all inputs x.

Exercise 1. Can you give an example of a function and an input where sensitivity is n (what about 1)?

The average sensitivity of the function f is,

Avg − s(f) =
1

2n

∑
x

s(f, x).

Exercise 2. What is the relation between average sensitivity and Influence?

Exercise 3. Can you think of a function whose sensitivity is o(n)? Can you think of a function and an input
whose sensitivity is 0?

A very similar, but slightly complex, measure is called block sensitivity.
For a block of indices B ⊆ [n], define xB to be the input where all bits in block B are flipped. As before,

a block B is called sensitive for input x if f(x) 6= f(xB). The local block sensitivity bs(f, x) at an input x
is the maximum number of disjoint sensitive blocks possible in the input x respectively. As you might guess,
the block sensitivity of a function is the maximum possible block sensitivity bs(f, x) over all inputs x.

Exercise 4. Show that bs(f, x) ≥ s(f, x). Can you show a function and an input where this inequality is
strict?

Separation between bs(f) and s(f): The function constructed here is motivated from Rubinstein’s result [3].
It seems that bs(f) can be much bigger than s(f). Can you think of a function where bs(f) > s(f)? It is a
difficult question, let us take a look at a simpler question.

Define sz(f) for z ∈ {0, 1} to be maxx: f(x)=z s(f, x), we can similarly define bsz(f). Can you think of an
f and z to separate sz(f) and bsz(f)? This is a question in the assignment, you might want to try it before
going further.

We will give one such example, define C2 : {0, 1}n → {0, 1} to be the function iff there exist a block of
two contiguous indices (i− 1 and i) where the input is 1 and 0 otherwise. You can see that s0(C2) = 2, but
bs0(C2) = n/2.

Exercise 5. Show that s1(C2) = n.

So, we still don’t get a separation between bs(f) and s(f). There is a standard technique to resolve this
issue.

Define g := ORn ◦ fm, that means the arity of the inner function is m and outer function is n. Let us
find the (block) sensitivities of this composed function. For a 0-input to g, all internal block of inputs should
output 0 on f . The sensitivity of the input is the sum of sensitivities of all blocks.

s0(g) = n · s0(f) and bs0(g) = n · bs0(f).

On the other hand, for a 1-input, we should keep exactly one block outputting 1 on f (why?).

s1(g) = s1(f) and bs1(g) = bs1(f).

Exercise 6. The second part of the equation requires careful argument. Give that argument.

Suppose we compose C2 with OR (m = n). The sensitivity of the composed function will be Θ(n) and
block sensitivity will be Θ(n2).

Exercise 7. Check that changing m,n does not give a better separation.

This is the best possible separation known between bs(f) and s(f), it is a big open question to increase
this gap. We only know that for any f , bs(f) ≤ s(f)4 [1].

Certificate complexity: Fix a Boolean function f : {0, 1}n → {0, 1}. For any input x, a certificate is a set of
indices C ⊆ [n] such that for any input y ∈ {0, 1}n, if xi = yi ∀i ∈ C, then f(x) = f(y). The size of the
smallest certificate at input x is its local certificate complexity C(f, x). The certificate complexity of f is the
maximum C(f, x) over all inputs x.

Exercise 8. What is the certificate complexity of OR and MAJORITY?

You have seen certificates before. For example, if you look at the path of any deterministic tree, it is
actually a certificate (for any input on the leave).

Exercise 9. Show that certificate complexity is a lower bound on deterministic tree complexity? Is it a lower
bound on randomized tree complexity by the same argument?

What is the relationship between certificate complexity and block sensitivity? Keep a function f and
an input x in mind, suppose C ⊆ [n] is a certificate and B1, B2, · · ·Bbs(f,x) be the blocks which give the
maximum block sensitivity.

Exercise 10. What can you say about C ∩Bi?

Observe that the intersection can’t be empty, proving C(f, x) ≥ bs(f, x).
We have introduced many complexity measures with value between 0 and n. There are some trivial (and

some not so trivial) dependencies known between them. Figure 1 summarizes them.

Exercise 11. Which of the relations are not clear to you in the above figure.

Most of the inequalities follow from definition. The lower bounds on D(f) and C(f) have been discussed

in this lecture before. From polynomial method, we know Q(f) = Ω(d̃eg(f)). This only leaves R(f) ≥ bs(f),
this follows from the observation that every block should have been queried with constant probability in
any randomized algorithm. A more direct proof is obtained by introducing fractional certificate complexity
RC(f) and fraction block sensitivity fbs(f).

R(f) ≥ RC(f) = Θ(fbs(f)) ≥ bs(f).

The proof of these inequalities can be found in Kulkarni and Tal [6].

2

D

bs

degC R

app-deg

Q

s

Fig. 1. Relations between complexity measures. Arrow from A to B implies A = Ω(B).

2 Polynomial relations between complexity measures

We would like to prove that all complexity measures are polynomially related; intuitively, they should be
related because they indicate the complexity of a Boolean function.

A polynomial relation between two quantities A and B means,

A = O(Bc1) and B = O(Ac2),

where c1 and c2 are two natural numbers. Ideally, we would like to come up with functions which show
that these relations are tight.

For example, take the case of D(f) and C(f). We know C(f) = O(D(f)) and we will prove in the next
subsection that D(f) = O(C(f)2). These relations are tight, for the first relation we can use OR, for the
later one you can use tribes function (assignment).

We want to polynomially relate all the quantities in Figure 1 (except sensitivity). The strategy would be

to upper bound D(f) (the biggest quantity) in terms of two smallest quantities (bs(f) and d̃eg(f)). We will
start by upper bounding D(f) with bs(f) and C(f).

The proofs in the next two subsections are inspired from [4].

2.1 Upper bound on deterministic tree complexity

The first upper bound will be on deterministic tree complexity. For a Boolean function f : {0, 1}n → {0, 1},

D(f) ≤ bs(f)C(f). (1)

To prove this upper bound, we need to show a deterministic query algorithm which makes at most
bs(f)C(f) queries. The algorithm to compute f(x) is simple to describe, query a consistent 1-certificate
(consistent with all the queries till that point) bs(f) times. If the queries are consistent with a certificate,

3

output f(x) = 1. If at any point we don’t have a 1-certificate, output f(x) = 0. After bs(f) iterations, pick
any consistent y and output f(x) = f(y).

Notice that at every stage, we can always pick a certificate with size ≤ C(f) (since C(f) = maxx C(f, x)).
The certificates are picked bs(f) times, implying that the number of queries are bounded by bs(f)C(f). We
only need to prove the correctness of the algorithm.

Since if we find a 1-certificate or if there is no such certificate, clearly algorithm’s output is correct.
Following claim takes care of the remaining case.

Claim. If the algorithm has still not given an output after bs(f) iterations, all remaining consistent inputs
have the same value.

Proof. Let b = bs(f). Assume that the claim is false. This means there exist consistent y, z such that f(y) = 0
and f(z) = 1. We will create b+ 1 disjoint sensitive blocks for y, showing contradiction.

Let the first b certificates be C1, C2, · · ·Cb and Cb+1 be the 1-certificate for z. The i-th sensitive block
for y is defined to be indices at which Ci and y differ. Clearly there are b + 1 blocks and none of the block
is empty f(y) = 0.

To show the disjointness, consider the k-th certificate Ck. Notice that some variables of Ck might have
been queried earlier than the k-th iteration. Though, all elements in Bk will come from variables queried
in the k-th iteration (Ck was consistent with whatever was queried before). This implies that all blocks are
disjoint.

Hence proved.

This also shows that D(f) = O(C(f)2). We wanted to bound D(f) in terms of bsf alone, next task is to
bound C(f) in terms of bs(f).

2.2 Upper bound on certificate complexity

The second upper bound will be on certificate complexity. For a Boolean function f : {0, 1}n → {0, 1},

C(f, x) ≤ bs(f, x)s(f). (2)

Let b = bs(f, x). For an input x, let B1, B2, · · · , Bb be the disjoint sensitive blocks achieving bs(f, x).

Claim.
⋃̇b

i=1Bi is a certificate for x with length bs(f, x)s(f).

Proof. It is an easy exercise to show that
⋃̇b

i=1Bi is a certificate for x.

Exercise 12. Can you increase the size of disjoint sensitive blocks if it is not a certificate?

For the length, we will show that the length of each block Bi is bounded by s(f). Notice that, each block
Bi can be assumed minimal. This means, no subset of Bi is sensitive.

Exercise 13. Why can we make this assumption?

If Bi is minimal, then every variable of Bi is sensitive for xBi (the input with block Bi flipped). In other
words, |Bi| ≤ s(f).

Hence proved.

Combining Equations 1 and 2, we get

D(f) ≤ bs(f)2s(f). (3)

This shows that the biggest quantity D(f) is polynomially bounded by the smallest quantity on the

block sensitivity branch of Figure 1. Next, we will upper bound bs(f) with d̃eg(f) to show that all measures
(except sensitivity) are polynomially related.

Exercise 14. Why is that sufficient?

4

2.3 Upper bound on Block sensitivity

The aim of this subsection is to show
bs(f) = O(d̃eg(f)2). (4)

The result was proved by Nisan and Szegedy [5]. Fortunately, we have seen this result (almost) already!

Exercise 15. Can you remember where?

It is a slight extension of showing that approximate degree of ORn is
√
n. We will only give an idea, for

the complete proof, see [5].
It is easier to argue the simpler result,

s(f) = O(d̃eg(f)2).

While showing a lower bound on approximate degree of OR, we observed that it even worked for Promise
OR, i.e., the only properties used in the proof were,

– function value is different at Hamming weight 0 and Hamming weight 1,
– and function value is bounded ({0, 1}) at every other point.

In other words, if you look at the function OR, it has kind of a flower structure (center at all 0 input and
n petals coming out of it). For a function with sensitivity sf , a similar translated flower structure is there
with sf petals.

Exercise 16. Can you show

d̃eg(f) = Ω(
√

s(f)).

The bound on block sensitivity, Equation 4, follows by a similar argument where each block corresponds

to a petal. Formally, it is shown by constructing a function f ′ such that f ′ is like promise OR and d̃eg(f) ≥
d̃eg(f ′).

Exercise 17. Try doing this on your own, otherwise see [5].

This shows that all complexity measures in Figure 1 are polynomially related (except sensitivity). It took
nearly 30 years, and finally in 2019 Huang [2] proved that even sensitivity is polynomially related.

3 Huang’s proof of sensitivity conjecture

The result was shown by introducing a new quantity, spectral sensitivity, denoted λ(f) (introduced in [2],
formalized in [1]). It was a lower bound on sensitivity (follows easily from the definition), recently it has been
shown to be a lower bound on approximate degree [1] (not needed for the proof of sensitivity conjecture).
This modifies the relationship diagram to Figure 2.

Huang provided a polynomial upper bound on degree using λ(f).

Exercise 18. Why is that sufficient?

First, we define spectral sensitivity for a Boolean function f : {0, 1}n → {0, 1}. To define spectral
sensitivity, we need the concept of sensitivity graph of the function f , a subgraph of Boolean hypercube.

Exercise 19. What is Boolean hypercube (as a graph)?

The sensitivity graph of f , say Gf , is a subgraph of Boolean hypercube, i.e., there are 2n vertices (for
each input). An edge x, y is present in Gf iff f(x) 6= f(y) and x, y is an edge in Boolean hypercube (they
have Hamming distance 1).

5

D

bs

degC R

app-deg

Q

s

sp-s

Fig. 2. Relations diagram with spectral sensitivity. Arrow from A to B implies A = Ω(B).

Exercise 20. Find a function f whose sensitivity graph is the Boolean hypercube itself.

Exercise 21. How many edges are there in the sensitivity graph of ORn.

Exercise 22. Show a subgraph of Boolean hypercube which is not a sensitivity graph for any function f .

We are interested in the eigenvalues of the adjacency matrix, say Af , of the graph Gf . We first notice
that the graph Gf is bipartite.

Exercise 23. Show that Boolean hypercube is bipartite.

That means, if u is an eigenvalue of Gf , then so is −u (assignment). That means we can talk about the
maximum eigenvalue (without clarifying if absolute value needs to be taken before taking maximum).

The spectral sensitivity of f , called λ(f), is the maximum eigenvalue (also called spectral norm) of the
adjacency matrix of Gf .

Exercise 24. What is the spectral sensitivity of PARITY?

Since the eigenvalue of a matrix is bounded by the maximum row sum (why), λ(f) ≤ s(f). For λ(f) ≤
d̃eg(f), refer to [1]. This completes the relationships given in Figure 2.

The main result of this section is the following upper bound on deg in terms of λ settling sensitivity
conjecture.

Theorem 1 ([2]).
For any Boolean function f : {0, 1}n → {0, 1},

deg(f) ≤ λ(f)2.

6

The first simplification is that we can assume deg(f) = n. If not, pick the monomial in the polynomial
representation of f with highest degree, and set all other variables to some values. For the restricted function,
deg(f) is same but λ(f) can only be smaller (assignment).

That means we can assume deg(f) = n (any counterexample to Theorem 1 can be converted into a
counterexample with full degree). In other words, we just need to prove that λ(f) ≥

√
n when deg(f) = n.

What can we say about sensitivity graph of f when deg(f) = n? Define V0 = {x : f(x) = PARITY(x)}
and V1 = {x : f(x) 6= PARITY(x)}.

Exercise 25. Show that deg(f) = n is equivalent to saying that |V0| 6= |V1|.

The problems statement changes to, given that |V0| > 2n−1 (if |V0| < |V1| then consider 1−f), show that
λ(f) ≥

√
n.

Exercise 26. Show that there is no edge between V0 and V1. Inside V0 (and V1), the edges are exactly the
edges of Boolean hypercube.

This means that the eigenvalues of Gf are union of eigenvalues of the subgraph on V0 and V1. For any
V with more than half the vertices, we will show that the induced subgraph from Boolean hypercube (say
GV) has eigenvalue more than

√
n. This will finish the proof.

An interesting lemma relates the eigenvalues of the induced subgraph with the eigenvalues of the original
graph. It is called Cauchy’s interlacing theorem [2], we will only use the following special case of it.

Lemma 1. Let G be a graph on k vertices and its eigenvalues be λ1 ≤ λ2 · · ·λk. If GV is the induced
subgraph on V with l vertices, then

‖GV ‖ ≥ λl,

where ‖GV ‖ denotes the maximum eigenvalue of GV .

Proof. The adjacency matrix of G is an k× k matrix. The eigenvectors corresponding to bigger eigenvalues,
{λk, λk−1, · · · , λl}, span a vector space of dimension k − l + 1, say S1. The vector space corresponding to l
standard basis vectors ev where v ∈ V , say S2, spans a subspace of dimension l.

Exercise 27. Since the sum of dimensions of S1 and S2 is more than k, show that their intersection is
non-empty.

For the common vector v, Av = AV v (where A,AV are the adjacency matrices of G,GV respectively),
and the length of Av is more than λl times the length of v. So, we get

‖GV ‖ := ‖AV ‖ ≥ λl.

The adjacency matrix of Boolean hypercube (say Hn) has dimensions 2n × 2n. Arrange the eigenvalues
of H in increasing order, λ1 ≤ λ2 ≤ · · · ≤ λ2n . From Lemma 1, the maximum eigenvalue of GV is more than
λ2n−1+1.

What is λ2n−1+1? You will show in the assignment that the eigenvalues of Boolean hypercube has very
simple structure. It has eigenvalue −n+ 2k with multiplicity

(
n
k

)
.

Exercise 28. What bound will this give on ‖GV ‖ when |V | > 2n−1?

Unfortunately the interlacing theorem applied on Hn doesn’t seem to be of much help. It turns out, a
small modification of the adjacency matrix of Hn will do the trick.

7

Proof of Theorem 1. The main idea of the proof is to construct a signing of the adjacency matrix of the
Boolean hypercube. Applying interlacing theorem on that matrix will give the result. A signing of a {0, 1}
matrix is assigning negative sign to some non-zero entries of the matrix. Let As be a signing of a {0, 1}
matrix, then you will show in the assignment

‖A‖ ≥ ‖As‖.

We will construct a signing s of Boolean hypercube such that half of its eigenvalues (2n−1 of them) will
be
√
n and the other half will be −

√
n. If A is the adjacency matrix of GV ,

‖AV ‖ ≥ ‖(As)V ‖.

Here A is the adjacency matrix of Hn and AV denote the induced matrix on the subset V .
By Lemma 1, ‖(As)V ‖ should be greater than the 2n−1 + 1 highest eigenvalue of As, which is

√
n.

The only task is to construct the signing with required properties. It is defined inductively by,

(A1)s =

(
0 1
1 0

)
, (An)s =

(
An−1 I
I −An−1

)
You can easily show the following properties of this signing by induction.

– (An)s is a signing of Hn (it follows the structure of Boolean hypercube).
– Trace of (An)s is 0.
– (An)2s = nI.

From the third property, each eigenvalue is either
√
n or −

√
n. From the trace property, the multiplicity

of each eigenvalue is 2n−1. Thus, we have the signing with required property, showing that if V is a subset
of vertices of Hn such that |V | > 2n−1, then ‖GV ‖ ≥

√
n.

By the discussion before the proof, this implies that λ(f) ≥
√
n for any f with degree n.

Huang’s result, using Equation 4, implies that bs(f) = O(s(f)4). We only know a function for which
bs(f) = Ω(s(f)2) [3]. It is an open problem to bridge this gap.

There have been interesting developments after this discovery, as mentioned before, it was proven that

λ(f) = O(d̃eg(f)) in [1]. They were able to use this to show that for any Boolean function f , deg(f) =

O(d̃eg(f)2). This is known to be optimal by OR function.

4 Assignment

Exercise 29. Show that s(f),bsf, C(f) are Θ(n) for any symmetric function on n variables.

Exercise 30. Show a symmetric function where bs(f) > s(f).

Exercise 31. Can you think of an f and z to separate sz(f) and bsz(f).

Exercise 32. Suppose A is the adjacency matrix of a bipartite graph. Show that if u is an eigenvalue of A,
then so is −u.

Exercise 33. Why is the λ of restricted function smaller than the λ of the original function?

Exercise 34. Let Hn be the Boolean hypercube on n elements. Show that Hn has eigenvalue −n+ 2k with
multiplicity

(
n
k

)
for 0 ≤ k ≤ n.

Hint: Use induction and structure of the adjacency matrix of Boolean hypercube.

Exercise 35. Just by looking at the eigenvalues of Boolean hypercube and Cauchy’s interlacing theorem, you
can come up with a statement like: if the degree n coefficient of f is big enough then λ(f) ≥

√
n. Make this

statement precise and prove it.

Exercise 36. Show that if As is a signing of A, then

‖A‖ ≥ ‖As‖.

Exercise 37. Tribes function is ANDn ◦ORn. Show that D of tribes is Θ(n2) and C of tribes is Θ(n).

8

References

1. Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao and Avishay Tal, ‘’Degree vs. approximate
degree and Quantum implications of Huang’s sensitivity theorem,” STOC, 2021.

2. Hao Huang, “Induced subgraphs of hypercubes and a proof of the Sensitivity Conjecture,” Annals of Mathe-
matics, Volume 190, Pages 949-955, 2019.

3. David Rubinstein, “Sensitivity vs. block sensitivity of Boolean functions,” Combinatorica, Volume 15, Pages
297–299, 1995.

4. Harry Buhrman and Ronald de Wolf, “Complexity measures and decision tree complexity: a survey,” Theoretical
Computer Science, Volume 288, Issue 1, Pages 21-43, 2002.

5. Noam Nisan and Mario Szegedy, “On the degree of boolean functions as real polynomials,” Computational
Complexity, volume 4, pages 301–313, 1994.

6. Raghav Kulkarni and Avishay Tal, “On Fractional Block Sensitivity,” Chicago Journal of Theoretical Computer
Science, Article 08, pages 1-16, 2016.

9

	Lecture 12: Sensitivity, related measures and Huang's proof

