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Target App : Binary Classification

� True (unknown) classifier	�∗: � → 	 ��1,�1�

� � can be the set of all 50 x 50 images

� �∗ : dichotomy b/w face and non-face images

� Assume a distribution on the domain 


� Goal : discover another classifier � ∶ � →	 ��1,�1�

� � agrees with �∗ on “most” points Pr
�∼


� � � �∗ � � �

� � is said to be �-close to the true classifier

� Supervised learning

� Get a glimpse of �∗ in action via a training set

� ��, ��, … , �� ∼ 
 i.i.d. samples along with true responses � ��

� Use some interpolation technique to construct a hypothesis *

* Ensure this for most samples to claim the PAC-man title !! 2



Learning from training data
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� We have some data for which true labels are known

� ��, � �� , ��, � �� , … , ��, � ��
� For simplicity, let �� ≔ � ��

� Set up an interpolation scheme to generalize

� Nearest neighbor ℎ � = � argmin
�%

& �, ��

� Need some distance measure & ∶ �	x � → ℝ

� Smoother interpolation ℎ � = 	 sgn ∑ * �, �� ��
�
�+�

� Need some similarity measure * ∶ �	x � → ℝ

� Sparse interpolation ℎ � = 	 sgn ∑ ,�* �, �� ��
�
�+�

� Wait … are you trying to sneak in kernel learning ???

� … well yeah !



Learning with kernels

� Support Vector Machines

� Learn a hyper plane classifier in 
a vector space

� Maximize margin : the larger 
the better

� Kernel trick

� Allow SVMs to work in high 
dimensional spaces

� Introduce a (large) margin

� Φ ∶ � → 	./

� Learn a linear classifier in ./

4



Learning with kernels

Primal view Dual view

* To “b” or not to “b” : that really is a big question ☺ 5

� Explicit form

� min
0∈ℋ2,3

�

�
4 � + ∑ ℓ�

�
�+�

�� 4,Φ �� � 6 ≥ 1 − ℓ�
																						ℓ� 	≥ 0

� Implicit form *

� max
:

,;< − ,;=,

0 ≤ ,� ≤ 1
∑��,� = 0

= �� , �> = Φ �� ,Φ �>
Explicit ���� Implicit

� K ∶ �	x � → ℝ must be PSD

� Must introduce a margin

� Is all this really necessary ?

� 4 = ∑ ,���Φ ��
�
�+�

� � � = sgn 4,Φ � � 6

� sgn ∑ ,���= �, ��
�
�+� + 6



Redefining kernel learning

Geometric view (implicit) Functional view (explicit)*

* Balcan and Blum, “A Theory of Learning with Similarity Functions, ICML 2006” 6

� Embedding Φ ∶ � →	ℋ/

� Classifier 4 ∈ ℋ/

� A kernel = is �, ? -Kgood for 
a problem �∗, @ if there 
exists 4 ∈ ℋ/ such that most 
points respect a margin

� Suppose �∗ � = �
GOODD � ≔ � 4,Φ � � 6 ≥ ?

Pr
�∼


GOODD � ≥ 1 − �

� Kernel introduces a margin

� Embedding � ⟼ = �, �� , …= �, ��

� Classifier , ∈ ℝ�

� A kernel = is �, ? -Sgood for a 
problem if most points are (in weighted 
sense), closer to points of same label

� Suppose �∗ � = �
AG � ≔ E

�I∼
J
4 �′ = �, �L	

AM � ≔ E
�I∼
N

4 �′ = �, �L	

GOODD � ≔ � AG � − AM � ≥ ?

Pr
�∼


GOODD � ≥ 1 − �

� Kernel introduces explicit separation



Learning with kernels
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� The functional view makes no reference to any explicit 
embedding nor does it require the kernel to be PSD

� Proposed as an alternative “goodness” criterion for kernel 
learning by [Balcan-Blum, ‘06]

� Sanity checks for this new “goodness” criterion

� Utility (anything you call good should be useful as well)  
[Balcan-Blum, ‘06]

� Every �, ? -Sgood kernel can be used to learn a classifier that is 
� + �� -close to the true classifier for any �� > 0

� Admissibility (everything that was good should continue to 
remain good) [Srebro, ‘07]

� Every �, ? -Kgood kernel is � + ��,
�

P
��?

� -Sgood for any �� > 0



Learning with Similarity functions
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� Several domains have natural notions of (non-PSD) similarities
� Earth Mover’s distance : images, distributions
� Overlap distance : co-authorship graphs, texts (bag-of-words)

� Using Sgood-ness to extend kernel learning techniques to 
(non-PSD) similarity functions ?

1. Select random “landmark points” Q = ��
R , ��

R , … , �S
R ∼ 
S

2. Construct an embedding ΨQ � = = �, ��
R , … , = �, �S

R

3. Select random training points U = ��, ��, … , �� ∼ 
�

4. Learn a vector , ∈ 'Susing training points

5. Output classifier � � = 	 sgn ,,ΨQ � � ∑ ,�= �, ��
RS

�+�

� Classifier of same form as that in SVM !

� In fact, one can use the SVM algorithm on 'S to learn ,



Learning with kernels vs. similarities

PSD kernel learning Similarity learning

9

� Implicit form (with “b”)

� max
:

,;< − ,;=,

∑��,� = 0

0 ≤ ,� ≤ 1

� ℎ � = sgn ∑ ,���= �, ��
�
�+� + 6

� Data oblivious embedding Φ

� Sparsity inducing regularization on ,

� Need just a training set

� Explicit form

� min
:,3

�

�
, � + ∑ ℓ�

�
�+�

�� ,,Ψℒ �� + 6 ≥ 1 − ℓ�
																						ℓ� 	≥ 0

� ℎ � = sgn ∑ ,�
�
�+� = �, ��

R + 6

� Data dependent embedding Ψℒ

� Usually get non sparse ,

� Need separate landmark and 
training sets



Theoretical Guarantees

* Note that this means that the kernel =Q �, �L = ΨQ � ,ΨQ �L is � + ��,
D

P
-Kgood 10

� If a kernel/similarity is �, ? -Sgood then most likely the 
landmarked space has a large margin classifier in it

� There exists , such that Pr
�∼


� ,,ΨQ � ≤
D

P
≤ � + ��*

� We can learn this large margin classifier using training data

� We used an Sgood (non)PSD kernel to define a Kgood PSD 
kernel

� How much data required ?

� About V
�

DWXY
W log

�

\
landmark points and a similar number of 

training points required to obtain a classifier that is � + �� -
close to the true classifier with a confidence of 1 − ]



A “brief” overview of the guarantees

* Notion of suitability (K/S-goodness) a bit different for non classification learning problems 11

Task Suitability
(Sgood)

Utility Sample 
Complexity

Admissibility
Kgood ����Sgood

Classification
[Balcan-Blum ‘06]

[Srebro ‘07]

�, ? � + ��
Misclassification rate

V
�

DWXY
W (U+L)

�, ? ⇒

� + ��, Θ ��?
�

Regression *
[Jain-K. ‘12]

�, ` `� + ��
Mean squared error

V
ab

XY
W (U+L)

�, ? ⇒

� + ��, Θ
1

��?
�

Ordinal 
Regression *

[Jain-K. ‘12]

�, `, Δ de � + ��
Ordinal Regression 

Error

V
aW

eWXY
W (U+L)

�, ?, Δ ⇒

?�� + ��, Θ
?�
�

��?
�

, ?�Δ

m-Ranking *
[Jain-K. ‘12]

�, `

V
f�

logf
+ ��

NDCG loss

V
aghi

XY
b jklW h

U

+ 

V
aghb

XY
b jklW h

L

�, ? ⇒

� + ��, V
fm

��
m?n



Final words

* Sorry … could not resist using a complicated-looking phrase ! 12

� Notion of suitability amenable to efficient training algos

� Suitability criterion with convex surrogate loss functions

� [Balcan-Blum, ‘06], [Jain-K., ‘11]

� Double dipping : can we reuse training set for landmarks ?

� Yes … via uniform convergence guarantees for data dependent 
hypothesis spaces * [Srebro et al, ‘08], [Jain-K., ‘12]

� Other supervised learning formulations

� Modified suitability criteria for supervised learning

� Regression, ordinal regression, ranking

� Sparse regression (regression with sparse ,) [Jain-K. ,‘12]

� Utility, (tight) admissibility results [Jain-K. ,‘12]


