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Abstract

The problem of multi-instance multi-label learning (MIML)
requires a bag of instances to be assigned a set of labels most
relevant to the bag as a whole. The problem finds numerous
applications in machine learning, computer vision, and natu-
ral language processing settings where only partial or distant
supervision is available. We present a novel method for opti-
mizing multivariate performance measures in the MIML set-
ting. Our approach MIMLperf uses a novel plug-in technique
and offers a seamless way to optimize a vast variety of perfor-
mance measures such as macro and micro-F measure, average
precision, etc which are performance measures of choice in
multi-label learning domains. MIMLperf offers two key ben-
efits over the state of the art. Firstly, across a diverse range
of benchmark tasks, ranging from relation extraction to text
categorization and scene classification, MIMLperf offers su-
perior performance as compared to state of the art methods
designed specifically for these tasks. Secondly, MIMLperf op-
erates with significantly reduced running times as compared
to other methods, often by an order of magnitude.

1 Introduction
The paucity of labeled data has fueled much interest in learn-
ing paradigms with partial or distant supervision. The task
of Multi-instance Multi-label (MIML) learning is one such
paradigm that has received much attention in areas such as
relation extraction (RE), image classification etc. The prob-
lem requires a bag of instances to be assigned a set of labels
most relevant to the bag as a whole. To take an example, in
the RE setting, we are interested in identifying relations held
by entities being discussed in a body of text. The problem
is pretty straightforward in the presence of sentence level
annotations i.e., indications of which sentences discuss spe-
cific relations. However, this requirement is a prohibitive
one, especially when the number of relations runs into the
hundreds or thousands. Consequently, the problem is often
posed as that of learning under distant supervision (Haffari,
Nagesh, and Ramakrishnan 2015; Hoffmann et al. 2011a;
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Surdeanu et al. 2012a; Zeng et al. 2015) wherein one is pro-
vided only with relational facts in a database along with a
non-annotated corpus that overall, supports most of the facts.

The general MIML problem has been explored through
reductions to single instance or single label learning in the
past (Zhou and Zhang 2006; Zhang and Zhou 2008). The RE
problem has enjoyed more focused attention and several di-
verse approaches have been proposed for this problem such
as structural risk minimization Hoffmann et. al. (2011a),
neural networks (Zeng et al. 2015) and graphical models
(Surdeanu et al. 2012a).

Existing algorithms for the MIML problem suffer from
two main drawbacks 1) Although performance measures
such as F-measure and average precision are standard for
evaluation, the algorithms do not seek to optimize them di-
rectly, instead choosing to adopt heuristics that encourage
good performance. An exception is the work of Haffari et
al. (2015) who attempt to directly optimize the F-micro
measure. 2) The algorithms are often expensive in terms of
training time and cannot scale to large, web-scale datasets.

We address both these issues by developing MIMLperf,
a plug-in classifier for the MIML problem. MIMLperf di-
rectly tries to optimize complex performance measures such
as macro and micro-F measure in a scalable manner. The
method excels over its competitors in its abilty to predict rare
labels correctly. A notable feature of MIMLperf is its stream-
ing nature, that allows it to be executed by making several
passes over the data without the need for storing the entire
dataset in memory. We rigorously benchmark MIMLperf to
establish that 1) it offers far greater label extraction accura-
cies on RE than specialized methods for the problem, 2) it
also outperforms state-of-the-art MIML approaches on text
categorization and scene classification problems, and 3) it
can offer orders of magnitude faster running times.

2 Related Work
Completely supervised approaches, such as those for RE
(GuoDong et al. 2005; Surdeanu and Ciaramita 2007) have
limited application owning to their requirement of fully an-
notated data which is expensive. Of the alternate paradigms,
that of distant supervision has found much appeal in both RE
and MIML literature. For the RE problem, this paradigm
shift due to (Mintz et al. 2009) fueled much interest with
(Riedel, Yao, and McCallum 2010; Yao, Riedel, and McCal-



lum 2010) modeling the problem as that of mapping entity
pairs in the database to their mentions in the corpus, in other
words, a multi-instance single-label learning problem. Soon,
(Hoffmann et al. 2011b; Surdeanu et al. 2012b) generalized
this to allow entity pairs to participate in multiple relations,
thus completing the MIML abstraction. A variety of tech-
niques have been applied to this problem over the years. Re-
cently (Zeng et al. 2015) applied Piecewise Convolutional
Neural Networks (PCNNs) to the RE problem. However,
these models were often trained by optimizing performance
measures such as conditional log-likelihood (Surdeanu et al.
2012a), error rate, or bag level entropy (Zeng et al. 2015)
that are not directly related to the measures actually used for
evaluation such as F-measure and average precision.

The area of learning structured prediction models be-
comes relevant in this context since MIML requires pre-
dicting a structured array of labels. The area has seen
the development of powerful large-margin methods (Taskar,
Guestrin, and Koller 2003) which can incorporate hidden
variables (Wang and Mori 2011; Felzenszwalb et al. 2010;
Yu and Joachims 2009), which is useful since MIML admits
elegant formulations as a latent variable learning problem, as
well as optimize non-decomposable performance measures
such as F-measure (Ranjbar et al. 2013; Tarlow and Zemel
2012; Rosenfeld et al. 2014; Keshet 2014).

However, the only direct application of these techniques
to optimize non-decomposable performance measures in the
MIML setting is in the work of Haffari et al. (2015),
who optimize the micro averaged F-measure in the RE set-
ting. Their optimization algorithm interleaves the Concave-
Convex Procedure (CCCP) (Yuille and Rangarajan 2001)
to populate latent variables using dual decomposition (Ko-
modakis, Paragios, and Tziritas 2011; Rush and Collins
2012). This factorizes the hard optimization problem
into smaller independent sub-problems over the training
instances. Despite such optimization tricks and the use
of heuristic local search methods replacing the exhaus-
tive search of (Joachims 2005; Ranjbar, Vahdat, and Mori
2012)), their approach suffers from two drawbacks: (i) the
approach is slow and does not scale to large datasets and (ii)
it does not perform well for the heavy tail of rare classes
with small class priors.

There also has been progress in developing general pur-
pose algorithms for the MIML problem (Zhou and Zhang
2006; Zhang and Zhou 2008) that have been applied to text
and image (scene) classification tasks. The work of (Zhou
and Zhang 2006) provides two methods, viz., MIMLBoost
and MIMLSVM for the problem. MIMLBoost solves sev-
eral multi-instance single label (MISL) problems and then
converts each into Single Instance Single Label (SISL) prob-
lems using multi-instance boosting. MIMLSVM, on the
other hand, converts the MIML problem into several Sin-
gle Instance Multi Label (SIML) problems using k-medoids
clustering that uses the Hausdorff distance between all pairs
of points and then solves SIML problem using SVM. Both
methods work on degenerate versions of MIML and hence
can be lossy. The main bottleneck in the MIMLSVM ap-
proach is the extremely expensive computation of Haus-
dorff distance matrix between all pairs of points. As we

shall see in Section 5, this causes this approach to be ex-
tremely slow. As a concluding note we point out that the
the SIML approach of reducing the problem of predict-
ing labels for bags to that of predicting labels for indi-
vidual instances is very popular in RE (Zeng et al. 2015;
Haffari, Nagesh, and Ramakrishnan 2015; Hoffmann et al.
2011a) and MIML algorithms. We will revisit this approach
while describing the MIMLperf algorithm.

3 Problem Formulation
In the MIML setting, training data is presented as
D := {(xi,yi)}Ni=1 where xi =

{
x
(1)
i , . . . ,x

(ni)
i

}
∈ X

is the ith instance set (also called a bag) containing ni in-
stances and yi = [yi,1, yi,2, . . . , yi,L] ∈ Y = {0, 1}L
is a vector of labels associated with xi. We will use
hi ∈ {1, .., L, nil}ni to denote the vector of hidden la-
bels for xi. hi,j will encode whether the jth instance in
the bag xi expresses one of the labels {1, . . . , L} or not
{nil}. Denote X := {xi}Ni=1 ∈ X and Y := {yi}Ni=1 ∈
Y . The above is illustrated well using an example from
the RE domain. The goal in RE is to align facts to sen-
tences in a large unlabeled corpus. The training data con-
sists of entity-pairs, such as (Walt Disney, Mickey
Mouse). For each entity pair, we are given a set of sen-
tences (also called mentions) that talk about these entities,
and a set of relations known to be satisfied by the pair.
For instance, (Walt Disney, Mickey Mouse) sat-
isfy the relations Co-creator-Of, Voice-Of but not
Animator-Of (Mickey was animated by Ub Iwerks).

The above can be cast as an MIML problem by letting
xi be the instance set or bag containing all mentions of the
i-th entity pair and yi be the relations satisfied by the pair.
The hidden label vector hi can be used to denote relations
expressed by individual mentions. The set of L possible re-
lations is extracted from a knowledge-base.

We wish to learn a function f : X → Y that predicts labels
for novel data points f(x) = [f1(x), f2(x), . . . , fL(x)].
Given a dataset (X,Y) containing N data points, let Yj =
[y1,j , y2,j , . . . , yN,j ] encode which bags support label j.
Similarly, let f j(X) = [fj(x1), fj(x2), . . . , fj(x)N ] be the
vector of predictions for label j. Our learning process will
be guided by a performance measure ∆ : Y ×Y → R+.

The simplest of such performance measures is the class
of univariate or decomposable measures that compute per-
formance over a set of data points by simply averaging
the performance on individual data points ∆(f(X),Y) =
1
N

∑N
i=1 ∆(f(xi),yi). Examples include the Hamming dis-

tance (Bi and Kwok 2013; Chen and Lin 2012), precision
(Hsu et al. 2009; Weston, Bengio, and Usunier 2011), and
recall (Steck 2010). Although convenient to work with and
analyze, these performance measures are known to be ill
suited in the presence of label imbalance or a heavy tailed la-
bel distribution (Koyejo et al. 2014; Narasimhan, Vaish, and
Agarwal 2014) since they tend to neglect performance on
rare labels. Incidentally, the heavy tail phenomenon is well
documented in relation extraction settings (see Figure 1a).

Instead, the performance measures of choice in these situ-
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Figure 1: (Left) The Riedel dataset exhibits a heavy tail in its label distribution, most relations are extremely rare. (Right) Men-
tion level hidden labels can be used to compute the active relations for the entity-pair (Walt Disney, Mickey Mouse).

ations are the multivariate performance measures that force
the predictor to do well on rare labels as well. These mea-
sures are typically non-decomposable as their evaluation
does not decompose over individual points. In this pa-
per, we focus on the family of F-measures that are pop-
ular for RE (Haffari, Nagesh, and Ramakrishnan 2015;
Surdeanu et al. 2012a), as well as label imbalanced learn-
ing settings in general (Koyejo et al. 2014; Ye et al. 2012).

The label-wise Precision and Recall of a predictor mea-
sure the performance on each individual label

PRECj(f ;X,Y) :=
∑n

i=1 yi,j ·f
j(xi)∑n

i=1 fj(xi)

RECj(f ;X,Y) :=
∑n

i=1 yi,j ·f
j(xi)∑n

i=1 yi,j
,

whereas the global Precision and Recall calculate the overall
performance of f across labels

PREC(f ;X,Y) :=
∑n

i=1

∑L
j=1 yi,j ·f

j(xi)∑n
i=1

∑L
j=1 fj(xi)

REC(f ;X,Y) :=
∑n

i=1

∑L
j=1 yi,j ·f

j(xi)∑n
i=1

∑L
j=1 yi,j

For any label j, we define the label-wise F-measure as

F jβ(f ;X,Y) :=
(

β
PRECj(f ;X,Y)

+ 1−β
RECj(f ;X,Y)

)−1
, as well

as the Macro and Micro F-measure as

Fmacro
β (f ;X,Y) := 1

L

∑L
j=1 F

j
β(f ;X,Y), and

Fmicro
β (f ;X,Y) :=

(
β

PREC(f ;X,Y)
+ 1−β

REC(f ;X,Y)

)−1

,

where β = 0.5 gives the standard F1 measure. These
performance measures, especially the macro F-measure, pe-
nalize predictors that perform poorly on rare labels. In the
next section, we develop scalable techniques for optimizing
multivariate performance measures such as F-measure vari-
ants in the MIML and RE settings.

4 Proposed Approach
Despite having attractive properties as discussed above,
multivariate performance measures such as F-measure
present challenges to learning algorithms. Due to their non-
decomposability, classical algorithmic tools such as online
and stochastic optimization, as well as analytical tools such
as uniform convergence bounds are not readily applicable.

The recent years have seen a growing interest in the prob-
lem of optimizing non-decomposable performance mea-
sures, especially F-measure variants (Dembczyński et al.
2013; Narasimhan, Kar, and Jain 2015). However, past work
is mostly restricted to binary classifiation. An exception is
the recent work of Haffari et al. (2015) that utilizes the
structural SVM approach (Joachims 2005) to optimize the
F-micro measure in the RE setting. However, the approach
is woefully non-scalable, struggling to cope with even a few
thousand data points. This severely restricts its applicability
to real life and production-grade problems.

This section will develop MIMLperf, a scalable tool for
optimizing multivariate performance measures in the MIML
setting. MIMLperf is based on a plug-in approach to clas-
sification. Plug-in classifiers have been studied in binary
classification settings with great success (Kotłowski and
Dembczynski 2015; Narasimhan, Vaish, and Agarwal 2014;
Koyejo et al. 2014; Ye et al. 2012). However, to the best of
our knowledge, plug-in approaches have not been studied in
MIML or RE settings.

4.1 Plug-In Classifiers
Consider a simple binary classification problem where the
task is to assign every data point x ∈ X , a binary label
y ∈ {±1}. Plug-in classifiers achieve this by first learn-
ing to predict Class Probability Estimate (CPE) scores. A
function g : X → R+ is learnt such that g(x) ≈ P [y = 1].
Various tools such as logistic regression may be used to
learn this CPE model g. The final classifier is of the form
sign(g(x) − η) where η is a threshold that is tuned to max-
imize the performance measure being considered, e.g. clas-
sification accuracy, F-measure, G-mean etc.

Plug-in approaches offer various benefits. They can be
used to optimize complex multivariate performance mea-
sures. In fact the same CPE model can be reused to tar-
get several performance measures by simply changing the
threshold tuning step. Plug-in approaches have been rigor-
ously analyzed and are known to be statistically consistent
(Narasimhan, Vaish, and Agarwal 2014).

However, plug-in methods require total supervision, akin
to requiring every instance in every bag to be labeled,
whereas MIML operates under a significantly impoverished



Algorithm 1 MIMLperf: Training Routine

Input: Data {(xi,yi)}Ni=1, expression rate κ, perf. measure ∆
1: For all (i, j) such that yi,j = 1, set random κ · ni entries of

the vector z(i,j) to 1 // Initialize hidden labels randomly
2: while not converged do

Step 1: Fix hidden variables, update plug-in classifiers
3: for every label j ∈ [L] do
4: Dj ← {{(x(k)

i , z
(i,j)
k )}ni

k=1}
n
i=1 // Prepare datasets

5: gj ← CPE-train(Dj) // Train CPE models
6: end for
7: η ← Tune-thresholds((X,Y),p; ∆) // Optimize ∆

Step 2: Fix plug-in classifiers, update hidden variables
8: for (i, j) ∈ [N ]× [L] such that yi,j = 1 do
9: z(i,j) ← 0ni // Reset hidden labels

10: c(i,j) ←
∑ni
k=1 I{g

j(x
(k)
i ) ≥ ηj}

11: S(i,j) ← Sample c(i,j) entries of z(i,j) according to gj

12: z
(i,j)
k ← 1 for all k ∈ S(i,j) // Reestimate hidden labels

13: end for
14: end while

Algorithm 2 MIMLperf: Testing Routine

Input: Test point x = {x(1), . . . ,x(nt)} with nt instances, CPE
models g1, . . . , gL, thresholds η = [η1, . . . , ηL].

1: for k = 1, 2, . . . , nt do
2: hk ← {j : gj(x(k)) ≥ ηj} // Discover hidden labels
3: end for
4: for j = 1, 2, . . . , L do
5: ŷj ←

∨nt
k=1 I {j ∈ hk} // Aggregation step

6: end for
7: return ŷ = [ŷ1, ŷ2, . . . , ŷL]

distant supervision setting. Thus, a direct application of ex-
isting plug-in approaches to MIML problems is not possible.

4.2 MIMLperf: An MIML Algorithm for Optimi-
zing Multivariate Performance Measures

MIMLperf reduces the problem of predicting labels for a bag
to the problem of predicting the labels expressed by individ-
ual instances in that bag. This is captured by the hidden vari-
ables (see Figure 1b). For instance, the sentence “Mickey
Mouse was voiced by Walt Disney himself” expresses the la-
bel Voice Of but not the label Co-creator Of. Af-
terward, a label is predicted as relevant for the bag if at
least one instance in the bag expresses that label. This ag-
gregation or SIML approach has been standard in MIML
and RE settings (Haffari, Nagesh, and Ramakrishnan 2015;
Hoffmann et al. 2011a; Zhang and Zhou 2008).

Existing approaches suffer since they use expensive tech-
niques such as integer linear programming Haffari et al.
(2015) to set these hidden variables. MIMLperf instead uses
plug-in classifiers to set the hidden variables which results in
training routines that are orders of magnitude faster. How-
ever, training these classifiers is challenging since we do not
have any instance level supervision – the training data does
not tell us which instances express which labels.

Overview of MIMLperf Training: MIMLperf overcomes
the challenge of absence of instance level supervision in a

scalable manner by combining two powerful approaches –
plug-in classifiers and alternating optimization. Alternat-
ing approaches such as the EM algorithm are very widely
used to train latent variable models. At every time step,
MIMLperf makes an estimate of the hidden variables, i.e.
for an instance in a training bag, which labels are likely to
be expressed by that instance. These estimates are valuable
since they offer a form of instance level supervision to the
method. This makes it possible for MIMLperf to train plug-
in classifiers by learning CPE models and tuning appropriate
thresholds; a separate classifier is trained for each of the L
labels. Using these classifiers, MIMLperf then improves the
estimates of the hidden variables. This process is repeated
for a few iterations. The details of the training and testing
routines for MIMLperf are given in Algorithms 1 and 2.

Hidden Variables These are used to record the algo-
rithm’s beliefs about which labels are expressed by individ-
ual instances. For a set of N data points {(xi,yi)}Ni=1, the
binary variable z(i,j)k ∈ {0, 1} indicates whether the kth in-
stance in the ith bag expresses the jth label or not. If the ith

data point has ni instances then the vector z(i,j) ∈ {0, 1}ni

encodes which of the instances in the bag express the label
j. A crucial observation that makes our approach scalable is
that if a bag does not have a label j, then none of its instances
can express it. In other words, if yi,j = 0 then z(i,j) = 0.
This observation is valuable since we need only worry about
z
(i,j)
k when yi,j = 1. Since most bags have very few labels

(see Figure 1a), this introduces sparsity into our approach.
We now describe the alternation steps.

Step 1: Learning Plug-In Classifiers Given an assign-
ment to all the hidden variables z(i,j), MIMLperf learns a
plug-in classifier for each label. The job of the classifier
corresponding to a particular label is to predict whether a
given instance expresses that label or not. This is done by
simply formulating a binary classification problem for each
label with the hidden variables acting as the “classes”. A
standard procedure like logistic regression (CPE-train in Al-
gorithm 1) is used to obtain CPE models, one for each label.
Afterward, thresholds are tuned for each label such that the
performance measure ∆ being targeted, such as F-macro or
F-micro measure, is maximized. Doing so is challenging
since we are working with complex performance measures
and in large scale settings, the number of CPE scores being
handled runs into millions or more. We refer the reader to
Section A in the supplementary material for details.

Step 2: Re-estimating Hidden Variables The CPE mod-
els learnt in the previous step can be used to obtain (noisy)
CPE scores for all instances with respect to all labels. The
noise is due to incorrect assignments to the hidden variables
in the previous step. Nevertheless, this gives us an estimate
of which instances are more likely to express a certain la-
bel. MIMLperf uses these CPE scores to reassign the hidden
variables. In order to avoid trusting these scores completely,
MIMLperf chooses a random set of instances with high CPE
scores with respect to a label and assigns them that label.
This has the effect of reinforcing good CPE models as well
as smoothing out errors. For the initialization step, if a bag
has a label j, the method assigns a random κ fraction of in-



stances in that bag to label j. κ is an expression rate param-
eter that is only used for initialization. We refer the reader
to Section B in the supplementary material for details.

Overview of MIMLperf Training: The testing procedure
of MIMLperf (see Algorithm 2) involves simply applying the
plug-in classifiers and performing the aggregation step to
obtain the predictions for all labels for a bag. This procedure
is enormously cheaper than the integer linear programming
approach followed by Haffari et al. (2015).

4.3 Theoretical Analysis
Since multi-instance learning is a non-convex learning prob-
lem with complex structure, giving strong theoretical guar-
antees for algorithms is a challenging albeit interesting prob-
lem. Nevertheless we are able to establish generalization
guarantees for MIMLperf that prove that it does not over-
fit. Let f̂ be the classifier generated by MIMLperf. Let the
training set (X,Y) be chosen randomly from some fixed
but unknown distribution and let (Xt,Yt) denote a random
test set drawn from the same distribution. Let π denote the
minimum frequency of any label.
Theorem 1. Let the instances be represented as d dimen-
sional features x

(k)
i ∈ Rd. Then for any N such that√

1
N

(
log 12

δ + d log 2eN
d

)
< βπ

2(1+β) , we have, with prob-
ability at least 1− δ, for some constant C∣∣∣E [Fmacro

β (f̂ ;Xt,Yt)
]
− Fmacro

β (f̂ ;X,Y)
∣∣∣ ≤ C√ 1

N

(
d+ log 1

δ

)
The result is stated for linear models for sake of simplicity

and can be extended to hypothesis spaces with finite capacity
as well. A similar result holds true for F-micro measure. We
leave the details of this result to the full version of the paper.

5 Experiments
We present a detailed evaluation of our approach and com-
parisons against the state of the art on three benchmark
MIML/RE datasets.

1. Riedel Distant Supervision Dataset: For the distantly
supervised relation extraction problem, we use the bench-
mark dataset created by (Riedel, Yao, and McCallum
2010). The dataset was created by aligning relations from
Freebase1 with the sentences in the New York Times cor-
pus (Sandhaus 2008). The labels for the data points come
from the Freebase database; however, Freebase is incom-
plete (Ritter et al. 2013). A data point is labeled nil when
either no relation exists or the relation is absent in Free-
base. Following Haffari et al. (2015), we train and eval-
uate the baseline and our algorithms on a subset of this
dataset, termed as the positive dataset, which consists of
only non-nil relation labeled data points.

2. MIML Scene Classification Dataset (Scene): The
Scene data set contains 2000 scene images collected from
the COREL image collection and the Internet, with five
different possible class labels, viz., desert, mountains, sea,
sunset and trees. Each image is represented as a bag of

1www.freebase.com

Table 1: Dataset Statistics

#bags #labels labels
point

points
label

instances
bag

Riedel 4350 52 1.08 90.4 6.6
Scene 2000 5 1.24 494.4 9
Reuters 2000 7 1.15 329.71 3.56

nine instances with each instance represented as 15 di-
mensional feature vector that corresponds to an image
patch. Following MIMLSVM, We divided the data into
two parts consisting of 1600 data points for training and
the remaining 400 points for testing.

3. MIML Text Classification Dataset (Reuters): This
dataset is derived from the widely studied Reuters-21578
collection using seven most frequent classes. It consists of
2000 documents with 15% of them associated with more
than one class label. Each each instance is represented
as a 243-dimensional feature vector and corresponds to a
text segment. Again, we follow MIMLSVM in the way
we partition this dataset into training and testing splits.

Comparisons against existing approaches We first
present a comparison of MIMLperf against state-of-the-art
methods for each of the three datasets. We report Fmacro

β ,
Fmicro
β and average precision as our evaluation measures. In

addition, we also report the training time and the average
time required to predict labels for each test bag (instance
set). We used a default value κ = 1 as the expression rate for
training MIMLperf. For the sake of fairness, training splits
and feature sets were kept common across all experiments.

Table 2 compares MIMLperf against state-of-the-art ap-
proaches MIMLSVM and M3MIML (Zhang and Zhou
2008) for the Scene and Reuters datasets. We observe
that MIMLperf consistently outperforms both methods on all
three evaluation measures. Additionally, as noted in Table 5,
MIMLperf is significantly and consistently faster in training
than MIMLSVM and even more so at testing time.

Table 3 reports a comparison for the specific distant su-
pervision RE setting against the MM-Fβ approach Haffari
et al. (2015). MIMLperf consistently outperforms MM-Fβ
on F-macro as well as F-micro with a 143-fold speedup in
training. While the gains on F-micro are marginal, we note
that those on F-macro are significant which is important, es-
pecially when the class distribution is heavy tailed with lots
of rare classes. In such situations, F-macro performance be-
comes more crucial than F-micro performance. We note that
MM-Fβ is the leading algorithm for RE and itself beats other
RE algorithms. For this reason we compare only to MM-Fβ .

In addition to offering gains on training and test speeds,
our approach does not require the entire dataset to be loaded
in memory. We executed MIMLperf efficiently by noticing
that several components of the algorithm, most importantly
the training of the CPE models, are inherently parallelizable.

Effects of changes in parameters and objective In
Table 4 we compare the difference in performances of
MIMLperf when the macro-F measure is replaced with the
micro-F measure as the objective. We compare the results



Table 2: Performance of MIMLperf compared against MIMLSVM and M3MIML on the Scene and Reuters Datasets

Dataset Kernel
F-Macro F-Micro Avg. Precision

MIMLSVM M3MIML MIMLperf MIMLSVM M3MIML MIMLperf MIMLSVM M3MIML MIMLperf

Scene
lin 0.4292 0.386 0.5427 0.4475 0.3868 0.528755 0.6635 0.5754 0.746562
rbf 0.6054 0.5872 0.6201 0.6016 0.5796 0.615842 0.7704 0.74857 0.791984

Reuters
lin 0.8274 0.7601 0.8492 0.8395 0.8067 0.862955 0.9489 0.9463 0.9625
rbf 0.88387 0.69979 0.8901 0.8689 0.7866 0.89422 0.9467 0.9403 0.970646

Table 3: MIMLperf comparison with the (MM-Fβ) model by Haffari
et. al. on the Riedel dataset

F-macro Precision Recall F-micro Training time
MM-Fβ 0.1366 0.6599 0.6521 0.6559 4h 20m

MIMLperf 0.228354 0.79281 0.57811 0.66865 1m 49s

Table 4: Effect of the training objective on test per-
formance on the Riedel dataset

F-macro F-micro
Optimizing Fmacro

β 22.8354 61.0615
Optimizing Fmicro

β 18.984 66.8648

Table 5: Comparisons of training time and testing time per instance

Dataset Kernel Training time Testing time per instance
MIMLSVM MIMLperf Speedup MIMLSVM MIMLperf speedup

Scene Linear 7m 45s 1.66s 280× 0.0920s 0.0009s 102×
RBF 9m 24s 6m 40s 1.41× 0.0921s 0.03s 3×

Reuters Linear 3m 55s 1.62s 145× 0.1035s 0.0005s 207×
RBF 5m 04s 1m 02s 5× 0.1063s 0.008s 13×

Table 6: Relation-wise comparisons of F-score with MM-Fβ , MIMLperf, κ = 1 and MIMLperf, tuned κ on Riedel

Relation % of occurrence MM-Fβ MIMLperf κ = 1 MIMLperf tuned κ
/people/person/place lived 12.36 0.15966 0.46556 0.46897

/people/deceased person/place of death 4.04 0.19231 0.31111 0.35294
/location/administrative division/country 1.26 0 0.37624 0.37624

/business/company/founders 1.09 0.48148 0.68571 0.75676
/location/country/capital 0.77 0 0.10866 0.11494

/film/film/featured film locations 0.15 0 0.01262 0.01325
Overall F-Macro 0.13660 0.22835 0.23282

of training to optimize the Fmicro
β measure against optimiz-

ing Fmacro
β . In each setting, we report both Fmicro

β and Fmacro
β .

We note the strong correspondence between the choice of
performance in the training objective and performance be-
ing evaluated upon the test dataset.

Performance on Rare Labels We expect optimizing the
F-macro performance measure to enhance performance on
the rarer labels (that have low priors). We confirm this in
Table 6, wherein we compare the performance of MIMLperf

with MM-Fβ for some of the rarer labels. Whereas MM-Fβ
reports extremely low F-scores (in some cases 0) on rare la-
bels, MIMLperf performs much better. The value of κ yield-
ing the best performance for a label changes across classes
and therefore, also report results with κ tuned for each label
on the training dataset. This gives us even better gains.

We also test for statistical differences between the accu-
racies of MIMLperf and MM-Fβ on all the classes using the
Wilcoxon2 signed-rank test. We notice that the sum of the

2This is a non-parametric test of the null hypothesis that there
is no significant difference between the median performance of a
pair of algorithms.

signed ranks (222 with κ = 1 and 237 for κ tuned for each
class) is very clearly in favour of MIMLperf over MM-Fβ .

6 Conclusions
We presented MIMLperf, a scalable algorithm for MIML
learning capable of optimizing several multivariate perfor-
mance measures in the context of multi-instance multi-label
learning (MIML). Our approach operates with significantly
reduced running times and caters well even to the rarer
classes, without compromising on the larger ones. Further,
our plug-in approach appears very amenable to distributed
and parallel computing and a possible future work is vali-
dating this hypothesis.
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A Tuning the Thresholds
As we mentioned in Section 4.1, plug-in classifiers learn a
CPE model to predict g(x) ≈ P [y = +1] and then tune
a threshold η to obtain a classifier f(x)sign(g(x) − η).
The threshold η is tuned in order to maximize the perfor-
mance measure of interest, be it classification accuracy or
F-measure or G-mean etc. A popular technique to perform
this tuning is the Empirical Utility Maximization (EUM) ap-
proach (Ye et al. 2012). The EUM approach suggests that a
threshold be chosen that maximizes the performance mea-
sure on the training dataset.

For simplicity, consider a binary classification problem
where we have n labeled data points (xi, yi) where yi ∈
±1. The CPE model g can be used to obtain CPE scores
si = g(xi). The EUM approach seeks to find a thresh-
old ηopt such that the classifier sign(g(x) − ηopt) has, say
very high F-measure, on the dataset. However, this search
problem is daunting since thresholds are real valued in gen-
eral. However, other results such as those of (Kotłowski and
Dembczynski 2015; Narasimhan, Vaish, and Agarwal 2014)
assure us that the optimal threshold will definitely be one of
the CPE scores itself i.e. ηopt = si for some i.

MIMLperf adopts the same EUM approach in the MIML
setting as well. However, there are two key differences here

1. A separate threshold has to be tuned for the plug-in clas-
sifier corresponding to all the L labels.

2. The labels for a bag cannot be obtained from the instance
CPE scores directly since there is an aggregation step in-
volved.
More specifically, our classifier turns on the label j for a

bag i only if that label is turned on for some instance k in
that bag. Recall from Algorithm 2 that we set

ŷj =

nt∨
k=1

I
{
gj(x(k)) ≥ ηj

}
This presents a challenge since the number of CPE scores to
be tuned over can run into millions or more for large datasets
due to the large number of bags and large number of in-
stances in each bag. Checking each CPE score as a candi-
date threshold is thus, not feasible.

We overcome this problem using a simple trick. Notice
that the plug-in classifier has a monotonicity property. If
sign(g(x) − η) = −1 then sign(g(x′) − η) = −1 for
all g(x′) ≤ g(x). Also, if sign(g(x) − η) = +1 then
sign(g(x′) − η) = +1 for all g(x′) ≥ g(x). Using this,
it is easy to see that a label j will be turned on for a bag i if
and only if the instance with the largest CPE score for that
label in the bag has been assigned that label. More specif-
ically, let s(i,j)max := maxk∈[ni] g

j(x
(k)
i ). Then the following

claim holds true
Lemma 2. For any data point i, label j, CPE model, gj and
threshold ηj , we have ŷj = 1 iff s(i,j)max ≥ ηj .

This shows us that while tuning thresholds for the plug-in
classifier corresponding to a certain label, it is sufficient to
only consider the maximum CPE score for that label in every
bag as a candidate threshold. This gives a huge speedup

since it decreases the number of thresholds being tuned over
from

∑N
i=1 ni to simply N . In practice we observe an order

of magnitude from this step alone.
However, this is still not sufficient since testing a can-

didate threshold itself takes O (N) time since that is the
amount of time taken to calculate the performance measure,
say F-measure, corresponding to that threshold. This brings
the total time taken to tune the L thresholds as O

(
N2 · L

)
which is simply infeasible in large scale settings.

Fortunately, the nice structure of the performance mea-
sures such as F-micro and F-macro measure come in handy
at this point. It turns out that all of these performance mea-
sures can be written as some function of the true positive
(TP) and true negative (TN) numbers of the classifier be-
ing considered. For example, if we look at the label-wise
F-measure which is used to define the macro F-measure, we
find that if we define

TPj(f ,X,Y) =

n∑
i=1

I
{
f j(xi) > 0 ∧ yi,j > 0

}
FPj(f ,X,Y) =

n∑
i=1

I
{
f j(xi) > 0 ∧ yi,j ≤ 0

}
FNj(f ,X,Y) =

n∑
i=1

I
{
f j(xi) ≤ 0 ∧ yi,j > 0

}
,

then we can write F jβ(f ;X,Y) as

TPj(f ,X,Y)

TPj(f ,X,Y) + β · FPj(f ,X,Y) + (1− β) · FNj(f ,X,Y)
.

Similar expressions can be obtained for a large family of
performance measures (Koyejo et al. 2014; Narasimhan,
Vaish, and Agarwal 2014; Narasimhan, Kar, and Jain 2015).
These expressions are very useful since the terms TPj ,FPj

etc can be calculated for all candidate thresholds in time
O (N logN). We simply need to sort all the candidate CPE
scores in increasing order and simply do a linear scan to find
out what value of TPj ,FPj etc does every candidate thresh-
old offer. This brings down the total time taken to tune the
L thresholds from O

(
N2 · L

)
to O (N logN · L).

We conclude this section by noting that while optimizing
macro F-measure, we tune a different threshold per label,
whereas we tune a single threshold while optimizing micro
F-measure.

B Estimating the Hidden Variables
As mentioned in Section 4, MIMLperf uses the trained CPE
models to obtain CPE scores for every instance with re-
spect to every label. Thus, the method now has an estimate
gj(x

(k)
i ) of the probability that the kth instance in bag i ex-

presses label j. These are now used to reassign the hidden
variables. As discussed, we do not wish to trust these scores
completely as they are noisy. Thus, we do not wish to set
z
(i,j)
k = 1 only for the instances k with the highest values of
gj(x

(k)
i ). Instead we sample instances the instances accord-

ing to their CPE scores to reassign them labels.



More specifically, if a bag i has a label j (recall that
if the bag does not have label j then we can simply set
z(i,j) = 0 since no instance in that bag could be express-
ing label j) then we sample the kth instance with probabil-
ity gj(x(k)

i )/
∑ni

k′=1 g
j(x

(k′)
i ) where ni is the number of in-

stances in bag i. Using this procedure we create a set S(i,j)

of c(i,j) instances. We now simply set z(i,j)k = 1 if k ∈ S
and z(i,j)k = 0 otherwise.

The choice of c(i,j) can be varied. In our experiments,
we used c(i,j) = κ · ni in the initialization step where κ
is the expression rate parameter. In subsequent steps, we
used c(i,j) =

∑ni

k=1 I{gj(x
(k)
i ) ≥ ηj}, i.e. we ask the plug-

in classifier trained in the previous iteration, how many in-
stances in that bag were found to express a certain label.


