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Target App : Binary Classification

» True (unknown) classifier f*: X' = {—1,+1} o = R
X can be the set of all 50 x 50 images .

f* :dichotomy b/w face and non-face images

Assume a distribution on the domain D
» Goal : discover another classifier h : X - {—1,+1}
h agrees with f* on “most” points xliri)[h(x) = f'(x)] <€
h is said to be e-close to the true classifier
» Supervised learning
Get a glimpse of f* in action via a training set

X1, X5, ..o, Xy ~ D ii.d. samples along with true responses f(x;)
Use some interpolation technique to construct a hypothesis *

* Ensure this for most samples to claim the PAC-man title !! 2



Learning from training data

» We have some data for which true labels are known
{Cxq, £ (1)), O, f(x2)), e, (i, f (X))}
For simplicity, let y; = f(x;)

» Set up an interpolation scheme to generalize
Nearest neighbor h(x) = f (argmin d(x, xl-))

X
Need some distance measure d : X x X =» R
Smoother interpolation h(x) = sgn(X.;=, s(x, x;)y;)
Need some similarity measure s : X x X’ - R
Sparse interpolation h(x) = sgn(}./=; a;s(x, x;)y;)
Wait ... are you trying to sneak in kernel learning ???
... well yeah !



Learning with kernels

» Support Vector Machines

d
Learn a hyper plane classifier in TICI R o
a vector space T
Maximize margin : the larger . °. the a \
the better M .
» Kernel trick S
Allow SVMs to work in high /\ . .
dimensional spaces . H,

Introduce a (large) margin
O: X - }[K

Learn a linear classifier in H

h(x) = sgn(w'x + b)

wx+b>7e

wx+b<-ye




Learning with kernels

» Explicit form » Implicit form *
in {=|lwllz + X%, ¢, » max{a'l—a Ka
+min w2 + 57 40 ax{ }
y;((w, ®(x))+ b)) =1 —¢; 0<a; <1
fi >0 Zyiai =0

K (xi, %) = (@ (x;), @(x7))

y W = Z’l?:l. a;y; D(x;) » K: X xX — R must be PSD
» h(x) = sgn({w, ®(x)) + b) » Must introduce a margin
» sgn(X™, a;y;K(x,x;) + b) Isall this really necessary ?

*To “b” or not to “b” : that really is a big question © 5



Redefining kernel learning

» Embedding @ : X —» Hy » Embedding x — (K(x,x1), ... K(x, %))
» Classifier w € Hy, » Classifier ¢ € R"
» A kernel K is (¢, y)-Kgood for » A kernel K is (€,y)-Sgood for a
a problem (f”, D) if there problem if most points are (in weighted
exists W € Hy such that most sense), closer to points of same label
points respect a margin » Suppose f*(x) = y
» Suppose f*(x) =y AL (x) = ,ED+[W(x’)K(x,x’ )]
GOOD, (x) = y{w, ®(x) + b) =y A= E [we)KGx)]
_ x'~D~
Prl6ooD, ()] =1 - GOOD, (x) = y(A,(x) = A_(x)) > y
» Kernel introduces a margin lil;)[GOODy(x)] >1—¢€

» Kernel introduces explicit separation

* Balcan and Blum,“A Theory of Learning with Similarity Functions, ICML 2006” 6



Learning with kernels

» The functional view makes no reference to any explicit
embedding nor does it require the kernel to be PSD

Proposed as an alternative “goodness” criterion for kernel
learning by [Balcan-Blum,‘06]
» Sanity checks for this new “goodness” criterion

Utility (anything you call good should be useful as well)
[Balcan-Blum, ‘06]

Every (€,y)-Sgood kernel can be used to learn a classifier that is
(€ + €1)-close to the true classifier for any €, > 0

Admissibility (everything that was good should continue to
remain good) [Srebro, ‘07]

Every (€,v)-Kgood kernel is (E + El,ielyz)-Sgood forany e; >0



Learning with Similarity functions

» Several domains have natural notions of (non-PSD) similarities
Earth Mover’s distance : images, distributions
Overlap distance : co-authorship graphs, texts (bag-of-words)

» Using Sgood-ness to extend kernel learning techniques to
(non-PSD) similarity functions ?

/ Select random “landmark points” £ = {x{,xé, ...,xé} ~ DA \

Construct an embedding W, (x) = (K(x, x{), o K(x, xé))

Select random training points T = {x{, x5, ..., X} ~ D"
Learn a vector a € [Rdusing training points

> Output classifier h(x) = sgn({a, ¥;(x))) = X%, ;K (x, XLZ)J

» Classifier of same form as that in SVM !

In fact, one can use the SVM algorithm on R¢ to learn «



Learning with kernels vs. similarities

» Implicit form (with “b”) » Explicit form
Tq _ T ] 1
> mc?x{a 1—a Ka} ) rg,lbn{E”a”2+Z?=1 i}
2Yi% =0 yi((@ We(x)) +b) 2 1= ¢,
0 < a; < 1 fi >0

» h(x) = sgn(Xj=y a;yiK(x, %) +b) h(x) = sgn(Xi-, a; K(x,x;) + b)
» Data oblivious embedding ® » Data dependent embedding ¥,

» Sparsity inducing regularization on «
parsity & 1e8 » Usually get non sparse

» Need just a training set
) 5 » Need separate landmark and

training sets



Theoretical Guarantees

» If a kernel/similarity is (€,y)-Sgood then most likely the
landmarked space has a large margin classifier in it

There exists a such that PIZ') [y(a, Y, (x)) < ﬂ <e€+e*
x~

We can learn this large margin classifier using training data

We used an Sgood (non)PSD kernel to define a Kgood PSD
kernel

» How much data required !

About O (
V E1

training points required to obtain a classifier that is (€ + €;)-
close to the true classifier with a confidence of (1 — §)

>log ) landmark points and a similar number of

* Note that this means that the kernel K;(x,x") = (W (x), ¥ (x")) is (E + €4, ) -Kgood 10



A “brief” overview of the guarantees

Task Suitability Utility Sample Admissibility
(Sgood) CompIeX|ty Kgood =»Sgood

Classification (6,7) (e + €) (€,y) =
[Balcan-Blum ‘06] Misclassification rate (E + €1,0(e1y ))
[Srebro ‘07]
Regress‘ion * (¢, B) (Be + €,) 0 (B_:) (U+L) (e,y) =
[ain-K. 12] Mean squared error €1 ( ( 1 ))
€+€1,0 >
€1y
Ordinal (e,B,7) Ya(e) + ¢ 0 ( B2 ) U+L (6,7,4) =
. . : 22 J(U+L)
Regression =3 Ordinal Regression A<eg cte @ )/1 A
[Jain-K.‘12] Error V1 1 61]/2 V1
m-Rank‘ing 4 (¢,B) e ( 436"128 ) U (€,y) =
[ain-K.‘12] O + €, €7 logzm ;
logm + e+€1,0< ?6>
B%m* €7y
NDCG loss 0 ( 2 ) L
€7 logZm

* Notion of suitability (K/S-goodness) a bit different for non classification learning problems N



Final words

» Notion of suitability amenable to efficient training algos
Suitability criterion with convex surrogate loss functions
[Balcan-Blum, ‘06], [Jain-K.,*1 1]

» Double dipping : can we reuse training set for landmarks ?
Yes ... via uniform convergence guarantees for data dependent
hypothesis spaces * [Srebro et al,‘08], [Jain-K.,‘12]

» Other supervised learning formulations
Modified suitability criteria for supervised learning
Regression, ordinal regression, ranking
Sparse regression (regression with sparse a) [Jain-K.,"[2]
Utility, (tight) admissibility results [Jain-K., | 2]

*Sorry ... could not resist using a complicated-looking phrase ! 12



