
Lecture 11: Application of restrictions

Rajat Mittal

IIT Kanpur

We have seen restrictions of Boolean functions when a few variables are set to a particular value. Given
a Boolean function f : {−1, 1}n → {−1, 1}, we will generalize this to the case when a subset of parities, say

Γ ⊆ {χS : S ⊆ [n]},

are set to assignment b ∈ {−1, 1}Γ . We will show two applications of restricted functions: relation between
rank and sparsity and better bounds in learning theory.

1 Restricting a subset of parities

For a function f : {−1, 1}n → {−1, 1}, a set of parities Γ and an assignment b ∈ {−1, 1}Γ , we define the
restriction

fΓ,b := f |{x∈{−1,1}n:χγ(x)=bγ for all γ∈Γ}.

Let us take an example, let f be the Majority function on 3 variables. What is the restricted function
when x1x2 = −1, i.e., Γ = {x1x2} and b = −1.

Exercise 1. What is the Fourier expression for Majority of 3 variables?

A small calculation shows that,

MAJORITY3(x) = 1/2(x1 + x2 + x3)− 1/2x1x2x3.

If we substitute x1x2 = −1, we will get

1/2(x1 + x2) + 1/2x3.

Exercise 2. Is this the correct answer? Look at the inputs where the restricted function is defined.

The function will give the correct answer but it is not in the simplest form. Notice that x1x2 = −1 means
the value of x1 and x2 is different, that means Maj{x1x2},−1 should just be the value of x3. Though, the
Fourier expression obtained is slightly more involved.

Looking at all parities as vectors in Fn2 , the vectors corresponding to x1, x2 and x1x2 are linearly de-
pendent. That means, setting x1x2 = −1 gives a relation between x1 and x2. In other words, x1 = −x2,
substituting this in the previous expression will give,

MAJORITY{x1x2},−1 = x3.

What happens to the Fourier expression of a general function when some parities are restricted? Let us
define it formally.

Equivalence relation for a set of parities Let f be a Boolean function. Given a set of parities Γ , define the
following equivalence relation among parities in supp(f).

∀γ1, γ2 ∈ supp(f), γ1 ≡ γ2 iff γ1 + γ2 ∈ span(Γ).

Let ` be the number of equivalence classes according to the equivalence relation for Γ . For j ∈ [`], let kj
be the size of the j-th equivalence class. Since the equivalence classes form a partition of supp(f), we have

Claim. Following the notation of the paragraph above,
∑`
j=1 kj = spar(f).

Let β1, . . . , β` ∈ supp(f) be some representatives of the equivalence classes. For j ∈ [`], let βj +
αj,1, . . . , βj+αj,kj be the elements of the j-th equivalence class. This notation gives a compact representation
of f in terms of these equivalence classes. For all x ∈ {−1, 1}n,

f(x) =
∑̀
j=1

Pj(x)χβj (x), (1)

where

Pj(x) =

kj∑
r=1

f̂(βj + αj,r) · χαj,r (x). (2)

Note that Pj are non-zero multilinear polynomials and depend only on the parities in Γ . So, fixing parities
in Γ collapses all the parities in an equivalence class to their representative, thereby making Pj ’s constant.

2 Rank vs Sparsity

As our first application, we will give a near optimal upper bound on rank in terms of the sparsity of the
function f . A priori, we only know

log(spar(f)) ≤ rank(f) ≤ sparf.

This is even true when the function is non-Boolean. We have seen that rank(f) can even be
√

spar(f).

Exercise 3. What function achieves this relation?

Can there exist functions where rank(f) is higher than
√

spar(f)?
One of the important result (called Tsang’s lemma in this text) from the paper of Tsang et al. is going

to be really helpful.

Lemma 1 ([1]). Let f : {−1, 1}n → {−1, 1} a Boolean function. There exist a set of parties Γ and an
assignment b ∈ {−1, 1}γ such that fΓ,b is constant and

|Γ | ≤ 3
√

spar(f).

The above lemma is stated slightly differently in [1]; they use Fourier 1-norm instead of spar(f), but they
can be interchanged using Parseval and Cauchy-Schwarz. We will not prove Tsang’s lemma.

Exercise 4. Prove that the Fourier 1-norm of f is bounded by spar(f).

Let k = spar(f) and r = rankf , using Tsang’s lemma we can easily show r ≤ (k/2) +
√
k. The important

observation is

Claim. If setting parities in Γ makes the function constant, every parity in supp(f) must have been paired
with at least one other parity in the equivalence class.

Using this observation, you will show in the assignment that r ≤ (k/2) +
√
k. We are still far away from√

k (the bound for addressing function). The best known upper bound on the Fourier rank of a Boolean
function in terms of the sparsity of the function was given by Sanyal [2]. He showed that for any Boolean
function f ,

r = O(
√
k log k).

In rest of this section we will see a proof of this result. We will give an algorithm which takes a Boolean
function as an input and outputs O(

√
k log k) parities such that any assignment of these parities makes the

function constant. This gives an upper bound on Fourier rank of the function since the Fourier support of
the function must be contained in the span of this set of parities.

2

Exercise 5. Convince yourself of the statement above.

As already noticed by Observation 2, Lemma 1 gives us to fix small number of parities such that the
sparsity of every possible restriction (for any b) is at least k/2. In other words, there are less than k/2 active
parities now (the representatives of each equivalence class), and support of each restriction is a subset of
these active parities. The main idea is to apply Tsang’s lemma repeatedly.

Suppose we apply Tsang’s lemma for the first time, the set of parities get bundled in at least a group
of two and the set of active parities become less than k/2. Ideally, we want to apply Tsang’s lemma on k/2
parities and reduce them further to k/4 active parities. Such an algorithm will need

√
k+
√
k/2+

√
k/4+· · · =

O(
√
k log k parities and the set of active parities will become empty. That means, all restrictions become

constant after fixing these O(
√
k log k) parities.

Unfortunately, there is no Boolean function corresponding to these k/2 active parities. Every restriction
will have some subset of these k/2 parities active, if the subset is small then applying Tsang’s lemma will
not reduce the set of active parities much. The resolution is to greedily pick the restriction with largest
sparsity at each step and apply Tsang’s lemma. A bit of Fourier analysis will show that there always exist
a restriction whose sparsity is comparable to the set of active parities.

Exercise 6. Write the algorithm formally.

2.1 Analysing the algorithm:

It remains to show that the number of parities fixed in our algorithm is small. Given a Boolean function f
and a set of parities Γ over the set of the variables of f , remember the equivalence relation over supp(f),

∀γ1, γ2 ∈ supp(f), γ1 ≡ γ2 iff γ1 + γ2 ∈ span(Γ).

Let ` be the number of partitions of the Fourier support of f with respect to the equivalence relation
corresponding to Γ . We first show that there exist a restriction with high sparsity for any Γ (remember that
Tsang’s lemma is applied such a restriction at each step of the algorithm).

Lemma 2. Given a function Boolean function f and a subset of parities Γ , there exist an assignment
b ∈ {−1, 1}Γ such that

supp(fΓ,b) ≥
`2

k
.

Proof. Using the notation defined in previous section,

fΓ,b =
∑̀
j=1

Pj(b)χβj (x).

The sparsity of fΓ,b is the number of non-zero Pj(b)’s. Pj(x) is itself a polynomial with sparsity kj (the size
of j-th equivalence class).

By Uncertainity principle on Boolean hypercube (proved in last assignment),

Pr
b

(Pj(b) 6= 0) ≥ 1/kj .

Hence, the expected value of supp(fΓ,b) is

∑̀
j=1

Pr
b

(Pj(b) 6= 0) ≥
∑̀
j=1

1/kj .

Applying Jensen’s inequality on 1/x (it is a convex function),

E[supp(fΓ,b)] ≥ `
1∑
j kj

`

≥ `2

k
.

3

Exercise 7. Read about Jensen’s inequality.

This finishes the proof of the lemma.

To bound the total number of parties fixed in our algorithm, we would like to bound the number of
parities included in the i-th iteration. Let us denote Γ after the i-th iteration by Γ (i) (Γ (0) = ∅). Let `i be
the number of partitions of the Fourier support of f with respect to the equivalence relation corresponding
to Γ (i) (the set of active parities). Say the algorithm fixes qi parities in the i-th iteration. Let f (i) be the
selected function after the i-th iteration (f (0) = f).

By Tsang’ lemma, qi is of the order of the square root of the sparsity of f (i−1). The reduction in the size
of active parities, `i−1 − `i is at least spar(f (i−1))/2. This implies,

qi
`i−1 − `i

= O(1/spar(f (i−1))).

Using Lemma 2,

qi = (`i−1 − `i)O(

√
k

`i−1
).

The total number of parities fixed by our algorithm is the sum of qi’s.∑
i

qi = O(
√
k)
∑
i

`i−1 − `i
`i−1

(3)

You will show in the assignment that
∑
i
`i−1−`i
`i−1

≤
∑k
i=1 1/i.

Exercise 8. Show that the number of parities fixed are O(
√
k log k).

3 Learning theory (again)

The contents of this section are taken from the book Analysis of Boolean Functions from Ryan O’Donnell [3].
We have already seen that it is easy to learn a function if we know that it is ε-concentrated on a small

family F of subsets of parities.

Theorem 1. Given access to random queries to f : {−1, 1}n → {−1, 1}, if we know F such that f is
ε
2 -concentrated on F , then f can be learned in time poly(|F|, n, 1ε).

The theorem was proved before in class. Suppose, we know that f is ε-concentrated but don’t know the
F on which it is concentrated. Goldreich-Levin algorithm, explained below, allows us to find the collection
F efficiently. Though, in this case, we will need query access to the function f (and not just random access).

Given query access (you can ask f(x) for any x), Golreich-Levin algorithm gives a list of parities such
that the list contains all big Fourier coefficients.

Theorem 2 (Goldreich-Levin). Given a Boolean function f : {−1, 1}n → {−1, 1}, a threshold τ and
query access to f , we can output a list L of parities satisfying,

– if
∣∣∣f̂(S)

∣∣∣ ≥ τ then S ∈ L,

– and if S ∈ L then
∣∣∣f̂(S)

∣∣∣ ≥ τ/2,
in time poly(n, 1/τ).

Suppose f is ε-concentrated on some family F . We can run Goldreich-Levin with τ =
√

ε
|F| . This will

output a list such that f is 2ε-concentrated on this list.

4

Exercise 9. Prove the above statement. Show that the size of the list L is poly(1/ε, |F|) using Parseval’s
identity.

Using Theorem 1, we can efficiently (poly(n, 1/ε, |F|) time) learn f .

Exercise 10. We have shown that f can be learned if the concept class is the class of all functions ε-
concentrated on some small family F . Observe that this can be generalized (without any extra work) to
the class of all functions whose Fourier spectra is concentrated on small number of parities (say M).

Our final task is to prove Goldreich-Levin.

Proof of Goldreich-Levin. We already know how to estimate a particular Fourier coefficient using random
access (it is expectation of χS(x)f(x)). Unfortunately, there are too many Fourier coefficients to estimate.
The main idea is to divide these coefficients into buckets and estimate their weight. If k < n, let S ⊆ [k] and
define

WS,k =
∑

T⊆{k+1,k+2,··· ,n}

f̂(S ∪ T)2.

Lemma 3 will show that WS,k can be estimated efficiently with error ε and probability 1 − δ (in time
poly(n, 1/ε, log(1/δ))).

The idea is to start with the full bucket W ∅,0 and divide it into two parts: W ∅,1 and W {1},1. The division
will continue further and WS,k will be divided into WS,k+1 and WS∪{k+1},k+1. If we find a bucket with
weight less than τ2/2, we will discard that bucket. Finally, we will be left with lots of buckets having just
one element; those are the elements of L.

If we estimate the bucket weights with error less than τ2/4, then a Fourier coefficient with weight ≥ τ2

will never be discarded and any coefficient with weight less than τ2/4 will not be in the list. This shows that
the list given by the algorithm satisfies the required property.

Exercise 11. Convince yourself that the list satisfies the requirements of the theorem.

We only need to show that the number of estimates are small. Since every bucket has weight at least
τ2/4, there are at most 4/τ2 buckets at any point (Parseval). Each bucket gets split at most n times, so the
number of estimates are at most 8n/τ2.

The final algorithm is to keep estimating (splitting and discarding) buckets using Lemma 3 with error
τ2/4 and with error probability τ2/24n.

Exercise 12. Show that the algorithm gives the correct list with constant error in time poly(n, 1/τ).

The above proof required the following lemma.

Lemma 3. WS,k can be estimated with error ε and probability 1− δ in time poly(n, 1/ε, log(1/δ)).

Proof. To estimate WS,k, we require the expression in terms of restrictions proved in the class before.

WS,k = Ez∈{−1,1}n−k [f̂[k]|z(S)2]

Remember that f[k]|z is the function where f is restricted to first k variables and last n− k variables are
set according to z. Since we know

f̂[k]|z(S)2 = Ey,y′∈{−1,1}k [χS(y)f(y, z)χS(y′)f(y′, z)],

the expression becomes

WS,k = Ez∈{−1,1}n−k,y∈{−1,1}k,y′∈{−1,1}k [χS(y)f(y, z)χS(y′)f(y′, z)].

This can be estimated using Chernoff bound in the required time (same as when we estimated Fourier
weights).

5

4 Assignment

Exercise 13. Using Tsang’s lemma show that r ≤ (k/2) +
√
k.

Exercise 14. Look at Equation 3, prove
∑
i
`i−1−`i
`i−1

≤
∑k
i=1 1/i.

References

1. Hing Yin Tsang, Chung Hoi Wong, Ning Xie and Shengyu Zhang, “Fourier Sparsity, Spectral Norm, and the
Log-Rank Conjecture,” 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2013.

2. Swagato Sanyal, “Fourier Sparsity and Dimension,” Theory of Computing, 2019, Vol. 15, Number 11.
3. Ryan O’Donnell, “Analysis of Boolean Functions,” Cambridge University Press, 2014.

6

	Lecture 11: Application of restrictions

