
Learning with Supportive Vectors

An Introduction to Support Vector Machines and their Applications

Purushottam Kar
Department of Computer Science and Engineering

Indian Institute of Technology Kanpur
Kanpur, INDIA

purushot@cse.iitk.ac.in

ABSTRACT
Support Vector Machines have acquired a central position
in the field of Machine Learning and Pattern Recognition in
the past decade and have been known to deliver state-of-the-
art performance in applications such as text categorization,
hand-written character recognition, bio-sequence analysis,
etc. In this article we provide a gentle introduction into the
workings of Support Vector Machines (also known as SVMs)
and attempt to provide some insight into the learning mech-
anisms involved. We begin with a general introduction to
mathematical learning and move on to discuss the learning
framework used by the SVM architecture.

Categories and Subject Descriptors
I.2.6 [Learning]: Concept learning; A.1 [General Litera-
ture]: INTRODUCTORY AND SURVEY

General Terms
Theory, Algorithms

Keywords
Machine Learning, Support Vector Machines, Kernels

1. THE LEARNING METHODOLOGY
Before we move into algorithms that learn, let us take a

look at what mathematical learning (or machine learning)
means and why is it an interesting field of study. Consider
the following computational problems and try to see if one
can write C++ programs (feel free to replace C++ with
your favorite language) to distinguish between the following
-

1. A correct and an incorrect Java program

2. A palindrome word (like “detartrated”) and a non-
palindrome word (like “house”)

3. Graphs which have a Hamiltonian path and those which
do not

One finds that for all these classification problems, one can
write programs (however inefficient they may be). The set
of problems given above are often known as Classification
Problems. A classification problem is simply the problem
of distinguishing between objects belonging to some fixed
number of classes (viz. the class of palindrome words and
the class of non-palindromes). Now consider the problem of
distinguishing between the following -

1. An image of a handwritten 4 and a handwritten 9

2. A spam email and a non-spam e-mail

3. A positive movie review and a negative movie review

We find that apriori there does not seem to exist a set of
well-defined rules that characterize the classes involved in
the above tasks. Consequently one cannot simply sit down
and write an algorithm to perform these classification tasks
(the author feels that even standing might not help). More-
over in some of the tasks, the classification itself is not well
defined (for example, the author might find all the e-mails
from the deans to be spam-like but a good student might
read them with due diligence). In such cases the best one
can hope to do is try to inductively learn some of the latent
(or hidden) patterns and rules that govern the classifica-
tion. This learning one does when provided with Training
Sets. For example, in the spam classification case, we pro-
vide our Thunderbird client (or in some woeful cases our
Outlook client) with examples of e-mails we consider to be
spam and examples of non-spam e-mails. The learning al-
gorithms that come packaged with these clients then try
to discover the pattern(s) underlying our choices using the
training examples and use these learnt rules to classify a new
e-mail as spam/non-spam. Thus the main objective in ma-
chine learning is to let the training data decide the eventual
classification algorithm.

2. LINEAR CLASSIFIERS
In mathematical learning, these (unknown) underlying rules

or patterns are abstracted as a mathematical function whose
output on the objects of interest (images, e-mails, movie
reviews etc.) decides their classification. Thus instead of
trying to learn individual rules and patterns (which is the
goal in a subfield of Artificial Intelligence called Inductive
Rule Inference), we strive to directly approximate this un-
known function as closely as possible. The simplest of such

functions are linear functions. To understand this better,
consider the simple case when our objects are vectors in
a 2-dimensional Euclidean space and belong to either the
BLACK class or the WHITE class as shown in Figure 1.
The example contains 14 WHITE objects and 14 BLACK
objects which have been given to us as the training set. It
can be clearly seen that the hyperplane drawn separates the
BLACK instances from the WHITE ones and classifies the
elements of the data set perfectly with no errors. Such a
classifier is said to be consistent with the training set.1

Figure 1: A Linear Classifier

In order to construct a mathematical representation of
the classifer, consider the linear function f(~x) = 〈~w, ~x〉 +
b (where 〈·, ·〉 denotes the dot product and b ∈ R). This
function classifies a vector ~x′ as BLACK if f(~x′) < 0 and
WHITE otherwise. To be more precise, we can say that
our classifier is the function g(~x) = sgn(f(~x)) where sgn is
the signum function. Notice that the hyperplane drawn is
not the only one that is consistent with the dataset. In fact
there are infinitely many hyperplanes which classify these 28
points correctly. This also shows us that a classifier that is
error-free on the training set may make errors on new data
points.

Such a problem (in this case that of finding a linear clas-
sifier) where there exist multiple solutions is said to be an
ill-posed in mathematical literature. Ill-posed problems do
not bode well for learning tasks because the outcome of
a learning algorithm in such cases is typically sensitive to
initial conditions. For example the Perceptron Algorithm
[Ros58] is an algorithm that given these 28 training vectors,
finds (“learns”) a linear hyperplane classifying these vectors
correctly by starting with a (possibly bad) hyperplane and
improving it iteratively to make it classify each vector cor-
rectly. However the hyperplane it ends up learning depends
upon the hyperplane it started out with. Similar is the case
with the Artificial Neural Networks framework [DHS06].

In such situations it is difficult to say anything about the
learnt classifier with respect to its performance on new data
(i.e. how frequently is it expected to make an error) which is
what we are most interested in. In other words nothing much
can be said about the Generalization Performance of the

1Note that we may been given a dataset which no hyper-
plane is able to classify perfectly - such datasets are called
Non-linearly Classifiable. However for now lets live in
a simpler world where training sets are Linearly Classifi-
able.

classifier on unseen data. The way out of this is to make the
problem well-posed (i.e. have a unique solution) by way of
Regularization. In very broad terms regularization entails
assigning with each one of the (infinitely many) solutions,
a goodness value and then searching for the best solution,
i.e. the one with the highest value of goodness. Of course in
order to be effective, the regularization step should be such
that the best solution according to the goodness measure
used is unique and has useful properties.

In the following section we shall study at the regulariza-
tion step used to arrive at the SVM algorithm in some detail.

3. LARGE MARGIN CLASSIFIERS
Given a hyperplane 〈~w, ~x〉 + b = 0 and a vector ~x0, the

Geometric Margin of the point2 with respect to this hy-
perplane is defined to be the distance of the point from the
hyperplane (actually this quantity is taken with sign but we
shall ignore this technicality for the moment). A little bit
of high school geometry shows us that this is given by the

expression |〈~w,~x0〉+b|
‖~w‖ (where ‖ · ‖ gives the length of a vec-

tor). A point that is correctly classified by the hyperplane

is said to have a positive margin of + |〈~w,~x0〉+b|
‖~w‖ whereas a

misclassified point has a negative margin of − |〈~w,~x0〉+b|
‖~w‖ .

Now it is clear that any hyperplane correctly classifying
all the points will have a non-negative margin with respect
to all the points. Suppose we have a training set that is Lin-
early Classifiable i.e. there exists a hyperplane correctly
classifying all the points. For any hyperplane let us take the
minimum margin of that hyperplane on any training point
as the regularization parameter (using the interpretation de-
veloped above, this the the closest any data point gets to the
hyperplane). Now let us look for the hyperplane with the
maximum value of this parameter (in particular we know
that the maximum value will be positive since we know the
data set to be linearly classifiable). It can be shown that
there is a unique hyperplane with the largest value of this
parameter. In the figure below (Figure 2) we take the same
training set as in Figure 1 and draw the hyperplane with the
maximum margin.

Figure 2: The Maximum Margin Linear Classifier -
the starred points are the support vectors

This unique hyperplane is known as the maximum margin

2The reader is requested to bear with the definition of some
technical terms - however it is assured that there will be few
of them and that they will be properly explained.

classifier of the training set and it possesses several interest-
ing properties. The vectors which lie closest to this hyper-
plane (i.e. the ones having minimum margin) are called the
Support Vectors. It turns out that the direction vector
of the hyperplane i.e. ~w is simply a linear combination of
the support vectors alone i.e. ~w =

∑
~xi∈SV

αi~xi where SV is

the set the support vectors. This fact has important conse-
quences for the classifier which we shall discuss briefly later.

The reason behind the name Support Vector Machines is
that the support vectors actually support the hyperplane
in the physical sense of the term. If one imagines that each
support vector ~xi is applying a force of αi (its corresponding
coefficient in the representation of ~w) on the hyperplane,
then it turns out that the total force and torque on the
hyperplane due to the support vectors is zero.

However this fact has little significance for learning. What
does have significance is that if the margin of the maximum
margin classifier is large then one is able to prove proba-
bilistic bounds on the generalization error of the classifier.
In other words one is able to make a mathematical statement
of the following kind

Assuming that the training set was chosen ran-
domly from some probability distribution on the
Euclidean space, it is very unlikely that a training
set will get chosen whose maximum margin clas-
sifier has a large positive margin but still makes
gross errors on unseen points.

We have glossed over a lot of details (and introduced inac-
curacies) while making the above statement but going into
any of these details would require a full technical article
on Vapnik-Chervonenkis dimension (strictly speaking even
this would not suffice) and Probably-Approximately-Correct
(PAC) Learning. We provide pointers on these topics for the
interested reader toward the end.

This basic SVM model can be tweaked to allow for situa-
tions where there is noise and a few outlier training points
make it impossible for any linear hyperplane to classify the
otherwise linearly classifiable data set. These models are
known as Soft-margin SVMs (see Figure 3). The following
figure is illustrative of such a situation. Again we choose not
to go into the details of the topic.

Figure 3: A Soft-margin Linear Classifier - the
starred points are the support vectors

3.1 Learning the Maximum Margin Classifier

We briefly address the question of how to learn the maxi-
mum margin classifier given a training set of vectors in some
Euclidean space (this might sound as a restriction for cases
like spam detection where the objects are not real-valued
vectors but we shall soon see how this drawback be elegantly
overcome). Given a set of training vectors, we formulate a
mathematical program (very much like formulations in the
familiar linear programming paradigm) to express the prob-
lem of maximizing the margin. The program that gets for-
mulated is a Linearly-constrained Quadratic Program and
there are several efficient techniques available to solve the
program. We give pointers to freely available solvers toward
the end.

We now move on to the second most important feature of
the SVM technique namely its adaptability to the Kernel
Trick.

4. THE KERNEL TRICK
An apparent drawback in the description of the SVM al-

gorithm is that it seems to work well only when the data is
linearly classifiable or nearly so. What, we may ask, happens
when our problem is not so well behaved?

Figure 4: A Non-linear Classification Problem

In such cases what we typically do is apply a non-linear
transformation to the data (which usually maps the data to
a higher dimensional space) to make it linearly classifiable
or very nearly so. To appreciate this method let us consider
the problem of learning the Boolean function XOR in a ge-
ometric setting. Recall that for two binary digits (or bits) a
and b, XOR(a, b) = (a ∧ ¬b) ∨ (¬a ∧ b). Geometrically we
can consider framing this problem in R2 and interpret the
coordinate values as bit values. Thus we get the following
classification problem with BLACK and WHITE denoting
the two classes XOR = 1 and XOR = 0 respectively.

It turns out that this data set is not a linearly classifiable
one as no line can separate the black points from the white
ones. But consider the following non-linear map from R2 to
R3. Φ : (x, y) 7−→ (x2, y2,

√
2xy). Figure 6 shows that this

map makes the data linearly separable.3

Although there are infinitely many such transformations
to linearize the data, this particular transformation is spe-
cial because it corresponds to a Positive Definite Kernel

3For those worried about whether this non-linear map would
affect the generalization bounds, all it takes to fix things is
a bit more involved theory from functional analysis.

Figure 5: The XOR Classification Problem

Figure 6: Making the XOR linearly separable

also known as a Mercer Kernel. A detailed definition of
this term is beyond the scope of this article but we can
appreciate the uniqueness of this linear transformation by
looking at how the dot product looks like in this transformed
space. Given two vectors ~x1, ~x2 ∈ R2 one can easily see that
〈Φ(~x1),Φ(~x2)〉 = 〈~x1, ~x2〉2.4

This innocuous looking technicality has great significance
for the SVM algorithm because of the fact that the SVM
algorithm can be expressed in a way that only requires dot
products between the training vectors to learn the maximum
margin hyperplane and not the training vectors themselves.
This is most fortunate since we can now map our vectors
to very (very) high dimensional spaces where they have a
greater chance of becoming linearly separable but not incur
the computational cost of performing the map. However
as pointed out this is possible only if the inner product of
the mapped vectors in the higher dimensional space can be
easily expressed in terms of the original vectors as was the
case with the map Φ.

This trick is known as the Kernel Trick and the measure
K(~x1, ~x2) = 〈Φ(~x1),Φ(~x2)〉 corresponding to a map Φ is
known as a kernel. But what do we do when we get a new
vector to classify? Here’s where the fact that the direction
vector of the maximum margin classifier is simply a linear
combination of some of the training vectors (more specifi-
cally the support vectors - see Section 3) comes in handy.

4Note that 〈Φ(~x1),Φ(~x2)〉 is a dot product in R3 whereas
〈~x1, ~x2〉 is a dot product in R2.

To see how let ~w =
∑

Φ(~xi)∈SV

αiΦ(~xi). Hence5

f(~x) = 〈~w,Φ(~x)〉+ b

=

〈 ∑
Φ(~xi)∈SV

αiΦ(~xi),Φ(~x)

〉
+ b

=
∑

Φ(~xi)∈SV

αi〈Φ(~x),Φ(~xi)〉+ b

=
∑

Φ(~xi)∈SV

αiK(~x, ~xi) + b

Thus the kernel measure is sufficient for classifying new
points as well. Recall that our classifier is sgn(f(x)). In
practice instead of choosing a map, one chooses an appro-
priate kernel measure which (under some conditions given
by a result in Functional Analysis called the Mercer’s Theo-
rem) is the inner product of vectors when subjected to some
non-linear map and use that to learn a hyperplane via the
SVM method - the high dimensional map is always made
implicitly and never computed as such. One can also design
a kernel by explicitly defining a map Ψ and using the kernel

K̂(~x1, ~x2) = 〈Ψ(~x1),Ψ(~x2)〉.
Frequently one uses this trick to map vectors to infinite di-

mensional spaces (the Gaussian kernel measure K(~x1, ~x2) =

e
− ‖ ~x1− ~x2‖

2σ2 where ‖~x‖ is the length of the vector ~x and σ > 0
is one such kernel). Some care has to be taken when dealing
with infinite dimensional spaces but we do not go into those
details in this article. The choice of the kernel is the most
important one while using the SVM algorithm as this influ-
ences the quality of the learnt classifier heavily. However,
apart from the choice of the kernel, the SVM algorithm is
almost fully automated requiring almost no human interven-
tion. This should be contrasted with Artificial Neural Net-
works which typically require a lot of manual tuning during
the learning process.

It turns out that the kernel trick is more than a just neat
way of getting the benefits of working in a high dimensional
space without incurring the computational costs. It is also a
neat way of handling non numeric data and allows the SVM
algorithm to work in a variety of situations. This is be-
cause the kernel can be thought of as a measure of similarity
(the trivial kernel K(~x1, ~x2) = 〈~x1, ~x2〉 is indeed a measure
of similarity between the two vectors giving us the cosine
of the angle between the vectors in case they are of unit
length). Hence one can work with SVMs if one can find an
appropriate measure of similarity between the objects con-
cerned. For example when working with e-mails, one has to
devise a way of finding out how similar two e-mails (spam
or non-spam) are. In many situations, finding measures of
similarity between two objects is a much more natural thing
to do than converting objects like e-mails to numeric vec-
tors. Of course the similarity measure we construct might
not confirm to the Mercer’s Theorem we mentioned earlier
but even such non-kernel similarity measures are found to
give good results in practice.

5Once again some technicalities have crept in. However
these simply use the fact that the inner (dot) product is a bi-
linear map i.e 〈~x+~y, ~z〉 = 〈~x, ~z〉+〈~y, ~z〉 and 〈c0~y, ~z〉 = c0〈~y, ~z〉
where c0 ∈ R. Actually bilinearity for real spaces dictates
that 〈~x, ~y+~z〉 = 〈~x, ~y〉+〈~x, ~z〉 and 〈~y, c0~z〉 = c0〈~y, ~z〉 as well.

5. APPLICATIONS OF SVMS
SVMs have found widespread application in machine learn-

ing problems of which we survey two below. A more com-
prehensive survey is made impossible by lack of space.

5.1 Handwritten Digit Recognition
This application was mentioned in the seminal paper by

Boser, Guyon and Vapnik that introduced the Support Vec-
tor Machine algorithm [BGV92]. The data set used was
compiled by the United States Postal Service out of zip code
numbers written on postal letters. This was a widely stud-
ied problem at that time and researchers had done a lot of
work on Neural Networks and other algorithms trying to get
better results on this dataset.

However the best they could do was achieve an error rate
of around 12.7%. However Boser et al using simple polyno-
mial kernels (where K(~x1, ~x2) = 〈~x1, ~x2〉d for some integer
d ≥ 1), achieved an error rate of just 3.2%. This was taken
as an illustration of the generalization error bounds at work.

5.2 Text Categorization
This is an example of how one can use the kernel trick

to work with innovative similarity measures on the data.
The problem was that of categorizing news articles from
the Reuters-21578 collection into various topics (viz. sports,
entertainment, politics). In this work Joachims [Joa98],
used insight from the field of information retrieval research
to design similarity measures which gave significant perfor-
mance gains. Earlier methods like Decision trees and Near-
est Neighbor based algorithms were at best able to give ac-
curacy rates of around 80% on test data. The SVM based
methods, on the other hand, were able to achieve accuracy
rates of > 86%.

In many other fields like bioinformatics, image based ob-
ject recognition and page ranking for Internet search, SVM-
based techniques have been applied with great success. We
conclude our discussion here and move on to give refer-
ences to sources which discuss SVMs and related methods
in greater detail.

6. ACKNOWLEDGMENTS
The author thanks Vedula Vijaya Saradhi for comments

on an earlier version of the paper.

7. REFERENCES
[BGV92] Bernhard E. Boser, Isabelle Guyon, and Vladimir

Vapnik. A training algorithm for optimal margin
classifiers. In International Conference on
Learning Theory, pages 144–152, 1992.

[DHS06] Richard O. Duda, Peter E. Hart, and David G.
Stork. Pattern Classification. John Wiley & Sons
Asia Pvt. Ltd., 2006.

[Joa98] Thorsten Joachims. Text categorization with
suport vector machines: Learning with many
relevant features. In European Conference on
Machine Learning, pages 137–142, 1998.

[Ros58] Frank Rosenblatt. The perceptron: A
probabilistic model for information storage and
organization in the brain. Psychological Review,
65(6):386–408, 1958.

Ponder Yonder
An excellent introductory text in SVMs is the following

Nello Cristianini and John Shawe-Taylor, An In-
troduction to Support Vector Machines, Cambridge
University Press, 2000.

The authors also maintain a website which has a lot of ma-
terial on Kernel based methods including SVMs and links
to freely available implementations of the SVM algorithm :
http://www.support-vector.net/

For someone interested in learning more about concepts
like PAC learning and the VC-dimension theory which allow
SVMs to give generalization error bounds, the following is a
good starting point

Michael J. Kearns and Umesh V. Vazirani, An
Introduction to Computational Learning Theory,
The MIT Press, 1994.

Although not covered in this article, there are algorithms
to perform regression and clustering that admit the Kernel
trick. A good source to learn about these techniques is the
following

Bernhard Schölkopf and Alexander J. Smola, Learn-
ing with Kernels, The MIT Press, 2002.

http://www.support-vector.net/

	The Learning Methodology
	Linear Classifiers
	Large Margin Classifiers
	Learning the Maximum Margin Classifier

	The Kernel Trick
	Applications of SVMs
	Handwritten Digit Recognition
	Text Categorization

	Acknowledgments
	References

