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ABSTRACT
Compile-time errors pose a major learning hurdle for students of in-
troductory programming courses. Compiler error messages, while
accurate, are targeted at seasoned programmers, and seem cryptic
to beginners. In this work, we address this problem of pedagogically-
inspired program repair and report TRACER (Targeted RepAir of
Compilation ERrors), a system for performing repairs on compila-
tion errors, aimed at introductory programmers.

TRACER invokes a novel combination of tools from program-
ming language theory and deep learning and offers repairs that
not only enable successful compilation, but repairs that are very
close to those actually performed by students on similar errors.
The ability to offer such targeted corrections, rather than just code
that compiles, makes TRACER more relevant in offering real-time
feedback to students in lab or tutorial sessions, as compared to
existing works that merely offer a certain compilation success rate.

In an evaluation on 4500 erroneous C programs written by stu-
dents of a freshman year programming course, TRACER recom-
mends a repair exactly matching the one expected by the student
for 68% of the cases, and in 79.27% of the cases, produces a compil-
able repair. On a further set of 6971 programs that require errors to
be fixed on multiple lines, TRACER enjoyed a success rate of 44%
compared to the 27% success rate offered by the state-of-the-art
technique DeepFix.

CCS CONCEPTS
• Computing methodologies → Machine translation; Neural
networks; •Applied computing→Computer-assisted instruc-
tion; • Social and professional topics→ CS1;
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Intelligent Tutoring Systems, Compilation Errors, Automatic Repair,
Recommendation Systems
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1 INTRODUCTION
The field of automated code repair has traditionally focused on
fixing logical errors, upon being given requirement specifications
(such as test-suites), while not payingmuch attention to compilation
errors [14]. This was deemed acceptable, given advancements in
compiler techniques which made identifying and fixing compile-
time errors by experienced developers relatively straight-forward.

However, as noted by Traver [24], compiler error messages are
cryptic, and often an impediment to effective programming for
an average programmer. Unfortunately, this issue has been largely
ignored by compiler designers and better error messages are usually
a low priority feature [24]. For those beginning to learn a new
language, and hence unfamiliar with programming constructs of
that language, compiler errors can be very confusing and time
consuming to fix [6]. This is especially true for those who lack prior
experience in any form of programming.

Figures 1 and 2 illustrate actual attempts by students in the very
first lab session of an introductory course on C programming, as
well as the actual fixes proposed by our method TRACER. The
captions list the messages returned by the Clang compiler [12], a
popular compiler for the C language. It is clear that the compiler
error messages in these examples are not very informative for a
student who has just been introduced to the concept of formal
programming with datatypes and operators.

In the first case, the error message does not provide any valu-
able feedback to a student unfamiliar with the concept of pass-by-
reference vs pass-by-value. It may be frustrating to the student that
a format that is valid for printf (%d, followed by variable name) is
being flagged as an error for the scanf invocation. In the second
case, the compiler error message may actually mislead the student
since the error in the program is the trivial omission of an arith-
metic operator whereas the compiler is interpreting it as an illegal
function invocation, simply because parentheses are involved.

These gaps arise since compilers messages are written for expert
programmers and assume that the programmer has a thorough
understanding of advanced concepts such as variable addresses,
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1 #include <stdio.h>

2 int main(){

3 int a;

4 scanf("%d", a );

5 printf("ans=%d",

6 a+10);

7 return 0;

8 }

1 #include <stdio.h>

2 int main(){

3 int a;

4 scanf("%d", &a );

5 printf("ans=%d",

6 a+10);

7 return 0;

8 }

Figure 1: Left: erroneous program, Right: fix by TRACER. The com-
piler message read: Line-4, Column-9: warning: format ‘%d’ expects
argument of type ‘int *’, but argument 2 has type ‘int’.

1 #include <stdio.h>

2 int main(){

3 int x,x1 ,d;

4 // ...

5 d=(x-x1)(x-x1);

6 return d;

7 }

1 #include <stdio.h>

2 int main(){

3 int x,x1,d;

4 // ...

5 d=(x-x1)*(x-x1);

6 return d;

7 }

Figure 2: Left: erroneous program, Right: fix by TRACER. The com-
piler message read: Line-5, Column-11: error: called object type ‘int’
is not a function or function pointer.

pointers and function invocation. However, these concepts are
generally covered much later in a programming course. Thus, a
novice programmer is unable to comprehend the error message or
the cause of the error. In our dataset, around half of the students
made similar errors and although the fix is simple in all these cases,
students did require the help of a teaching assistant to understand
the error messages and apply the fixes.

Although it is true that the time taken by students to fix com-
mon compile-time errors decreases over time as they get more
comfortable with grammar of the language and adapt to the com-
piler messages, in a typical course, it takes a considerable amount of
effort and supervision from teaching assistants who not only have
to help students correct mistakes, but also help them understand
the cause of the error.

With a move towards Massive Open Online Courses (MOOCs)
where thousands of students may enroll, it is infeasible to provide
human assistance in this manner, even in the initial phase. Moreover,
there is evidence [6, 7] that across such programming courses, the
errors made by students in the initial phases are quite similar. This
points to a lucrative potential for automating this repetitive and
monotonous role played by teaching assistants.

The work of Traver [24] attempts to address this problem by
offering more informative error messages that would aid program-
mers in easier diagnoses. There has also been work on designing
custom compilers for novice users [23]. These compilers aim for
better error recovery and correction than standard compilers, so
as to offer better feedback. However, these require a significant
amount of effort from compiler designers, and the effort has to be
replicated for every compiler being used. Moreover, studies [15]
have shown that additional information in the form of enhanced
error messages does not seem to be very helpful, especially for
novice programmers.

1.1 Our Contributions
We report TRACER (Targeted RepAir of Compilation ERrors), a
method for automatically generating template repairs for buggy
programs that face compilation errors. This problem has generated
significant interest recently. However, the guarantees offered by ex-
isting works [2, 7, 19] are rather modest and simply offer compilable
code in a large fraction of instances.

The design of TRACER is based on a realization that the goal of
program repair in pedagogical settings is not to simply eliminate
compilation errors using any means possible (such as deleting the
error line altogether), but rather to reveal the underlying errors to
the students, so that they may learn how to correct similar errors
themselves in the future [25]. In fact, it may be argued that offering
the repaired, compilable program to the student directly, which
many existing works do [2, 7, 8], defeats the purpose of learning
and may even pose challenges in course evaluations.

The techniques adopted by TRACER for program repair are moti-
vated by a common observation [7, 8] that in practice, programmers
(especially novice programmers) use a rather small subset of rules
and productions of the entire grammar. Thus, it should be possible
to repair an erroneous program by mapping it to a similar program
(from past code obtained from students themselves) that is known
to be compilable, and hence (at least) syntactically correct.

TRACER offers targeted corrections that pinpoint the source
of the error, as well as recommends the fix actually desired by
the student, thereby offering compilable code as a by-product. Fig-
ures 1 and 2 demonstrate some of the fixes TRACER can successfully
apply to actual programs. To this end, TRACER adopts a modular,
three-phase methodology for code repair which involves

(1) Error Localization: TRACER locates the line(s) where re-
pair must be performed.

(2) Abstract Code Repair: TRACER attempts to identify the
intent of student and recommends an abstracted form of
the repair to the erroneous line(s), based on sequence-to-
sequence prediction techniques that use recurrent neural
networks.

(3) Concretization: TRACER finally converts the abstract re-
pair into actual code that can be compiled.

The above presents a significant departure from existing works
[2, 7, 19], which also adopt deep learning techniques such as re-
current neural networks, but in a very monolithic manner. It is
common in existing works to simply feed the entire erroneous
program into a deep network and expect repairs as an output. In
contrast, TRACER’s modular approach to error repair offers several
key advantages over the state-of-the-art.

(1) To the best of our knowledge, TRACER is the first system
to be able to successfully reproduce the exact fix expected
by the student on an erroneous program, and not merely
reduce compilation errors.

(2) Even when comparing compilation rates, TRACER offers
success rates that are far superior to the state-of-the-art.

(3) TRACER offers repairs in both abstract and concretized
forms. Depending on the learning objectives set by the in-
structor, either may be offered to students. In particular, the
concretized code may be redacted and just the abstract form
offered if it is desired that the student identify the form of the
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Table 1: Examples of source-target pairs for single-line errors. Each row describes an actual error case found in our data. The
first column describes the (erroneous) source line and its abstraction. The second column describes the target line (extracted
from repairs attempted by the student) and its abstraction. Finally, the third column describes the abstract and concrete ver-
sions of the top-ranked repair suggested by TRACER. TRACER produced compilable code in all these cases. More importantly
in most cases, TRACER is able to predict the exact fix expected by the student. TRACER is robust to even inappropriate (albeit
compilable) fixesmade by students. For instance, in the example in row 3, the target (student) code will compile with warnings
but most likely face runtime errors, but TRACER’s top suggestion is the most appropriate fix for the corresponding error.

# Source-line and Source-abstraction Target-line and Target-abstraction TRACER’s Top Prediction

1
d = (x-x1)(x-x1); d = (x-x1)*(x-x1); d = (x-x1)*(x-x1);
INT = (INT - INT)(INT - INT); INT = (INT - INT)*(INT - INT); INT = (INT - INT)*(INT - INT);

2
p+‘a’ = p; p = p+‘a’; p = p+‘a’;
CHAR + ‘LITERAL_C’ = CHAR; CHAR = CHAR + ‘LITERAL_C’; CHAR = CHAR + ‘LITERAL_C’;

3
printf(,c,); printf(c); printf("%d",c);
printf(,INT,); printf(INT); printf("%d",INT);

4
if(a[i]==a[j] && i!(==)j) if(a[i]==a[j] && !(j==i)) if(a[i]==a[j] && i!=(j))
if(ARRAY[INT] == ARRAY[INT] && if(ARRAY[INT] == ARRAY[INT] && if(ARRAY[INT] == ARRAY[INT] &&

INT !(==) INT) !(INT == INT)) INT != (INT))

5
printf("%d", a + b/6)); printf("%d", a + (b/6)); printf("%d", a + b/6);
printf("%d",INT + INT/LITERAL_I)); printf("%d",INT + (INT/LITERAL_I)); printf("%d",INT + INT/LITERAL_I);

6
{ while (a > 0) { while (a > 0) { { while (a > 0) {
{ while (INT > LITERAL_I) { while (INT > LITERAL_I) { { while (INT > LITERAL_I) {

error from this feedback rather than simply receive corrected
code. This is not possible with existing techniques.

(4) Each of the three phases can be improved upon indepen-
dently, or be replaced with a different technique, to increase
the overall accuracy of the system.

The modular structure of TRACER also helps it harness the
power of deep learning techniques in a focused manner. In particu-
lar, the abstraction phase implicitly performs a vocabulary compres-
sion step that greatly eases the working of neural networks.

We note that although we present the TRACER system for a
C-programming environment, versions of TRACER may be readily
developed for other languages as well. As we shall see, the language
specific components of the system are minimal, as is the manual
effort required to port the system to a new programming language.

1.2 Organization of the Paper
Section 2 describes the processes adopted to prepare data to train
the learning algorithms present in TRACER. Section 3 presents de-
tails of various modules that constitute TRACER. Section 4 presents
a brief overview of the deep learning techniques used by TRACER.
Section 5 presents the results of an extensive evaluation of TRACER
on programs taken from an actual introductory programming
course. Section 6 presents a more detailed literature review. Sec-
tions 7 and 8 then, respectively, outline some future directions for
this effort and conclude the discussion.

2 DATA PREPARATION
Since TRACER learns to recommend error repairs from student
programs themselves, we obtained student submissions in various
lab assignments from the 2015-2016 fall semester offering of an
Introductory C programming course (CS1) at the Indian Institute
of Technology Kanpur (IIT-K). Below we describe the steps taken
to create a training subset for TRACER from these submissions.

2.1 Raw Data Collection
Our data was collected using Prutor [5], a system that captures inter-
mediate versions of programs in addition to the final submissions.
The system is capable of taking snapshots of the student code at
every compilation request, as well as at regular intervals by default.
Thus, the system gives us a sequence of programs which track the
progress of a student while solving a question.

2.2 Source-Target Pair Identification
Given this raw data, we filtered all code to obtain source-target
program pairs as follows. We identified successive snapshots of the
student code (say Ct and Ct+1) such that

(1) Compilation of Ct resulted in at least one compilation error
(2) Compilation of Ct+1 did not produce any compilation errors

Ct is called the Source Program and Ct+1 is called the Target
Program. These program pairs were further filtered out to those
pairs where the programs Ct and Ct+1 differ at a single line (single-
line edits) and those that differed on multiple lines (multi-line edits).

Ostensibly, the former correspond to programs where the error
in the program was confined to a single line whereas in the latter,
the errors, and hence the student edits, were present on multiple
lines. For single-line edit program pairs, the line in Ct that was
changed is called the Source Line whereas the same line in Ct+1 is
called the Target Line.

For example, in Figures 1 (respectively 2), line number 4 (respec-
tively line number 5) in the left and the right hand programs is
the source and the target line for that pair of programs. We only
used single-line edit program pairs for training TRACER. However,
we do report results on multi-line edit program pairs as well (see
Section 3.5).

We notice that we train TRACER only on genuine source-target
pairs whereas other approaches such as [7] also use program pairs
created by artificially introducing errors into a correct program.
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Table 2: Our dataset of single-line errors (singleL)

Lab # Prog Topic

Lab 1 524 Hello World
Lab 2 1643 Simple Expressions
Lab 3 1015 Simple Expressions, printf, scanf
Lab 4 901 Conditionals
Lab 5 1104 Loops, Nested Loops
Lab 6 1098 Integer Arrays
Lab 7 1232 Character Arrays (Strings) and Functions
Lab 8 1023 Multi-dimensional Arrays (Matrices)
Lab 9 660 Recursion
Lab 10 466 Pointers
Lab 11 453 Algorithms (sorting, permutations, puzzles)
Lab 12 726 Structures (User-Defined data-types)
Exam 3427 Mid-term and End-term programming tests
Practice 9003 Practice problems released regularly

This alternate approach can be tedious in terms of creating and
managing errors. Moreover, it is not clear if this helps the system
learn how to predict realistic corrections.

2.3 Dataset Statistics
As mentioned earlier, the dataset of programs on which TRACER
is trained and evaluated was collected during an introductory pro-
gramming course at IIT-K This course was credited by 400+ first
year undergraduate students. The course had weekly programming
assignments (termed Labs). These assignments had a specific theme
every week, as described in Table 2, so as to test the concepts taught
in the class so far. The assignments were attempted under the in-
vigilation of teaching assistants. Students were allowed multiple
submission attempts, with only the last submission being graded.
We saved the progressive versions of the attempts made by the stu-
dent towards solving the problem by passing as many pre-defined
test-cases as possible.

For each of these labs, we picked a sample of (Pb , Pc ) program
pairs as our dataset, where Pb is the “buggy” version of a student
program which fails to compile, and Pc is a later “corrected” version
of the attempt by the same student which compiles successfully.
The second column of Table 2 shows the number of programs for
each lab we include in our dataset. The difference between Pc and
Pb is the set of changes which were performed by the student on
Pb , in order to get the program to compile successfully.

From student submissions, we obtained 23,275 and 17,451 source-
target program pairs having single-line and multi-line edits respec-
tively, across the entire run of the semester-long course. As men-
tioned before, we used only single-line edit pairs to train TRACER.
These correspond to programs which require edits to a single line in
the erroneous program. However, despite being trained on single-
line edit pairs, TRACER can seamlessly handle programs requiring
repairs on multiple lines as well by simple invoking TRACER re-
peatedly to fix individual lines, as described in Section 3.5.

We refer the reader to Figure 3 for an overview of our dataset and
also an initial look at the performance of TRACER on this dataset.
Table 3a lists all types of compilation errors that were present in
at least 50 submissions in our dataset. Figure-3b then charts the

frequency of occurrence of all these error types in our training and
test sets.

Recall that even though we consider only single-line edit source-
target pairs for training, our dataset still contains source programs
with multiple compilation errors. Also notice that TRACER does
well not only on frequent error types such as missing identifiers
(E1), but also very rare ones such as invalid digit in constant (E12).

3 TRACER: AN END-TO-END SYSTEM FOR
TARGETED REPAIR OF COMPILATION
ERRORS

In this section, we describe the technical details of the TRACER
system. For most of this discussion, we will focus only on program
pairs that have single-line edits. We will pay special attention to
multi-line edit programs in Section 3.5. Recall that for single-line
edit program pairs, we can identify a source and a target line, the
target line being the fix the student applied to rectify the error in
the source line.

TRACER treats compilation-error repair as a sequence prediction
problem. Given a source line, TRACER interprets it as a sequence
of tokens, and attempts to predict a new sequence of tokens, that
hopefully correspond to the target source line. The framework of
recurrent neural networks is utilized to implement this. However,
several augmentations are required for this strategy to succeed.

In particular, given a faulty program, the task of localizing the
error is itself a non-trivial task. Indeed, the line numbers present in
compiler error messages often themselves do not pinpoint the loca-
tions where changes need to be made. Existing works often choose
to avoid this issue by, for example, expecting a neural network to
jointly perform error localization and error correction [7].

However, our results show that this monolithic approach can
overwhelm the underlying neural network architecture. To remedy
this, TRACER performs error localization as a separate, modular
step. A side advantage of delinking error localization from error
correction is that TRACER is able to use different techniques for
error localization and error correction which gives it more freedom
whereas works such as [7] are constrained to use the same (joint)
technique for the two tasks which may perform sub-optimally on
one of the tasks, but nevertheless bring down the performance of
the entire system.

3.1 Error Localization
While the compiler error messages report the exact line of the
code which resulted in an error state during compilation, this isn’t
necessarily the same line where repair needs to be performed. This
problem has been addressed by prior work in different ways. [8]
targets the exact line number reported by compiler. [20] performs
a brute force replacement, starting from the first-statement to the
last; relying on their model to regenerate the correct statements,
while fixing incorrect ones. [7] trains a deep-network on the entire
source-program (encoded with line-numbers) to generate a ranked
list of potential lines to focus their repair on.

For error localization, TRACER makes a useful observation: in
our dataset of introductory C programs where single-line edits were
performed by students, the location of the edits lay very close to
the line where the compiler flagged an error. In 87.79% of the cases,
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Code Error Message
E1 expected identifier
E2 undeclared identifier
E3 expected expression
E4 extraneous ID
E5 incorrect assignment
E6 re-definition of ID
E7 invalid operands
E8 incorrect pointer/struct

Code Error Message
E9 too few args to func call
E10 expected decl or statement
E11 called object not a func
E12 invalid digit in const
E13 too many args to func call
E14 return from a void function
E15 statement not in loop/switch
OTH Others

(a) Compiler Error Codes
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(b) Compiler Errors Plot

Figure 3: Dataset Statistics. Tables 3a lists the various types of compilation errors encountered in our dataset of 23,275 single-
line error programs. Figure 3b (note that its y-axis is in log-scale) charts the frequency of various error types in the entire
dataset (blue) and the test set (red). The green plot (Compilation Success) depicts what number of errors of each type was
TRACER able to successfully rectify in the test set, such that the resultant code compiles. The orange plot indicates howmany
times the top recommendationmatches by TRACERwere the exact target-abstraction fix expected by the student for that error.
Despite this extremely stringent criterion, for most error types, TRACER has a success rate of more than 40%. Within its top
3 recommendations, TRACER corrects a much higher fraction 74% of errors across error types. TRACER excels at correcting
challenging rare error types which have less than 200 instances in the entire dataset (E11: 78% correct, E12: 90% correct).

the correct source-target pairs were located at a distance of <= 1
from the line number reported in the compiler error message i.e. at,
immediately above, or immediately below the compiler-reported
line.

This suggests a surprisingly simple strategy for error localization:
obtain a line number l from the compiler error message (recall
that we are considering single-line edit programs for now) and
simply consider the line numbers l − 1, l , l + 1 as candidate lines to
attempt repair. This is the strategy adopted by TRACER for error
localization.

What is more surprising is that this simple approach achieves
almost the same error localization accuracy as much more involved
techniques in literature. For instance, [7] utilize a deep network to
perform error localization and report 87.5% accuracy in correctly
including the location of the error in one of their top-5 predicted
lines. TRACER achieves slightly higher accuracy using a technique
that is much simpler.

3.2 Source and Target Abstraction
The second point of departure that TRACER makes from the state-
of-the art is in not processing source and target lines in the form
given in the student programs. Techniques such as recurrent neural
networks operate with a static vocabulary.

As a result, supplying student programs directly to these net-
works requires all possible identifier/literal names possibly used by
students to be included in the vocabulary which not only blows up
the vocabulary size, but also creates problems for extending these
approaches to newer offerings of the course where students may
use hitherto unused identifier names and literals.

To remedy this problem, TRACER takes source-target line pairs
and processes them by replacing all literals and identifier/variables
with abstract tokens representing their corresponding types. The

types are inferred using LLVM (the back-end for the Clang compiler
suite) [12], a standard static analysis tool.

However, there are exceptions to the above rule. The names
of keywords and some standard identifiers/library-functions such
as {printf, scanf, malloc, NULL} are retained during abstraction.
User defined function names are replaced by a generic token FUNC.
A special token called INVALID is used for those literals and iden-
tifiers for which static analysis is unable to reveal the type.

The character/string literals are abstracted out to remove all
text. Single/double quotes, as well as any format specifiers (such
as {%d, %s, %f}) and character escape-sequences (such as {\n,
\\}) are retained. For example, line number 5 in Figure 1 would be
abstracted out as
printf("ans=%d", a+10); → printf("%d", INT+LITERAL_I);.

These exceptions to the abstraction rule exist since several errors
made by students, especially in the initial days, involve the printf
and scanf functions where it is crucial to retain the format string
as is, to be able to identify and fix the error. For instance, for the
programs in Figure 1, the source and target lineswould be abstracted
as follows

(1) (Source) scanf("%d",a); −→ scanf("%d",INT);
(2) (Target) scanf("%d",&a); −→ scanf("%d", & INT);

These abstracted lines are called respectively, the Abstract Source
Line and the Abstract Target Line. For sake of simplicity, we will
often refer to them as simply the Source and the Target. Table 1 lists
several actual source and target pairs from our dataset.

We note that this technique of abstracting out literals is preva-
lent in literature. However, previous works such as [7] replace all
identifiers/variables, including string-literals, with generic distinct
tokens (an un-typed "ID_x"). Which precludes their ability to fix
semantic-errors (which may be type-specific) and errors involv-
ing formatted strings (e.g. {printf,scanf} errors) which are very
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commonly faced by beginners. TRACER performs a much more
nuanced abstraction that retains type-specific information that help
it address a much wider range of errors.

3.3 Abstract Source-Target Line Translation
As mentioned before, TRACER performs repair by treating the ab-
stract source and target lines as sequences of tokens and attempting
to predict the target sequence using the source sequence. The to-
kens include reserved keywords such as {while, double}, standard
library functions such as {printf, scanf} and abstract tokens such
as {INT, FUNC, FLOAT} as discussed in the previous subsection.
This sequence translation is performed using Recurrent Neural
Networks (RNNs) which are described in detail in Section 4. In fact,
for any source sequence, the RNN architecture is able to provide
multiple suggestions for the target sequence.

This is beneficial in allowing a graceful degradation of the system.
In our experiments, we observed that even if the top-ranked repair
presented by the RNN is not the most appropriate, usually the
second or the third ranked suggestions do often correspond to the
most appropriate fix. TRACER uses a finely tuned encoder-decoder
model with attention and long short-term memory mechanisms
enabled. Details of parameter settings and tuning for our method
are described in Section 5.

3.4 Target Recommendation and
Concretization

TRACER offers recommended repairs in two formats – abstract and
concrete (see Table 1). The abstract recommendations are obtained
directly from the RNN framework by employing a beam search to
obtain 5 target sequences with the highest scores. Note that these
abstract sequences still contain tokens like {INT, FUNC, FLOAT}.

Now, the abstract recommendations may themselves be offered
to students as hints and constitute valuable feedback. It may be
argued that if given the actual corrected code, the student has no
incentive to explore why did s/he make an error and what was
the key to fixing the error. However, if only the abstract form
of the repair/solution is provided as a hint, then the student is
compelled to map the abstraction onto his/her own program which,
in many cases, reveals what was the error in the source program,
thus fulfilling several didactic goals.

However, TRACER goes one step further. Given recommended
repairs in abstract form, TRACER can generate non-abstract ver-
sions of these repairs that can be applied to the original buggy
program to produce code that actually compiles. This is done by
performing concretization, a process which approximately reverses
the abstraction step. We observe that our concretization technique
is able to convert abstract versions of the target sequence to valid
compilable code in 95% of cases in our dataset.

TRACER uses standard map-and-store based techniques to put
back literals and function identifiers of appropriate type into the
abstract recommendation to obtain a program that can be compiled.
For this purpose, the Edlib tool [21] is used to compute the sequence
alignment of the source-abstraction with recommended-abstraction
(that is output by the RNN framework), based on edit distance. This
sequence alignment is represented as a cigar string, a compact

Table 3: An example of the concretization process. The incor-
rect source line is xyz=4where xyzhas not been declared and
a semi-colon ismissing. TRACER correctly generates the ab-
stract form of the repair INT = LITERAL_I;. However, mul-
tiple concretizations, all of whom produce valid compilable
code, are possible. For example, if the identifiers i,j were de-
clared as integer variables, then i=4; and j=4; are both valid
concretizations.

source-line xyz = 4
source-abstraction INVALID = LITERAL_I
recommended-abstraction INT = LITERAL_I ;
Cigar (alignment path) X = = I
concrete-line i = 4 ;

representation consisting of a chain of operators; primarily Match
(=), Insert (I), Delete (D) or Mismatch/Replace (X).

Each successful match with source-abstraction is replaced with
corresponding concrete-code from (non-abstract) source-line. For
mis-matches and inserts, TRACER replaces the recommended-
abstract type with the closest concrete-code having the same type
from the symbol table that is maintained by TRACER. An example
of the concretization step is presented in Table 3.

3.5 Multiple Error Lines
Although the discussion so far has focused on programs where the
fix is required on a single line, TRACER can be adapted to repair
programs with errors present across multiple lines as well.

In our dataset, we observed that a large portion of programs
having errors onmultiple lines can be interpreted as simplymultiple
instances of single line errors, i.e. the errors in the multiple lines
in these programs are not correlated and fixes may be applied to
the lines individually. Hence, given a multi-line error program,
TRACER does the following

(1) Error Localization: TRACER fetches all the source-lines
flagged by compiler for error, as well as the lines just above
and just below those lines.

(2) Code Abstraction: TRACER obtains source-abstractions
for the above source-lines.

(3) Abstract Code Repair Prediction: TRACER executes the
RNN model on these source-abstractions to get the top-5
recommended-abstractions for each line.

(4) Concretization: TRACER finally refines each of the
recommended-abstractions to generate concrete, repaired
code, and checks if the compiler error associated with that
particular line disappears on applying the repair. If so, the
concrete-code is retained as the fix for the corresponding
source-line.

We consider a multi-repair done as outlined above to be successful
only if all compiler errors are resolved as a result.

3.6 Performance Measures
We evaluate TRACER’s performance with performance measures
that are derived from those used in information retrieval, ranking,
and recommendation systems. These are some of the most unfor-
giving performance measures and we are not aware of their prior
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Table 4: Performance Metrics. TRACER uses some of the most stringent performance metrics to ensure that students receive recommenda-
tions that suggest fixes to correct the actual mistake they are making, and not merely remove compilation errors.

Performance Metric Description
Prec@k, k ∈ {1 . . . 5} Percentage of abstract source-target pairs where the top k abstract recommendations output by TRACER contain the

abstract target line.
SPrec@k, k ∈ {1 . . . 5} Percentage of abstract source-target pairs where the top k abstract recommendations output by TRACER contain any

abstract target line which has the same abstract source line.

ht

Whx

yt

xt

Whx

Wyh

h1

y1

x1

Whx

Wyh

h2Whh

y2

x2

Whx

Wyh

· · ·Whh
hTWhh

yT

xT

Whx

Wyh

Figure 4: The schematic of a recurrent neural network

use in the program repair domain. The first performance measure
we use is Precision at the Top (dubbed Prec@k). For every source-
target pair, Prec@k gives a unit reward if the abstract target line is
a part of the top k abstract recommendations returned by TRACER.
Note that Prec@1 is an extremely stringent measure that accepts
nothing but the exact solution expected by the student (in abstract
form).

We also report performance on Smoothed Precision at the Top
(SPrec@k). This performance measure takes into account the fact
that upon abstraction, multiple source lines may map to the same
abstract source line and consequently, that abstract source line may
now map to multiple abstract target lines. Table 4 describes these
performance measures.

4 RECURRENT NEURAL NETWORKS (RNN)
Recurrent neural networks (RNNs) have emerged as the learning
model of choice in several areas that involve sequence modelling
tasks such as natural language processing, speech recognition, im-
age captioning etc. RNNs differ from classical neural networks in
having an internal state and feedback loops into the network. The
statefullness of the model and the ability to pass that state onto
itself allow RNNs to effectively model sequences of data. Figure 4
shows the schematic of an RNN performing sequence translation.

Let {xt }, {yt } etc denote strings over a shared alphabet Σ i.e.
for all t ≥ 1, we have xt ,yt ∈ Σ. In their simplest form, RNNs are
trained to learn a language model by predicting the next token in a
sequence correctly. An output sequence {yt } is predicted as a func-
tion of the input sequence {xt }. More specifically, after observing
{x1,x2, . . . ,xt−1}, the RNN predicts a token yt . The RNN is trained
to ensure that yt = xt .

In order to perform this prediction, the RNN maintains an inter-
nal state ht ∈ H that also evolves over time. UsuallyH ⊂ Rk is a set
of real vectors of dimensionality k . Let the size of the vocabulary
be |Σ| = S . Each token in x ∈ Σ is represented as a d-dimensional
vector (which we also denote as x by abusing notation). This rep-
resentation is usually learned as well using techniques such as
Word-to-Vec etc.

The prediction is made as a function of the hidden state and the
hidden state itself evolves as a function of the previous hidden state
and the current input as follows:

ht = fH (Whxxt +Whhht−1)

yt = SELECT(fO (W ⊤
yhht )),

where fO , fH encode activation functions that map reals to reals (
when applied to vectors, the activation functions act in a coordinate-
wise manner) andWyh ∈ RS×k ,Whh ∈ Rk×k ,Whx ∈ Rk×d are
matrices. The SELECT operation simply chooses the coordinate
of a vector with the largest value. Since fO (W

⊤
yhht ) is a S = |Σ|-

dimensional vector, the SELECT operation returns a token in Σ.

Unequal Sequence Lengths: A specific hurdle that we face while
using RNNs for program repair is that of input and output sequences
being of unequal length. This can arise due to the fix in the incorrect
program requiring insertions and/or deletions of tokens (for exam-
ple, see Figures 1 and 2). The Encoder-decoder model [4, 10, 22] is
a generic solution to this problem that employs two components,
an encoder and a decoder. The encoder operates by using the input
sequence to generate a sequence of hidden states.

ht = fH (Whxxt +Whhht−1)

At the end of the sequence, an intermediate representation, known
as the context vector is computed as a function of the hidden state
sequence {ht }.

c = q(h1, . . . ,hT )

The decoder generates a fresh sequence of (still hidden) states {st }
using the context vector and previous hidden states. These states
are used to generate an output sequence {yt }

p(yt |y1, . . . ,yt−1, c) = дO (yt−1, st , c)

until a special delimiter token ⟨eos⟩ is generated, indicating a
termination of the output sequence.

Handling Long Sequences: A significant hurdle to training RNNs
on long sequences, such as those we encounter in our program
repair application, is the problem of vanishing or exploding gradi-
ents [18]. An elegant fix to this problem is the Long Short Term
Memory (LSTM) model [9] and its variants which overcome the
problem by replacing hidden states by a gating mechanism, which
allows gradients to flow freely in the backpropagation-through-
time algorithm.

The problem emerges in a different form when dealing with long
output sequences where a single context vector becomes insuffi-
cient to predict an output sequence of arbitrary length. Attention
mechanisms [1] overcome this problem by identifying for each
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output token yt , a specific part of input sequence which is most
relevant for predicting yt . This is done by employing a separate
context vector ct for predicting the output token yt instead of a
uniform one. These context vectors are generated by a separate
neural network that is trained jointly with the RNN. Typically a
weighted combination of the hidden states of the encoder are used
to generate these context vectors.

We regret our inability to describe RNN frameworks in greater
detail due to lack of space and refer the reader to some excellent
tutorials on RNNs [11], LSTMs [16], and attention mechanisms [3].

Usefulness of the Error Localization Step: Even with attention
mechanisms, we found RNNs with Encoder-decoder models to
struggle when trained on entire programs. This is because the de-
coder in such situations is heavily stressed to identify the relevant
subset of the input sequence for every output token, something
that makes performance go down, as well as training and predic-
tion times to go up. However, the modular approach adopted by
TRACER, that first identifies a very small (often 3) set of sentences
to focus on, greatly improves the ability of the RNN framework to
analyze and suggest relevant local fixes.

5 EXPERIMENTS
Experimental setup: All experiments were performed on a system
with an Intel® Core™ i7 CPU 930 @ 2.80GHz × 8 CPU with 8GB
RAM, and an NVIDIA GeForce® GTX 760 GPU with 2GB GPU
Memory.
Dataset: Our dataset contained a total of 16985 (source, tar-
get) line pairs, which were further divided into training (70%),
validation(10%) and test(20%) sets. Validation and test examples
were randomly picked from the dataset. The most frequent 150
and 140 tokens were chosen for the source and target vocabulary,
respectively for training the RNN i.e. |Σ| = 150 for the input vocab-
ulary and 140 for the output vocabulary. Tokens not in vocabulary
were replaced by a special token UNK. The maximum length of
source and target sequences was set to 80 and 82, respectively.
Training: We trained a supervised Encoder-Decoder model with
attention mechanism on an open source Torch implementation of
a standard sequence-to-sequence model with (optional) attention
mechanism where the encoder-decoder are LSTMs1. The models
were trained by minimizing the class negative likelihood loss. We
conducted an extensive grid search to set hyperparameters: num-
ber of hidden layers for both Encoder and Decoder in {1, 2, 3, 4},
size of the LSTM hidden state in {50, 100, 200, 250, 300, 350}, and
word embedding size in {50, 100, 150, 200, 250, 300}. Word embed-
dings were learnt jointly with network parameters. We tried both
unidirectional and bidirectional RNNs with reverse source side set-
ting. Apart from this, we used a mini-batch size of 32 for training,
standard stochastic gradient descent with an initial learning rate 1
and learning rate decay of 0.5 after the 9-th epoch for a total of 35
epochs. The above configurations were found to be the best among
those permitted by our server resources, upon cross validation. We
initialized the hidden state of the Decoder at time 0with last hidden
state of the Encoder, initialized other parameters randomly in range
[−0.1, 0.1], clipped gradients at magnitude 5, and used a dropout

1https://github.com/harvardnlp/seq2seq-attn

Table 5: Prediction Accuracy of TRACER on compilation-
error repair experiments. TRACER excels on the challeng-
ing Prec@k and SPrec@k metrics.

k Prec@k SPrec@k
1 59.6 68.61
2 64.9 72.73
3 66.61 73.85
4 67.85 74.73
5 68.32 75.15

probability of 0.3 between LSTM layers. The best model based on
validation perplexity was found to be a bidirectional Encoder with
2 hidden layers, a hidden state size of k = 300, word embedding
size d = 100. Reversing the source sequence gave poor results.
Prediction: We performed a beam search with beam size 50 to
select the best 20 target sequences. Out of these 20 the top 5 unique
predictions were used for measuring performance according to the
measures described in Section 3.6.

5.1 Results
We note that we performed these experiments in cross validation
mode with 5 random train-validation-test splits of the data as well
and found results to be very similar to those we report below.

The prediction accuracies of TRACER on a test set of 4,578 pro-
grams are reported in Table-5. TRACER is able to correctly predict
the exact abstraction as the student target repair as its top sugges-
tion in 59.6% of the instances. If we include the top 3 recommenda-
tions of TRACER, then this figure jumps to 66.6% for Prec@3 and
further to 73.85% for SPrec@3.

Figure-3b shows that TRACER consistently achieves high levels
of Prec@1 accuracy in predicting the exact student repair, irrespec-
tive of the type of compiler error. It fails on just two error types,
namely E7: too few args to function call and E13: too many args to
function call. This is because presently, TRACER cannot predict
the correct number of parameters for a function call in the target.
We have developed extensions of TRACER that seek to correct this
limitation which will appear in future reports.

Table-1 lists a few interesting examples from our dataset on
which TRACER was able to provide correct and relevant fixes. For
the first two examples, TRACER makes an accurate prediction at
the very top, correctly suggesting the insertion of an arithmetic
operator in example #1 and switching the L and R values in example
#2. For the rest of the examples, its top recommendation does not
match the student fix. However, notice that TRACER’s top fix is
still an appropriate fix.

In examples #4 and #5, TRACER predicts an abstract fix which
is semantically equivalent to the desired fix but we nevertheless
penalize it due to our stringent evaluation criteria of an exact match
with the student repair. TRACER arguably produces a simpler fix
than what the student devised for examples #4 and #5. TRACER is
able to improve upon any individual student’s fixes since it learns
from frequent patterns from other student submissions as well.

The most interesting case is example #3 where the student’s sub-
mission, though syntactically correct, results in a compiler warning
incompatible integer to pointer conversion passing ’int’ to parameter

https://github.com/harvardnlp/seq2seq-attn
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of type ’const char *’. TRACER’s suggestion is better since it does
not generate any compiler warning, and is doing what is intended.
However, our evaluation metrics still consider it a failure due to
the mismatch with the student repair.

In future, we plan to develop better scoring mechanisms to evalu-
ate our predictions. Nonetheless, even with such stringent metrics,
TRACER is able to achieve high accuracy of 59.6 % for Prec@1.
TRACER is unable to incorporate global context while suggesting
fixes. For example, in example #6, TRACER produces the source
verbatim since it is unable to figure out the desired number of open-
ing braces from the local context. In future, we plan to incorporate
global context as well to predict such fixes.

5.2 End-to-End Repair
In Figure 5, we demonstrate the overall end-to-end accuracy
of TRACER on our dataset of single-line errors, across all the
labs. The Abstraction_Match legend denotes how many times our
recommended-abstractionmatched the exact target-abstraction (the
abstraction of fix performed by same student). Concrete_Compile
denotes what % of the erroneous programs was TRACER able to
repair and compile.

Table 6 reports the compilation success rates of the multiple-
error approach outlined in Section 3.5 on our single-line (errors
requiring fix at a single line), multiple-line (errors requiring fix at
multiple different lines), and on the dataset obtained from DeepFix2
[7].

TRACER is able to fix 79.27% of the programs on our testing set
of single-line edit program pairs (referred to as Single_Test), while
being highly relevant at the same time (as demonstrated in Table 5).
TRACER is also able to successfully repair about 44% of programs
with multiple-line errors obtained from our course (denoted as
"Multiple" in Table 6) and on the collection of programs used in
DeepFix [7]. Note that DeepFix, the current state-of-the-art was
able to achieve only 27% compilation success rate on the same set
of programs.

Invoking the deep-network takes the maximum amount of time
in this entire setup, while abstraction/concretization and compila-
tion steps take an order of milli-seconds time on average. Hence
to ameliorate this, we cache the frequently looked-up abstraction
translations during training phase. This reduces the time taken
for the entire repair process to just 1.66 seconds on average per
erroneous program, during the testing phase.

6 RELATEDWORK
To the best of our knowledge, TRACER is the first approach to
perform targeted repair where we learn and predict the exact fix for
a given bug, instead of predicting it as a side-effect of not matching
with a generic correct grammar. Prior works [2, 7, 19] learn repairs
by observing generic correct programs, but do not have a well
defined criterion to evaluate the quality of the repairs. For example,
simply deleting the erroneous line makes the error go away in a
non-trivial fraction of buggy programs, but this may not be an
acceptable fix.

The approach used by DeepFix [7] to repair common C program-
ming errors comes closest to our work. DeepFix learns a seq2seq
2https://www.cse.iitk.ac.in/users/karkare/prutor/prutor-deepfix-09-12-2017.db.gz

Table 6: Overall accuracy of TRACER on three different
datasets. Single_Test is the test set on single-line edit pro-
gram pairs. Multiple is the set of programs requiring repairs
on multiple lines. DeepFix is the dataset used by [7]. On all
datasets TRACER gives compilable code on a large fraction
of programs. On the DeepFix dataset, the method of [7] it-
self offers only 27% compilation success whereas TRACER
offers a much higher 44% success rate.

Dataset #Programs #Compiler-
Errors

TRACER
Repair %

Single_Test 4,578 4,853 79.27
Multiple 17,451 24,255 43.67
DeepFix 6,971 16,743 43.97

Figure 5: Overall accuracy of TRACER, shown per lab.
TRACER is robust to handle compiler errors occurring
across all labs. Even on erroneous programs dealing with ad-
vanced concepts such as pointers and recursion, TRACER is
able to consistently achieve high repair rate.

Neural Network on the entire program, and features an error local-
ization module which, with the help of an Oracle, can attempt to
resolve multi-line errors bymakingmultiple passes. TRACER on the
other hand focuses on single-line errors and achieves a high com-
pilation accuracy, while being highly relevant to the student target.
In fact on the very dataset used by [7], TRACER offers significantly
higher compilation success rates than Deepfix itself.

HelpMeOut [8] gives relevant examples of solutions for a compi-
lation error by searching a database for the same error encountered
by other students. It provides both the erroneous line of the other
student, as reported by compiler, as well as the modified line which
resulted in successful compilation. However, unlike TRACER, the
repair is picked from a database and is not tuned to the erroneous
source program. Moreover, the approach provides the student the
fix directly, which can be suboptimal in terms of learning outcomes.
TRACER instead learns the repair from the submissions of the other
students, and suggests the exact abstract/concrete fix tuned for the
erroneous source program.

Recent studies [25] have indicated that program repairs can also
be used by human graders, who are experienced programmers,
to decrease the amount of grading time. The positive impact of

https://www.cse.iitk.ac.in/users/karkare/prutor/prutor-deepfix-09-12-2017.db.gz


ICSE-SEET’18, May 27-June 3 2018, Gothenburg, Sweden U. Z. Ahmed et al.

compilation error repairs on (automated) grading is also reported
by GradeIT [17] that uses simple rewrite rules to repair compilation
errors. The repairs generated by TRACER can further improve the
performance of systems such as GradeIT.

7 FUTUREWORK
Our experiments confirm that TRACER performs very well on er-
rors where repair can typically be obtained by looking at a local
context, for example, inserting a token or restructuring an expres-
sion. However, TRACER does not yet take into account the global
context, e.g. the number of parameters of a function defined away
from its call, opening/closing a missing brace, undeclared variables
etc. Some of these global context errors occur in the most frequent
list and can be handled by a separate technique which runs in tan-
demwith TRACER. Future versions of TRACER are planned to have
these features to widen its scope.

Also, our evaluation metrics currently do not discount minor
syntactic variations, e.g. {a != b} vs {!(a == b)}, while com-
puting the mismatch between tool repair and the student repair.
We believe a more moderate performance measure will give us a
more realistic picture of the performance of TRACER and other
such error-correction tools. Finally, it is worthwhile to combine
TRACER with semantic repair tools such as Prophet [13] to further
refine the repairs. TRACER is currently being deployed on a live
offering of the C programming course and a study investigating its
effects on student experience will be released soon.

8 CONCLUSION
We presented TRACER, a tool to generate targeted repairs aimed
at novice programmers. TRACER offers extremely accurate recom-
mendations for fixes and on more than 4000 test programs with
single-line errors, its top three recommendations include the cor-
rect repair 74% of the time. Even on more than 17000 programs
with errors on multiple lines, TRACER offers a compilation success
rate of more than 40%. TRACER takes only several milliseconds
to make its recommendations, making it suitable for live deploy-
ment. Although we focused on the C programming language in
this paper, TRACER can be easily ported to other programming
languages such as C++, Java, etc. Given enough data, TRACER can
also be used predict fixes for compilation errors in the programs in
future offerings of a course. TRACER’s performance on stringent
correctness criterion strengthens our claim that repairs suggested
by it are close to the fixes performed by the students themselves.
As a result, these repairs are of more didactic value than the com-
piler produced error messages or repairs that aim to only remove
compile-time errors. High accuracy and student-friendliness of the
repairs generated by TRACER make it an attractive virtual teaching
assistant for programming courses offered at a massive scale.
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