Learning with Similarity Functions Prateek Jain and Purushottam Kar

Machine Learning and Optimization Group
Microsoft Research Lab India

Target App: Binary Classification

- ▶ True (unknown) classifier $f^*: \mathcal{X} \to \{-1, +1\}$
 - \rightarrow \mathcal{X} can be the set of all 50 x 50 images
 - f^* : dichotomy b/w face and non-face images
 - ightharpoonup Assume a distribution on the domain $\mathcal D$

- ▶ Goal : discover another classifier $h: X \to \{-1, +1\}$
 - ▶ h agrees with f^* on "most" points $\Pr_{x \sim \mathcal{D}}[h(x) \neq f^*(x)] \leq \epsilon$
 - \blacktriangleright h is said to be ϵ -close to the true classifier
- Supervised learning
 - Get a glimpse of f^* in action via a training set
 - $x_1, x_2, ..., x_n \sim \mathcal{D}$ i.i.d. samples along with true responses $f(x_i)$
 - Use some interpolation technique to construct a hypothesis *

Learning from training data

- We have some data for which true labels are known
 - $\{(x_1, f(x_1)), (x_2, f(x_2)), \dots, (x_n, f(x_n))\}$
 - For simplicity, let $y_i := f(x_i)$
- Set up an interpolation scheme to generalize
 - Nearest neighbor $h(x) = f\left(\underset{x_i}{\operatorname{argmin}} d(x, x_i)\right)$
 - Need some distance measure $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
 - Smoother interpolation $h(x) = \operatorname{sgn}(\sum_{i=1}^{n} s(x, x_i) y_i)$
 - ▶ Need some similarity measure $s: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
 - ▶ Sparse interpolation $h(x) = \operatorname{sgn}(\sum_{i=1}^{n} \alpha_i s(x, x_i) y_i)$
 - Wait ... are you trying to sneak in kernel learning ???
 - ... well yeah!

Learning with kernels

Support Vector Machines

- Learn a hyper plane classifier in a vector space
- Maximize margin : the larger the better

Kernel trick

- Allow SVMs to work in high dimensional spaces
- Introduce a (large) margin
- $\bullet \ \Phi: \mathcal{X} \to \mathcal{H}_K$
- Learn a linear classifier in \mathcal{H}_K

Learning with kernels

Primal view

Explicit form

$$\min_{w \in \mathcal{H}_K, b} \left\{ \frac{1}{2} \|w\|^2 + \sum_{i=1}^n \ell_i \right\}$$

$$y_i(\langle w, \Phi(x_i) \rangle + b) \ge 1 - \ell_i$$

$$\ell_i \ge 0$$

Explicit Implicit

- $h(x) = \operatorname{sgn}(\langle w, \Phi(x) \rangle + b)$
- $\blacktriangleright \operatorname{sgn}(\sum_{i=1}^n \alpha_i y_i K(x, x_i) + b)$

Dual view

- Implicit form *
- $\max_{\alpha} \{\alpha^{\mathsf{T}} \mathbb{1} \alpha^{\mathsf{T}} K \alpha\}$ $0 \le \alpha_i \le 1$ $\sum y_i \alpha_i = 0$ $K(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle$
- $\mathsf{K}:\mathcal{X}\mathsf{x}\mathcal{X}\to\mathbb{R}$ must be PSD
- Must introduce a margin
- Is all this really necessary?

Redefining kernel learning

Geometric view (implicit) Functional view (explicit)*

- Find Embedding $\Phi: \mathcal{X} \to \mathcal{H}_K$
- ▶ Classifier $w \in \mathcal{H}_K$
- A kernel K is (ϵ, γ) -Kgood for a problem (f^*, \mathfrak{D}) if there exists $w \in \mathcal{H}_K$ such that most points respect a margin
- Suppose $f^*(x) = y$ $GOOD_{\gamma}(x) := y\langle w, \Phi(x) + b \rangle \ge \gamma$ $\Pr_{x \sim \mathcal{D}}[GOOD_{\gamma}(x)] \ge 1 - \epsilon$
- Kernel introduces a margin

- i directoriai view (explicit)
- ▶ Embedding $x \mapsto (K(x, x_1), ... K(x, x_n))$
- ▶ Classifier $\alpha \in \mathbb{R}^n$
- A kernel K is (ϵ, γ) -Sgood for a problem if most points are (in weighted sense), closer to points of same label
- Suppose $f^*(x) = y$ $A_{+}(x) \coloneqq \mathop{\mathbb{E}}_{x' \sim \mathcal{D}^{+}} [w(x')K(x, x')]$ $A_{-}(x) \coloneqq \mathop{\mathbb{E}}_{x' \sim \mathcal{D}^{-}} [w(x')K(x, x')]$ $GOOD_{\gamma}(x) \coloneqq y(A_{+}(x) A_{-}(x)) \ge \gamma$ $\Pr_{x \sim \mathcal{D}} [GOOD_{\gamma}(x)] \ge 1 \epsilon$
- Kernel introduces explicit separation

Learning with kernels

- The functional view makes no reference to any explicit embedding nor does it require the kernel to be PSD
 - Proposed as an alternative "goodness" criterion for kernel learning by [Balcan-Blum, '06]
- Sanity checks for this new "goodness" criterion
 - Utility (anything you call good should be useful as well) [Balcan-Blum, '06]
 - Every (ϵ, γ) -Sgood kernel can be used to learn a classifier that is $(\epsilon + \epsilon_1)$ -close to the true classifier for any $\epsilon_1 > 0$
 - Admissibility (everything that was good should continue to remain good) [Srebro, '07]
 - Fivery (ϵ, γ) -Kgood kernel is $\left(\epsilon + \epsilon_1, \frac{1}{4}\epsilon_1\gamma^2\right)$ -Sgood for any $\epsilon_1 > 0$

Learning with Similarity functions

- Several domains have natural notions of (non-PSD) similarities
 - Earth Mover's distance : images, distributions
 - Overlap distance : co-authorship graphs, texts (bag-of-words)
- Using Sgood-ness to extend kernel learning techniques to (non-PSD) similarity functions?
 - Select random "landmark points" $\mathcal{L} = \{x_1^l, x_2^l, \dots, x_d^l\} \sim \mathcal{D}^d$
 - 2. Construct an embedding $\Psi_{\mathcal{L}}(x) = \left(K(x, x_1^l), \dots, K(x, x_d^l)\right)$
 - 3. Select random training points $\mathcal{T} = \{x_1, x_2, ..., x_n\} \sim \mathcal{D}^n$
 - 4. Learn a vector $\alpha \in \mathbb{R}^d$ using training points
 - 5. Output classifier $h(x) = \operatorname{sgn}(\langle \alpha, \Psi_{\mathcal{L}}(x) \rangle) = \sum_{i=1}^{d} \alpha_i K(x, x_i^l)$
- Classifier of same form as that in SVM!
 - In fact, one can use the SVM algorithm on \mathbb{R}^d to learn lpha

Learning with kernels vs. similarities

PSD kernel learning

- Implicit form (with "b")
- $\max_{\alpha} \{\alpha^{\mathsf{T}} \mathbb{1} \alpha^{\mathsf{T}} K \alpha\}$ $\sum y_i \alpha_i = 0$ $0 \le \alpha_i \le 1$
- $h(x) = \operatorname{sgn}(\sum_{i=1}^{n} \alpha_i y_i K(x, x_i) + b)$
- lacktriangle Data oblivious embedding Φ
- Sparsity inducing regularization on α
- Need just a training set

Similarity learning

- Explicit form
- $\min_{\alpha,b} \left\{ \frac{1}{2} \|\alpha\|^2 + \sum_{i=1}^n \ell_i \right\}$ $y_i(\langle \alpha, \Psi_{\mathcal{L}}(x_i) \rangle + b) \ge 1 \ell_i$ $\ell_i \ge 0$
- $h(x) = \operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_i K(x, x_i^l) + b\right)$
- ullet Data dependent embedding $\Psi_{\!\mathcal{L}}$
- Usually get non sparse α
- Need separate landmark and training sets

Theoretical Guarantees

- If a kernel/similarity is (ϵ, γ) -Sgood then most likely the landmarked space has a large margin classifier in it
 - There exists α such that $\Pr_{x \sim \mathcal{D}} \left[y \langle \alpha, \Psi_{\mathcal{L}}(x) \rangle \leq \frac{\gamma}{4} \right] \leq \epsilon + \epsilon_1^*$
 - We can learn this large margin classifier using training data
 - We used an Sgood (non)PSD kernel to define a Kgood PSD kernel
- How much data required?
 - About $\mathcal{O}\left(\frac{1}{\gamma^2\epsilon_1^2}\log\frac{1}{\delta}\right)$ landmark points and a similar number of training points required to obtain a classifier that is $(\epsilon+\epsilon_1)$ -close to the true classifier with a confidence of $(1-\delta)$

A "brief" overview of the guarantees

Task	Suitability (Sgood)	Utility	Sample Complexity	Admissibility Kgood →Sgood
Classification [Balcan-Blum '06] [Srebro '07]	(ϵ, γ)	$(\epsilon + \epsilon_1)$ Misclassification rate	$\mathcal{O}\left(\frac{1}{\gamma^2\epsilon_1^2}\right)(U+L)$	$ (\epsilon, \gamma) \Rightarrow $ $ (\epsilon + \epsilon_1, \Theta(\epsilon_1 \gamma^2)) $
Regression * [Jain-K.'12]	(ϵ, B)	$(B\epsilon + \epsilon_1)$ Mean squared error	$\mathcal{O}\left(\frac{B^4}{\epsilon_1^2}\right)$ (U+L)	$ (\epsilon, \gamma) \Rightarrow $ $ \left(\epsilon + \epsilon_1, \Theta\left(\frac{1}{\epsilon_1 \gamma^2}\right) \right) $
Ordinal Regression * [Jain-K.'12]	(ϵ, B, Δ)	$\psi_{\Delta}(\epsilon)+\epsilon_1$ Ordinal Regression Error	$\mathcal{O}\left(\frac{B^2}{\Delta^2\epsilon_1^2}\right) (U+L)$	$ (\epsilon, \gamma, \Delta) \Rightarrow $ $ \left(\gamma_1 \epsilon + \epsilon_1, \Theta\left(\frac{\gamma_1^2}{\epsilon_1 \gamma^2}\right), \gamma_1 \Delta \right) $
m-Ranking * [Jain-K.'12]	(ϵ, B)	$\mathcal{O}\left(\sqrt{\frac{m\epsilon}{\log m}} + \epsilon_1\right)$ NDCG loss	$\mathcal{O}\left(\frac{B^6 m^8}{\epsilon_1^4 \log^2 m}\right) U$ + $\mathcal{O}\left(\frac{B^6 m^4}{\epsilon_1^4 \log^2 m}\right) L$	$ \left(\epsilon, \gamma \right) \Rightarrow $ $ \left(\epsilon + \epsilon_1, \mathcal{O} \left(\sqrt{\frac{m^3}{\epsilon_1^3 \gamma^6}} \right) \right) $

^{*} Notion of suitability (K/S-goodness) a bit different for non classification learning problems

Final words

- Notion of suitability amenable to efficient training algos
 - Suitability criterion with convex surrogate loss functions
 - ▶ [Balcan-Blum, '06], [Jain-K., '11]
- Double dipping : can we reuse training set for landmarks ?
 - Yes ... via uniform convergence guarantees for data dependent hypothesis spaces * [Srebro et al, '08], [Jain-K., '12]
- Other supervised learning formulations
 - Modified suitability criteria for supervised learning
 - Regression, ordinal regression, ranking
 - ▶ Sparse regression (regression with sparse α) [Jain-K., '12]
 - Utility, (tight) admissibility results [Jain-K., '12]