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In the last lecture we visualised the Boolean hypercube as a vector space Fn
2 and looked at Linear

Algebraic structure of this vector space, its basis vectors, subspaces, orthogonal complements, subcubes,
affine subspaces and saw the definitions of sparsities, p-norm and Fourier p-norm for functions on this vector
space.

In this lecture, continuing, we discuss the rank of a function f , it’s relation with sparsity and then an
important concept of restrictions of Boolean Functions.

1 Rank

In the last lecture we saw that any subset S ⊆ [n] can be represented by an indicator vector r ∈ Fn
2 where

ri = 1 iff i ∈ S. In view of this notation we saw that the parities can be rewritten as

χS(x) = (−1)r·x = χr(x), x ∈ Fn
2

where r is indicator of S. Inspired by the idea that the group {−1, 1}n had a corresponding isomorphic group
of characters, and that these r represent those characters, and to be able to visualise the Fourier transform
as a function itself, we say that the subset indicators are elements of space F̂n

2 , which is clearly isomorphic
to Fn

2 .
The Fourier expansion of any function f : Fn

2 → R can then be written as

f(x) =
∑
r∈F̂n

2

f̂(r) · (−1)r·x

Definition 1. The Fourier - support Sf̂ , for any function f : Fn
2 → R is defined as:

Sf̂ = {r ∈ F̂n
2 | f̂(r) ̸= 0}

Definition 2. For a function f : Fn
2 → R, let Sf̂ denote Fourier support of f̂ then

rank(f) = dim(span(Sf̂ ))

The rank of a function can give us a hint on the complexity of a function, specifically on the number of
independent quantities a function depends upon.
For example say f ’s Fourier transform be given as f(x) = x1x2. The function depends on two variables, but
we can see that we need to know the value of just one quantity to know the value of function, namely x1x2.
So, if in some world we had the facility to query value of any partial parity on input x, the query complexity
of f above would be 1. See that the rank of this function is also 1. This relation is true in general sense as
well , to see that, first recall that partial parities are characters:

χr(x) · χs(x) = χr+s(x)

This relation above tells that if we know the value of partial parities r ∈ S ⊆ F̂n
2 we can find the value of

partial parities of all linear combinations of vectors in S, namely span(S).
This combined with the idea of rank tells us that we need to know the value of only rank(f) partial parities,
corresponding to the basis of span(Sf̂ ) to know the value of f at any input. Since span(Sf̂ ) ⊆ F̂n

2 is a
subspace, rank(f) ≤ n. So it can also be used as a measure of complexity(a Fourier query complexity) but
this measure is input independent as opposed to query complexity which depends upon the input.



1.1 Relation with sparsity

Sparsity of function spar(f̂) is the number of vectors r ∈ F̂n
2 such that f̂(r) ̸= 0, i.e. spar(f̂) = |Sf̂ |. Since

we know that a subspace of F̂n
2 of dimension k has 2k elements, rank(f) is bounded by spar(f).

Some bounds on the rank of the function f are:

– rank(f) ≤ min(spar(f̂), n)
– log(spar(f̂)) ≤ rank(f)

Since a subspace of dimension k has 2k elements in it, the number of elements in span(Sf̂ ) is 2rank(f)

and since Sf̂ ⊆ span(Sf̂ ), |Sf | = spar(f̂) ≤ 2rank(f)

The above bounds can be tightly satisfied by real valued functions, but when it comes to Boolean valued
functions, the bounds can be improved. For functions like AND,OR one can verify that the second inequality
holds tightly, so this bound remains the same.
The first bound has been improved to

– rank(f) ≤
√

spar(f̂) · log(spar(f̂))

An example of a Boolean function with quite large rank as compared to sparsity is the addressing function.

– Let ADDRt be the addressing function on t + 2t input variables. Let us denote the input as x =
(x1, x2, . . . , xt, y1, y2, . . . , y2t). Then the Fourier expansion of ADDRt is:

ADDRt(x) =

2t∑
i=1

yi · 1ai
(x)

where 1a is indicator function for a and ai is t-bit Boolean representation of i. Every indicator function’s
Fourier expansion has all the Fourier coefficients non-zero and thus we see that ith term in the above
sum gives non-zero Fourier coefficients for r ∈ F̂t+2t

2 such that (r1, r2, . . . , rt) ∈ F̂t
2 and ri = 1. So we see

that

Sf̂ =

2t⋃
i=1

{r ∈ F̂t+2t

2 | (r1, r2, . . . , rt) ∈ F̂t
2, ri = 1}

It is easy to see that
1. spar(f̂) = |Sf̂ | = 22t

2. span(Sf̂ ) = F̂t+2t

2 , so rank(f) = t+ 2t

So we see that for f = ADDRt, rank(f) = O
(√

spar(f̂)
)
.

2 Restrictions to a Subcube

We can restrict the study of our function f on {−1, 1}n to a particular subcube instead of the Boolean
Hypercube. We can assign values to some of the input variables and see the new function as a function of
remaining variables. To formulate precisely:

Definition 3. Let (J, J̄) be a partition of [n] and z ∈ {−1, 1}J̄ be an assignment to the variables in J̄. For
the function f : {−1, 1}n → R, we say fJ|z : {−1, 1}J → R is a restriction of f to J using z given by fixing
variables in J̄ according to z. For y ∈ {−1, 1}J and z ∈ {−1, 1}J̄, we, with an abuse of notation can write

fJ|z = f(y, z)

Examples:
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– OR[5] : {−1, 1}5 → {−1, 1}, J = {1, 2, 3}, z = (1, 1), then ORJ|z = OR[3], more generally we have that

ORJ|z =

{
−1 ∃i ∈ J̄, zi = −1

ORJ o.w.

– Similarly we have PARITYJ|z =
∏

i∈J̄ zi · PARITYJ

2.1 Fourier Transform of Restricted Function

We saw in the example above that Parity function restricted to a subcube is another Parity function multi-
plied by a constant depending upon z. We can see that

χSJ|z (x) =
( ∏
i∈S∩J̄

zi
)
· χS\J̄(x) = χS∩J̄(z) · χS\J̄(x)

Which gives, for
f(x) =

∑
S⊆[n]

f̂(S) · χS(x)

⇒ fJ|z(x) =
∑
S⊆[n]

f̂(S) ·
( ∏
i∈S∩J̄

zi
)
· χS\J̄(x)

See that multiple sets S will give same S \ J̄, so for a particular S ⊆ J, we have

f̂J|z(S) =
∑
T⊆J̄

f̂(S ∪ T ) · χT (z)

If for S ⊆ J we define a function FS|J̄ : {−1, 1}J̄ → R as FS|J̄(z) = f̂J|z(S), see that then F̂S|J̄(T ) = f̂(S∪T ).
Under these conditions the following two relations hold:

– Ez[f̂J|z(S)] = f̂(S)

Proof- Using linearity of expectation, we have Ez[f̂J|z(S)] =
∑

T⊆J̄ f̂(S ∪ T ) · EzχT (z), and for T ̸=
∅,

∑
z χT (z) = 0.

– Ez[f̂J|z(S)
2] = f̂(S ∪ T )2 -Parseval’s Identity

Again, see that

f̂J|z(S)
2 =

( ∑
T⊆J̄

f̂(S ∪ T ) · χT (z)
)2

=
∑

T1,T2⊆J̄

f̂(S ∪ T1) · f̂(S ∪ T2) · χT1△T2
(z)

And if T1 ̸= T2, χT1△T2 would be a non-trivial character so in taking the expectation, the only terms
left will be when T1 = T2.

Ez[f̂J|z(S)
2] =

∑
T⊆J̄

f̂(S ∪ T )2Ez[1] =
∑
T⊆J̄

f̂(S ∪ T )2

The discussion above help us establish better upper bounds on rank(f) in terms of spar(f̂), precisely
rank(f) ≤

√
spar(f̂) · log(spar(f̂)) and also help us understand a better learning algorithm namely Goldreich-

Levin Algorithm.
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