
Why we Respect our Teachers

A Note on Language Learnability and Active Learning

Purushottam Kar
Department of Computer Science and Engineering

Indian Institute of Technology Kanpur
Kanpur, INDIA

purushot@cse.iitk.ac.in

ABSTRACT
Language acquisition - especially in human infants - is a
problem that intrigues the layman and baffles the expert.
This article takes a computational viewpoint toward the
problem and investigates the problem of learnability of lan-
guages. We look at some results that show that learning is
impossible even under very weak criterion. We next look
at a framework in which learning takes place with a helpful
teacher and demonstrate the role such a teacher can play
in easing the learning problem. The discussion would define
language learning formally, survey classical results and point
toward recent advances in the field.

Categories and Subject Descriptors
I.2.6 [Learning]: Language Acquisition; A.1 [General Lit-
erature]: INTRODUCTORY AND SURVEY

General Terms
Learning Theory
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1. INTRODUCTION
Many of us have witnessed a younger sibling (or a niece/nephew)

learn to speak and wondered about it. The wondersome
feat achieved by these infants, namely learning a medium
of communication used by adults far more experienced and
developed neurologically, has captured the attention of re-
searchers for quite some time now. Even the lay person
finds himself devoting a minute or two to this problem. If
one ponders on the conditions in which language learning
takes place then one easily notices a paradox - the infant
is simply exposed to utterances in its mother tongue, utter-
ances that are often ill-formed and spontaneous. Most of
these utterances are not even directed at the child (in fact

all that the child gets directed at itself are mollycoddles -
nonsensical blabbers that caretakers make in order to show
their affection toward the infant - which, in the author’s
view, can only obfuscate things further).

Despite being immersed in such a hostile environment, the
infant ends up learning the language of its caretakers and
eventually becomes a proficient speaker. In order to un-
derstand this problem better let us try to pose it in formal
terms. Of course this will involve making certain simplifi-
cations which we shall reason for as we go along. We shall
strive to keep the exposition simple and shall supplement ar-
guments with schematic diagrams to better convey the key
ideas.

2. LANGUAGES AND LEARNING
The first simplification that we will make is that of in-

terpreting a language as a set. To see why let us take the
set of all words present in our favorite English dictionary
which would be sufficient to communicate most intentions -
of course our favorite IITK lingo would be missing but let us
choose to live with this handicap - and call this set Σ. Let
Σn denote the set of all sentences1 of length n where the
words are taken from Σ. Let Σ∗ =

⋃
i>0

Σi be the set of all

sentences of finite length that use words from Σ. Clearly Σ∗

contains all English sentences. However, it also contains sen-
tences like “This celebrating Jubilee is institute our Golden
its year.” and “How it why now where is.” which are not
well formed English sentences. Thus we see that the En-
glish “language” can be thought of as that subset E ⊂ Σ∗

which contains only well formed grammatical English sen-
tences.2 For the rest of the article, whenever we refer to a
language, it will always be a set L ⊆ Σ∗.

A language L is said to be finite if |L| < ∞.3 Clearly
English is not a finite language since given a sentence s ∈ E,
one can always create a grammatically correct sentence like
“My friend thinks that s.” of length greater than that of s.
Hence I can construct sentences of arbitrarily large lengths
which makes |E| =∞.

So suppose the caretakers speak a language Lt ⊂ Σ∗

1We shall use the terms “string”, “utterance” and “sentence”
interchangeably in this discussion.
2Of course the debate on whether to consider sentences
like “Colorless green ideas sleep furiously.” which although
grammatically correct, do not make any sense (or do they?)
can be waged here and the author invites readers to wage
these debates among themselves.
3For a set S, |S| denotes its cardinality: loosely speaking,
the number of elements in S.



which the infant must identify or approximate in some sense.
What the infant receives is a finite number of utterances
s1, s2, . . . , sn where each si ∈ Lt. We will call such a se-
quence a finite text. This is a reasonable assumption since
the infant seldom receives ill-formed utterances which are
tagged as ill-formed [Niy06]. Now the job of the infant is to,
given a finite text, identify the target language Lt. Sup-
pose the infant has no prior information about the nature or
properties of Lt. All it knows is that Lt is some language in
Σ∗ which contains all the utterances that it has just heard.
In this case the infant is faced with the following dilemma
- there are an infinite number of such languages: which one
should the infant identify as the target?4 We shall return
to this question in a short while (in Section 2.2) after build-
ing some more notational apparatus to better discuss the
problem.

2.1 Languages and their Grammars
A missing detail in the above discussion involves repre-

sentation. Since we have already agreed that English (or for
that matter any language that supports recursive embed-
dings - in particular all natural, i.e. human, languages) is
an infinite set, representation becomes a problem. In other
words how does the infant represent the infinite set it has
learnt - it certainly cannot store the entire set explicitly.
However we have an intuitive solution to this. All of us
have a representation of English in our minds, and a finite
one since our minds are finite objects. There do exist sev-
eral ways of finitely representing infinite sets, two commonly
used ones being automata and grammars. An automaton
is like a computer algorithm which can accept input and give
output. An automata corresponding to a language is simply
an algorithm that answers YES if and only if it is given a
string in that language. A grammar, on the other hand, is
a set of rules that can be used to generate some strings. A
grammar corresponding to a language generates all and only
strings in that language.5

For example take the following language over binary strings
L1 = {0n1110m | n,m ≥ 0}. It is a Regular Language
generated by the following grammar which is a Regular
Expression G1 = 0∗1110∗. This grammar generates strings
which consist of some (or possibly no) zeros followed by three
ones followed by some (or possibly no) zeros. It is clear that
G1 generates L1. It is a simple task to write an algorithm
that answers YES if and only if given a string in L1.

Take the following Context-free Language L2 = {0n1n | n >
0}. This is generated by the following Context-free Gram-
mar G2

S → 0S1

S → 01

This grammar generates the string 01 and for every string
s that can be generated, the grammar also generates 0s1.
Thus 01 can be generated which in turn paves way for the
generation of 0011, and so on. Again it is clear that G2

4Note that we are assuming that the infant knows Σ. This
is a simplifying assumption but is not too unreasonable as
concept and word learning predate syntax acquisition[Pin90]
although these are not distinct stages.
5Under the Church-Turing Hypothesis, only recursively enu-
merable sets admit such finite representations - but we do
not have to worry about this technicality - all our languages
will be far from raising recursive enumerability questions.

generates L2. It is easy to write an algorithm to say YES
on strings in L2 and No to others.

Whether humans use grammars, algorithmic procedures
or some other means to represent languages in their minds
is a matter of intense study in a very exciting field called
Cognitive Linguistics. However for us it is sufficient that the
infant have ways to posit a hypothesis (i.e. its guess of what
Lt is) effectively. Given a grammar g hypothesized by the
infant, let Lg be the corresponding language. For purposes
of evaluation let us assume that we have a notion of distance
between languages. Thus given two languages L1 and L2,
we have a distance measure d : (L1, L2) 7−→ R. Many such
distance measures can be considered, a natural one being a
measure that depends on the symmetric difference of the two
languages when interpreted as sets i.e. L14L2 = L1\L2 ∪
L2\L1. This distance measure would penalize the infant
if it learns a grammar that classifies a large portion of Lt
as ungrammatical and a large chunk outside of Lt as well-
formed (see Figure 1). One can be even stricter and define
d(L1, L2) = 0 if and only if L1 = L2 and 1 otherwise.

(a) This infant has proba-
bly learnt French

(b) This infant is close to
learning English though

Figure 1: A distance measure between languages,
The shaded portion is Lt4Lg

A language Lt will be said to have been learnt on a finite
text τ (consisting of strings from Lt) as per a distance mea-
sure d if the infant (assuming it starts off with an “initial”
hypothesis g0 corresponding to the language L0) outputs a
grammar gτ on being exposed to τ such that d(Lgτ , Lt) = 0.
A language that can be learnt on any given finite text (so
long as the text contains strings from Lt alone) is said to
be learnable. A class of languages L (a class of languages
is simply a set of languages) is said to be learnable if each
L ∈ L is learnable (see Figure 2).

2.2 Language Learnability
Let us formalize the dilemma faced by the infant discussed

earlier. The infant is provided with a finite text and has to
posit a language as its hypothesis. The problem for the in-
fant is that the target language could be any language that
contains the strings it received. In other words, if the infant
were to be given an assurance before learning started that
the language it has to learn will only come from a Target
Language Class L, then the class in this case is L = 2Σ∗

which in effect gives the infant no apriori information about
Lt.

6 One might wonder how such “assurances” can be given
6Recall that for any set X, 2X denotes the power set con-



(a) Lt learnable on τ (b) Lt learnable on any
text

Figure 2: Learnability of Languages

to an infant. It turns out that if one believes in the Univer-
sal Grammar Hypothesis [Cho65], then such an assurance
is inbuilt in all of us. The hypothesis, very broadly speak-
ing, states that certain universal properties are shared by
grammars of all human languages.

Coming back to our problem, the set of languages in 2Σ∗

which contain the finite text received by the infant (this
holds for any finite text) is vast and these languages are
very different from each other according to the distance mea-
sures discussed earlier (in fact they would differ widely as
per any distance measure that encodes the generalization
performance of the infant’s learnt grammar). Hence the in-
fant has no surety of arriving at a grammar that even closely
approximates the target language even if it chooses a lan-
guage that contains all the utterances it has heard. Thus we
arrive at the following result:

Theorem 1. The language class L = 2Σ∗ is not learnable
with finite texts.

2.3 Learning with Infinite Resources
Were we expecting too much from the infant in the earlier

section? Can we relax the learning conditions a bit and see
if learning can take place? In particular can we give the in-
fant more sentences to learn the language? Can we restrict
the target language class so as to increase the chances of
arriving at the target language? We shall see in the follow-
ing discussion that even if we present the entire language
to the infant (by giving it an infinite number of sentences)
and restrict the target class to one step beyond the trivial,
learnability continues to elude us.

First of all let us give the infant infinite texts. An infi-
nite text τ for a language L is an infinite sequence of strings
s1, s2, . . . , sn, . . . all of which are in L such that every ele-
ment of L appears at least once in L. By τk we shall denote
the finite text comprising the first k elements of τ .

Let gτk be the infant’s hypothesis after receiving τk for
k > 0. Then we say that a language Lt is learnt on an
infinite text τ as per a distance measure d in the limit if
lim
k→∞

d(Lgτk , Lt) = 0 i.e. if the infant converges to the target

taining all subsets of X, including the empty one. Thus the

set 2Σ∗ contains all languages. Actually we are just con-
cerned with languages that admit finite representations but
beg to gloss over this point.

in the limit. Similarly we define what it means for a language
and a class of languages to be identifiable in the limit (see
Figure 3).

Figure 3: The infant will eventually converge to Lt

Clearly these conditions are weaker than those in Theo-
rem1. However in a seminal paper, Gold [Gol67] demon-
strated that even under these weakened conditions and in-
creased resources not only the does language class L = 2Σ∗

continue to be non-learnable but the non-learnability per-
sists even the infant is given some prior knowledge about
the target language by restricting the target class. We do
not give Gold’s original proof here but one that follows from
results by Blum and Blum [BB75] in a manner presented in
[Niy06].

Theorem 2 (Locking Text Theorem). A language Lt
is learnable only if for every ε > 0 there exists a finite “lock-
ing” text τε composed of strings in Lt such that d(Lgτε , Lt) <
ε and for all finite texts σ composed of strings in Lt, d(Lg(τε◦σ) , Lt) <
ε where τε◦σ is the concatenation of the two finite sequences.

Essentially, the theorem says that in order for a language
to be learnable, there must exist finite texts that take the
infant ε close to the target and “lock” it there. Thus, after
viewing the locking text, no matter what subsequent ut-
terances it observes, the infant never makes a subsequent
hypothesis that is farther off than ε i.e. no further exposure
can mislead it. We shall prove the theorem by contradic-
tion. We shall show that if locking texts do not exist then
we can construct an infinite text on which the infant will
never converge to the target. Since convergence is necessary
on every infinite text for a language to be called learnable,
we shall have proved the theorem.

Proof. (Sketch) Now for the actual proof. Notice that if
there did not exist locking texts for every ε > 0, it means for
some ε∗ > 0 there is no corresponding locking text, that is
to say no finite text τ taking the infant ε∗-close to the target
is able to lock it there. Thus for every such text τ that takes
the infant close to the target, there must exist a “violator”
text σ such that although d(Lgτ , Lt) < δ, after encountering
σ, d(Lg(τ◦σ) , Lt) > δ. See Figure 4 for a schematic.7

We can use these violator texts to create an infinite text ζ
for which lim

k→∞
d(Lgζk , Lt) 6= 0. We do the following: when-

ever we observe the infant getting δ-close to the target on a
finite text, we feed the infant the violator text corresponding

7Note that if there is no locking text for δ then there are
none for any ε < δ either.



Figure 4: τ brings the infant close but the violator
σ spoils the show - i.e. τ cannot be a locking text
for δ

to the text the infant has seen until now to force it to give
a hypothesis that is at least δ far off from Lt.

For example if the infant gets δ-close on a finite text
τ1, feed it the corresponding violator text (say σ1) so that
d(Lg(τ1◦σ1) , Lt) > δ. Now it is possible that after listening

to some more utterances (in the form of another finite text
τ ′), the infant again comes close to Lt. Let us call the text
seen until now τ2 i.e. let τ2 = τ1 ◦ σ1 ◦ τ ′. This means
d(Lgτ2 , Lt) < δ. But there is no reason to worry because
even for τ2 there would exist some violator text σ2 (since
no text can lock the infant to a close neighborhood of Lt)
which we will next feed the infant and again take it far away
from Lt. Hence we have d(Lg(τ2◦σ2) , Lt) > δ. See Figure 5
for a schematic.

Figure 5: Each time the infant tries to perform well,
we can make it perform badly since the infant is not
able to lock its good performance

Thus at each step, we are assured of the existence of vi-
olator texts since there are no locking texts. This way the
infant would at best constantly oscillate in and out of the
δ-neighborhood of Lt and can never converge to Lt.

Thus in order for a language to be learnable (given any
text), there must exist finite texts that take the infant arbi-
trarily close to the target and lock it there. However notice
that the existence of such locking texts does not guaran-
tee learnability - it is just that their absence negates any
possibility of learning.

This immediately gives us Gold’s celebrated result.

Theorem 3. Any language class L that contains all finite
languages and at least one infinite language is not learnable
in the limit with infinite texts.

Proof. (Sketch) Consider such a family L and an infi-
nite language L∞ ∈ L. Since L is learnable, there must
exist finite locking texts for L∞ for every ε > 0. In partic-
ular consider the one corresponding to ε = 1

2
and call it τ .

Note that the locking sets themselves are finite languages
and hence are contained in L (since L contains all finite
languages). Thus L contains Lτ , the set of strings in τ .

Now suppose the infant wants to learn Lτ and the infinite
text it gets starts with τ itself. Then we have a problem:
although the infant wanted to learn Lτ , it will get locked to
L∞ as τ is a locking text for L∞. Thus the infant cannot
learn Lτ in the limit and hence L is not learnable in the
limit as it contains a language that is not learnable in the
limit.

A little analysis will tell us that in the above situation,
although we ended up proving that a finite language is not
learnable, it is actually the infinite language that is the trou-
ble maker since finite languages are trivial to learn using
just finite texts. However if infinite languages are a problem
then we are in a fix since our English language is an infinite
one and is believed to be a part of a language class called
Context-Free Languages8 which unfortunately contains all
finite languages and also contains English, an infinite lan-
guage.

The same holds true for the class of Regular Languages
which is arguably the simplest possible non-trivial (read in-
teresting) class of languages. Hence we have the following
result that dashes all hopes of learnability for interesting
language classes.

Theorem 4. The classes of Regular and Context-Free lan-
guages are not learnable in the limit.

2.4 Approximately Learning Languages
For those who consider this to be as bad as things can

get, the author apologizes for providing yet another set of
relaxations which fail to make these language classes learn-
able. Even if one does not expect the infant to learn the
target language exactly but learn some nice approximation
(i.e. a grammar that will be correct say 90% of the time),
then even learning such an approxmation in a reasonable
amount of time is impossible if one believes that a certain
mathematical conjecture holds [KV94]. However this is a
much more difficult result to prove and we do not attempt
to even state the result formally, let alone prove it.

However the mathematical conjecture in itself is fairly in-
teresting. The conjecture is called the Discrete Cube Roots
Assumption and it essentially says that a certain invertible
function is easy to compute but hard to invert.9 What makes
this conjecture interesting is that all secure Internet com-
munication places faith on the its validity. If this conjecture
proves to be false then none of the secure protocols in use to-
day would be secure anymore and attackers would easily be

8There is some degree of context-sensitivity in English but
we yet again choose not to address this issue further.
9Think of the multiplication function that takes two primes
and outputs their product. Multiplication is easy but fac-
torization is not.



able to decode encrypted data that is sent over the Internet
easily.

Thus the joy of being able to learn in an approximate sense
would have to be accompanied by a realization that the next
time we key in our credit card details into a payment portal,
it would be very simple for an attacker to get hold of all the
details.

3. ENTER THE TEACHER
It turns out all that we need to get rid of the non-learnability

results given in the previous section is the presence of a
teacher! A teacher who can provide answers to certain spe-
cial types of queries made by the learner, facilitates learning
to the extent that it can take place not only in a finite num-
ber of steps but actually in a fairly small number of steps.

These results were presented in the seminal papers of
[Ang87, Sak90] who proved respectively that the classes of
Regular and Context-free languages are learnable with the
help of teachers capable of answering two types of queries :

1. Membership Queries : The learner gives the teacher a
string s and asks whether s ∈ Lt or not. The teacher
replies back with a YES/NO.

2. Equivalence Queries : The learner gives the teacher
its current hypothesis grammar g and asks whether
Lg = Lt or not. The teacher either answers YES (in
which case the learner is done) or gives a counterex-
ample string s ∈ Lg4Lt.

These results outline learning algorithms which when pre-
sented with the problem of learning a target language Lt,
start asking questions to the teacher. The algorithms pro-
cess the replies given by the teacher and formulate hypothe-
ses and new questions to ask. If on an equivalence query,
the teacher replies back with a YES, then the algorithms
halt. It turns out that if the grammar target language Lt
is encoded by the grammar gt, then there exists a universal
constant c > 0 such that these algorithms do not take more
than |gt|c steps to converge to the target grammar.10

These results, although stimulating, are fairly involved
and well beyond the scope of this article. However we do
realize the importance of teachers in learning situations such
as these (and also in our real lives). Since these results came
up, researchers have improved upon them and made them
more amenable to practical application. For example we
now have genetic algorithms [SPMF01], greedy algorithms
[ZL78, Wel84] and kernel based algorithms [CKM07]11 for
grammatical inference.

There has also been a lot of research on child language
development and although very far from having the final
word on child language acquisition, we now have a better
idea of how human infants form word-concept correlations
and acquire syntax. However this topic merits a dedicated
article and we conclude this one with a vote of thanks to all
our teachers for making the learning process fun and simple.

10|g| denotes the size of the grammar g - i.e. how much space
does it take to write down the rules of the grammar.

11See Purushottam Kar. An Introduction to Support Vec-
tor Machines and their Applications. Notes on Engineering
Research and Development, xx(yy):pp–qq, 2009. for a dis-
cussion on kernel based algorithms.
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