
A I  L

Madhavan Mukund
Chennai Mathematical Institute
E-mail: madhavan@cmi.ac.in

Abstract

ese are lecture notes for an introductory course on logic aimed at graduate students in Com-
puter Science. e notes cover techniques and results from propositional logic, modal logic, propo-
sitional dynamic logic and first-order logic. e notes are based on a course taught to first year PhD
students at SPIC Mathematical Institute, Madras, during August–December, .

Contents

 Propositional Logic 
. Syntax . 
. Semantics . 
. Axiomatisations . 
. Maximal Consistent Sets and Completeness . 
. Compactness and Strong Completeness . 

 Modal Logic 
. Syntax . 
. Semantics . 
. Correspondence eory . 
. Axiomatising valid formulas . 
. Bisimulations and expressiveness . 
. Decidability: Filtrations and the finite model property . 
. Labelled transition systems and multi-modal logic . 

 Dynamic Logic 
. Syntax . 
. Semantics . 
. Axiomatising valid formulas . 

 First-Order Logic 
. Syntax . 
. Semantics . 
. Formalisations in first-order logic . 
. Satisfiability: Henkin’s reduction to propositional logic . 
. Compactness and the Löwenheim-Skolem eorem . 
. A Complete Axiomatisation . 
. Variants of the Löwenheim-Skolem eorem . 
. Elementary Classes . 
. Elementarily Equivalent Structures . 
. An Algebraic Characterisation of Elementary Equivalence 
. Decidability . 

 Propositional Logic

. Syntax
We begin with a countably infinite set of atomic propositions P = {p0, p1, . . .} and two logical con-
nectives ¬ (read as not) and ∨ (read as or).

e set Φ of formulas of propositional logic is the smallest set satisfying the following conditions:

• Every atomic proposition p is a member of Φ.

• If α is a member of Φ, so is (¬α).
• If α and β are members of Φ, so is (α∨β).

We shall normally omit parentheses unless we need to explicitly clarify the structure of a formula. We
follow the convention that ¬ binds more tightly than ∨. For instance, ¬α∨β stands for ((¬α)∨β).
Exercise . Show that Φ is a countably infinite set. ⊣

e fact that Φ is the smallest set satisfying this inductive definition provides us with the principle
of structural induction.

Structural induction principle Let S be a set such that:

• Every atomic proposition p is a member of S .

• If α is a member of S , so is (¬α).
• If α and β are members of S , so is (α∨β).

en, Φ⊆ S .

. Semantics
To assign meaning to formulas, we begin by assigning meaning to the atomic propositions. Let ⊤
denote the truth value true and ⊥ the truth value false.

• A valuation v is a function v :P → {⊤,⊥}.
We can also think of a valuation as a subset of P—if v : P → {⊤,⊥}, then v ⊆ P = {p |

v(p) =⊤}. us, the set of all valuations is 2P , the set of all subsets of P .
We extend each valuation v :P → {⊤,⊥} to a map bv : Φ→{⊤,⊥} as follows:

• For p ∈P , bv(p) = v(p).



• For α of the form ¬β, bv(α) =¨ ⊤ if bv(β) =⊥
⊥ otherwise

• For α of the form β∨ γ , bv(α) =¨ ⊥ if bv(β) = bv(γ) =⊥
⊤ otherwise

e principle of structural induction can be used to formally argue that bv is well-defined (that is,bv is indeed a function and is defined for all formulas).
Just as v can be defined as a subset of P , bv can be defined as a subset of Φ—namely, bv = {α |bv(α) =⊤}.

Exercise . We saw that every subset of P defines a valuation v . Does every subset of Φ define an
extended valuation bV ? ⊣

Since every valuation v gives rise to a unique extension bv , we shall always denote bv as just v .

Derived connectives It will be convenient to introduce some additional connectives when discussing
propositional logic.

α∧β def= ¬(¬α∨¬β)
α⊃β def= ¬α∨β
α≡β def= (α⊃β)∧ (β⊃ α)

e connective ∧ is read as and, ⊃ as implies and ≡ as if and only if.

Exercise . Express v(α∧β), v(α⊃β) and v(α≡β) in terms of v(α) and v(β). ⊣

Exercise . According to the Pigeonhole Principle, if we try to place n+1 pigeons in n pigeon-
holes, then at least one pigeonhole must have two or more pigeons. For i ∈ {1,2, . . . , n+1} and
j ∈ {1,2, . . . , n}, let the atomic proposition pi j denote that the i th pigeon is placed in the the j th

pigeonhole. Write down a formula expressing the Pigeonhole Principle. What is the length of your
formula as a function of n? ⊣

Satisfiability and validity A formula α is said to be satisfiable if there is a valuation v such that v(α) =
⊤. We write v � α to indicate that v(α) =⊤.

e formula α is said to be valid if v � α for every valuation v . We write � α to indicate that α is
valid. We also refer to valid formulas of propositional logic as tautologies.



Example . Let p be an atomic proposition. e formula p is satisfiable. e formula p ∨¬p is
valid. e formula p ∧¬p is not satisfiable.

e following observation connects the notions of satisfiability and validity.

Proposition . Let α be a formula. α is valid iff ¬α is not satisfiable.

In applications of logic to computer science, a central concern is to develop algorithms to check for
satisfiability and validity of formulas. e preceding remark shows that the two notions are dual: an
algorithm which tests validity of formulas can be converted into one for testing satisfiability and vice
versa.

In principle, testing the validity of a formula α involves checking its truth value across an uncount-
able number of valuations. However, it is sufficient to look at the effect of valuations on the atomic
propositions mentioned in α.

Let us define Voc(α), the vocabulary of α, as follows:

• For p ∈P , Voc(p) = {p}.
• If α= ¬β, then Voc(α) =Voc(β).

• If α=β∨ γ , then Voc(α) =Voc(β)∪Voc(γ).

Proposition . Let α be a formula and v1, v2 be valuations. If v1 and v2 agree onVoc(α) then v1(α) =
v2(α).

is justifies the familiar algorithm for testing validity: build a truth-table for the propositions
mentioned in α and check if all rows yield the value ⊤.

. Axiomatisations
ough we have a straightforward algorithm for testing validity of formulas in propositional logic, such
algorithms do not exist for more complicated logical systems. In particular, there is no such algorithm
for first-order logic.

However, it is still possible to effectively enumerate all the valid formulas of first-order logic. One
way of presenting such an enumeration is through an axiomatisation of the logic. To prepare the ground
for studying axiomatisations of more complex logics, we begin with an axiomatisation for propositional
logic.

Axiom System AX e axiom system AX consists of three axioms and one inference rule.

(A) α⊃ (β⊃ α)
(A) (α⊃ (β⊃ γ))⊃ ((α⊃β)⊃ (α⊃ γ))
(A) (¬β⊃¬α)⊃ ((¬β⊃ α)⊃β)

(Modus Ponens, or MP)
α, α⊃β

β



e rule MP is read as follows—from α and α⊃β, infer β. It is important to note that these are
axiom schemes—that is, they are not actual formulas but templates which can be instantiated into real
formulas by consistently substituting concrete formulas for α, β and γ . For instance, if p, q ∈ P ,
p ⊃ (q ⊃ p) is an instance of axiom (A). An alternate way to present such an axiomatisation is to list
the axioms as concrete formulas and have an additional inference rule to permit uniform substitution
of new formulas into an existing formula.

Derivations A derivation ofα using the axiom systemAX is a finite sequence of formulasβ1,β2, . . .βn
such that:

• βn = α

• For each i ∈ {1,2, . . . , n},βi is either an instance of one of the axioms (A)–(A), or is obtained
by applying the rule (MP) to formulas β j , βk , where j , k < i—that is, βk is of the form
β j ⊃βi .

We write ⊢AX α to denote that α is derivable using the axiom system AX and say that α is a thesis of the
system. We will normally omit the subscript AX.

Here is an example of a derivation using our axiom system.

1. (p ⊃ ((p ⊃ p)⊃ p))⊃ ((p ⊃ (p ⊃ p))⊃ (p ⊃ p)) Instance of (A)
2. p ⊃ ((p ⊃ p)⊃ p) Instance of (A)
3. (p ⊃ (p ⊃ p))⊃ (p ⊃ p)) From  and  by MP
4. p ⊃ (p ⊃ p) Instance of (A)
5. p ⊃ p From  and  by MP

Exercise . Show that (¬β⊃¬α)≡ (α⊃β) is a thesis of AX. ⊣

e axiom system we have presented is called a Hilbert-style axiomatisation. ere are several
other ways of presenting axiomatisations. One common alternative to Hilbert-style systems is the
sequent calculus notation due to Gentzen. Typically, Hilbert-style axiomatisations have a large number
of axioms and very few inference rules, while sequent calculi have very few axioms and a large number
of inference rules. Sequent calculi are often easier to work with when searching for derivations, but are
also more complicated from a technical point of view. We shall look at sequent calculi later, when we
come to first-order logic.

Another fact worth remembering is that the axiom system AX defined here is just one of many
possible Hilbert-style axiom systems for propositional logic.

e main technical result we would like to establish is that the set of formulas derivable using AX
is precisely the set of valid formulas of propositional logic.

eorem . For all formulas α, ⊢ α iff � α.



We break up the proof of this theorem into two parts. e first half is to show that every thesis of
AX is valid. is establishes the soundness of the axiom system,

Lemma . (Soundness) For all formulas α, if ⊢ α then � α.

Proof: If ⊢ α, then we can exhibit a derivationβ1,β2, . . . ,βn of α. Formally, the proof of the lemma
is by induction on the length of this derivation. Since every formula in the sequence β1,β2, . . . ,βn
is either an instance of one of the axioms or is obtained by applying the rule (MP), it suffices to show
that all the axioms define valid formulas and that (MP) preserves validity—in other words, if α is valid
and α⊃β is valid, then β is valid. is is straightforward and we omit the details. ⊣

e other half of eorem . is more difficult to establish. We have to argue that every valid
formula is derivable. Formally, this would show that our axiomatisation is complete.

We follow the approach of the logician Leon Henkin and attack the problem indirectly. Consider
the contrapositive of the statement we want to prove—that is, if a formula α is not a thesis, then it is
not valid.

Consistency We write 0 α to denote that α is not a thesis. We say that α is consistent (with respect to
AX) if 0 ¬α.

Exercise .

(i) Show that α∨β is consistent iff either α is consistent or β is consistent.

(ii) Show that if α∧β is consistent then both α and β are consistent. Is the converse true?

(iii) Suppose that ⊢ α⊃β. Which of the following is true?

(a) If α is consistent then β is consistent.

(b) If β is consistent then α is consistent. ⊣

By Proposition . we know that α is not valid iff ¬α is satisfiable. Suppose we can show the following.

Lemma . (Henkin) For all formulas β, if β is consistent then β is satisfiable.

We can then argue that our axiomatisation is complete. Consider a formula β which is not deriv-
able. It can be shown that ¬¬β⊃β is a thesis. If β is not derivable, neither is ¬¬β—otherwise, we
can use the rule MP to derive β from ¬¬β⊃β. Since 0 ¬(¬β), ¬β is consistent. By Lemma .,
¬β is satisfiable. Hence, by Proposition ., β is not valid.



. Maximal Consistent Sets and Completeness
To prove Lemma ., we extend the notion of consistency from a single formula to sets of formulas.
A finite set of formulas X = {α1,α2, . . . ,αn} is consistent if the formula α1 ∧ α2 ∧ . . .∧ αn is consis-
tent—that is, 0 ¬(α1 ∧α2 ∧ . . .∧αn). An arbitrary set of formulas X ⊆ Φ is consistent if every finite
subset of X is consistent. (Henceforth, Y ⊆fin X denotes that Y is a finite subset of X .)

Amaximal consistent set (MCS) is a consistent set which cannot be extended by adding any formulas.
In other words, X ⊆ Φ is an MCS iff X is consistent and for each formula α /∈ X , X ∪ {α} is
inconsistent.

Lemma . (Lindenbaum) Every consistent set can be extended to an MCS.

Proof: Let X be an arbitrary consistent set. Let α0,α1,α2, . . . be an enumeration of Φ.
We define an infinite sequence of sets X0,X1,X2, . . . as follows.

• X0 =X

• For i ≥ 0, Xi+1 =
¨

Xi ∪{αi} if Xi ∪{αi} is consistent
Xi otherwise

Each set in this sequence is consistent, by construction, and X0 ⊆X1 ⊆X2 ⊆ · · · . Let Y =
∪

i≥0 Xi .
We claim that Y is an MCS extending X . To establish this, we have to show that Y is consistent and
that it maximal.

If Y is not consistent, then there is a subset Z ⊆fin Y which is inconsistent. Let Z = {β1,β2, . . . ,βn}.
We can write Z as {αi1

,αi2
, . . . ,αin

} where the indices correspond to our enumeration of Φ. Let
j = max(i1, i2, . . . , in). en it is clear that Z ⊆fin X j+1 in the sequence X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Y .
is implies that X j+1 is inconsistent, which is a contradiction.

Having established that Y is consistent, we show that it is maximal. Suppose that Y ∪ {β} is
consistent for some formula β /∈ Y . Let β= α j in our enumeration of Φ. Since α j /∈ Y , α j was not
added at step j+1 in our construction. is means that X j ∪ {α j } is inconsistent. In other words,
there exists Z ⊆fin X j such that Z ∪ {α j } is inconsistent. Since X j ⊆ Y , we must have Z ⊆fin Y as
well, which contradicts the assumption that Y ∪{α j } is consistent. ⊣

Maximal consistent sets have a rich structure which we shall exploit to prove completeness.

Lemma . Let X be a maximal consistent set. en:

(i) For all formulas α, α ∈X iff ¬α /∈X .

(ii) For all formulas α,β, α∨β ∈X iff α ∈X or β ∈X .

We postpone the proof of these properties and first show how they lead to completeness.



Maximal consistent sets and valuations Let X be an MCS. Define the valuation vX to be the set {p ∈
P | p ∈X }—in other words, vX (p) =⊤ iff p ∈X .

Proposition . Let X be an MCS. For all formulas α, vX � α iff α ∈X .

Proof: e proof is by induction on the structure of α.

Basis: α= p , where p ∈P . en, vX � p iff (by the definition of vX) p ∈X .

Induction step: ere are two cases to consider—when α is of the form ¬β and when α is of the form
β∨ γ .

(α = ¬β) vX � ¬β iff (by the definition of valuations) vX 2 β iff (by the induction hypothesis)
β /∈X iff (by the properties satisfied by MCSs) ¬β ∈X .

(α = β∨ γ) vX � β∨ γ iff (by the definition of valuations) vX � β or vX � γ iff (by the induction
hypothesis) β ∈X or γ ∈X iff (by the properties satisfied by MCSs) β∨ γ ∈X . ⊣

us, every MCS X defines a canonical valuation vX which satisfies precisely those formulas that
belong to X . (Conversely, every valuation also defines an MCS in a canonical way: given a valuation
v , Xv = {α | v � α}. It is not difficult to establish that the valuation vXv

generated by Xv is exactly
the same as v .)

Proposition . immediately yields a proof of Henkin’s lemma.
Proof of Lemma .: Let α be a consistent formula. By Lindenbaum’s Lemma, {α} can be

extended to an MCS X . By Proposition ., vX � α since α ∈X . us, α is satisfiable. ⊣
To complete our argument, we have to prove Lemma ..
Proof Sketch of Lemma .: Let X be an MCS.

(i) For every formula α, we have to show that α ∈X iff ¬α /∈X .

We first show that {α,¬α} ̸⊆ X . For this, we need the fact that α ⊃ ¬¬α and ¬¬α ⊃ α are
both derivable using AX. We omit these derivations.

We know that α⊃ α, or, equivalently, ¬α∨α is a thesis. From this, we can derive ¬¬(¬α∨α).
But ¬(¬α ∨ α) is just α ∧ ¬α, so we have ¬(α ∧ ¬α) as a thesis. is means that {α,¬α} is
inconsistent, whence it cannot be a subset of X (recalling that X is consistent).

Next we show that at least one of α and ¬α is in X . Suppose neither formula belongs to X .
Since X is an MCS, there must be sets B ⊆fin X and C ⊆fin X such that B ∪{α} is inconsistent
and C ∪ {¬α} are inconsistent. Let B = {β1,β2, . . . ,βn} and C = {γ1,γ2, . . . ,γm}. Let bβ
abbreviate the formulaβ1∧β2∧ . . .∧βn and bγ abbreviate the formula γ1∧γ2∧ . . .∧γm. en,
we have ⊢ ¬(α∧ bβ) and ⊢ ¬(¬α∧bγ). Rewriting ∧ in terms of ∨, this is equivalent to ⊢ ¬α∨¬ bβ
and ⊢ ¬¬α∨¬bγ . From this, we can conclude that ⊢ α⊃¬ bβ and ⊢ ¬α⊃¬bγ .

We now use that fact that (α⊃β)⊃ ((δ ⊃ γ)⊃ ((α∨δ)⊃ (β∨ γ))) is a thesis. (Once again,
we omit the derivation). Instantiating this with α = α, δ = ¬α, β = ¬ bβ and γ = ¬bγ we can
derive (α ∨¬α) ⊃ (¬ bβ ∨¬bγ). Since ⊢ α ∨¬α, we get ⊢ ¬ bβ ∨¬bγ . By rewriting ∨ in terms
of ∧, we can derive ¬(bβ∧ bγ). But this implies that (B ∪C) ⊆fin X is inconsistent, which is a
contradiction.



(ii) e proof of the second part follows in a similar manner, assuming the derivability of appropriate
formulas. We omit the details. ⊣

. Compactness and Strong Completeness
Often, we are not interested in absolute validity, but in restricted validity. Rather than asking whether
a formula α is always true, we ask whether α is true in all valuations which satisfy certain properties.
One way of restricting the class of valuations under consideration is to specify a set of formulas X and
only look at those valuations where X is true. If α is true wherever the formulas from X are true, then
α is a logical consequence of X .

Logical consequence Let X be a set of formulas and v a valuation. We write v � X to denote that
v �β for every formula β ∈X . A formula α is a logical consequence of X , written X � α, if for every
valuation v such that v �X it is also the case that v � α.

e notion of logical consequence is central to the way we formalise mathematics. For instance,
when we study algebraic structures such as groups, we first formulate axioms which characterise groups.
Any theorem we prove about groups can be rephrased as a statement which is a logical consequence of
these axioms: in other words, the theorem is true whenever the group axioms are also true.

As with validity, we now look at a syntactic approach to logical consequence.

Derivability Let X be a set of formulas. We say that a formula α is derivable from X , written X ⊢ α
if there exists a sequence α1,α2, . . . ,αn of formulas such that αn = α and for i ∈ {1,2, . . . , n}, αi is
either a member of X , or an instance of one of the axioms (A)–(A) of AX, or is derived from α j ,αk ,
j , k < i , using the inference rule MP. (Notice that unlike axioms, we cannot use the formulas in X as
templates to generate new formulas for use in a derivation. e formulas in X are concrete formulas
and must be used “as is”.)

e theorem we would like to prove is the following.

eorem . (Strong Completeness) Let X ⊆ Φ and α ∈ Φ. en, X � α iff X ⊢ α.
It is possible to prove this directly using a technique similar to the one used to prove the soundness

and completeness of AX (see Exercise .). However, we will prove it indirectly using two auxiliary
results which are of independent interest—the Deduction eorem and the Compactness eorem.

We begin with the Deduction eorem, which is a statement about derivability.

eorem . (Deduction) Let X ⊆ Φ and α,β ∈ Φ. en, X ∪{α} ⊢β iff X ⊢ α⊃β.
Proof: (⇐) Suppose that X ⊢ α ⊃ β. en, by the definition of derivability, X ∪ {α} ⊢ α ⊃ β

as well. Since α ∈X ∪{α}, X ∪{α} ⊢ α. Applying MP, we get X ∪{α} ⊢β.

(⇒) Suppose that X ∪ {α} ⊢β. en, there is a derivation β1,β2, . . . ,βn of β. e proof is by
induction on n.



If n = 1, then β is either an instance of an axiom or a member of X ∪ {α}. If β is an instance of
an axiom, then X ⊢ β as well. Further, from axiom (A), X ⊢ β ⊃ (α ⊃ β). Applying MP, we get
X ⊢ α⊃β.

If β ∈ X , there are two cases to consider. If β ∈ X \ {α}, then X ⊢ β. Once again we have
X ⊢β⊃ (α⊃β) and hence X ⊢ α⊃β. On the other hand, if β= α, we have X ⊢ α⊃ α from the
fact that α⊃ α is derivable in AX.

If n > 1, we look the justification for adding βn =β to the derivation. If βn is an instance of an
axiom or a member of X ∪{α}, we can use the same argument as in the base case to show X ⊢ α⊃β.

On the other hand, if βn was derived using MP, there exist βi and β j , with i , j < n such that β j
is of the form βi ⊃ βn. By axiom (A), X ⊢ (α ⊃ (βi ⊃ βn)) ⊃ ((α ⊃ βi) ⊃ (α ⊃ βn)). By the
induction hypothesis, we know that X ⊢ α ⊃ (βi ⊃ βn) and X ⊢ α ⊃ βi . Applying MP twice, we
get X ⊢ α⊃βn. ⊣
e Deduction eorem reflects a method of proof which is common in mathematics—proving that
property x implies property y is equivalent to assuming x and inferring y.

e second step in proving Strong Completeness is the Compactness eorem, which is a statement
about logical consequence. To prove this we need the following lemma about trees, due to König.

Lemma . (König) Let T be a finitely branching tree—that is, every node has a finite number of chil-
dren (though this number may be unbounded). If T has infinitely many nodes, then T has an infinite
path.

Proof: Let T be a finitely branching tree with infinitely many nodes. Call a node x in T bad if the
subtree rooted at x has infinitely many nodes. Clearly, if a node x is bad, at least one of its children
must be bad: x has only finitely many children and if all of them were good, the subtree rooted at x
would be finite.

We now construct an infinite path x0x1x2 . . . in T . Since T has an infinite number of nodes, the
root of T is a bad node. Let x0 be the root of T . It has at least one bad successor. Pick one of the bad
successors of x0 and designate it x1. Pick one of the bad successors of x1 and designate it x2, and so on.

⊣
eorem . (Compactness) Let X ⊆ Φ and α ∈ Φ. en X � α iff there exists Y ⊆fin X , Y � α.

We shall first prove the following related result. Let X be a set of formulas. We say that X is
satisfiable if there exists a valuation v such that v �X .

Lemma . (Finite satisfiability) Let X ⊆ Φ. en, X is satisfiable iff every Y ⊆fin X is satisfiable.

Proof: (⇒) Suppose X is satisfiable. en, there is a valuation v such that v � X . Clearly, v � Y
for each Y ⊆fin X as well.

(⇐) Suppose X is not satisfiable. We have to show that there exists Y ⊆fin X which is not satisfiable.
Assume that our set of atomic propositions P is enumerated {p1, p2, . . .}. Let P0 = ; and for

i ∈ {1,2, . . .}, let Pi = {p1, p2, . . . , pi}. For i ∈ {1,2, . . .}, let Φi be the set of formulas generated
using only atomic propositions from Pi and let Xi =X ∩Φi .



.. ;

.
p1 7→ ⊤

.
p1 7→ ⊤
p2 7→ ⊤

. · · ·

.
p1 7→ ⊤
p2 7→ ⊥

. · · ·

.
p1 7→ ⊥

.
p1 7→ ⊥
p2 7→ ⊤

. · · ·

.
p1 7→ ⊥
p2 7→ ⊥

. · · ·

Figure : e tree T in the proof of Lemma .

We construct a tree T whose nodes are valuations over the setsPi , i ∈ {0,1,2, . . .}. More formally,
the set of nodes is given by {v | ∃i ∈ {0,1,2, . . .}. v : Pi → {⊤,⊥}}. e root of T is the unique
function ;→ {⊤,⊥}.

e relation between nodes is given as follows. Let v : Pi → {⊤,⊥}. en v has two children
v ′, v ′′ :Pi+1→ {⊤,⊥}, where v ′ extends v to Pi+1 by setting pi+1 to ⊤ and v ′′ extends v to Pi+1
by setting pi+1 to ⊥. More formally, for each p ∈ Pi , v ′(p) = v ′′(p) = v(p) and v ′(pi+1) = ⊤ and
v ′′(pi+1) =⊥. (See Figure ).

Observe that T is a complete infinite binary tree. e nodes at level i of the tree consist of all
possible valuations overPi—there are precisely 2i such valuations for each i . Notice that if v j at level
j is an ancestor of vi at level i then vi agrees with v j on the atomic propositions in P j .

e infinite paths in T are in - correspondence with valuations over P . Let π = v0v1v2 . . . be
an infinite path in the tree. e valuation vπ :P → {⊤,⊥} is given by pi 7→ vi (pi) for i ∈ {1,2, . . .}.
Conversely, given a valuation v :P → {⊤,⊥}, we can define a unique path πv = v0v1v2 . . . by setting
v0 to be the root of T and vi :Pi → {⊤,⊥} to be the restriction of v to Pi—that is, for all p ∈Pi ,
vi (p) = v(p). It is easy to verify that these two maps are inverses of each other.

Let us call a node v in T bad if v(β) = ⊥ for some β ∈ X . Clearly, if v is bad, then so is
every valuation in the subtree rooted at v . We prune T by deleting all bad nodes which also have bad
ancestors. (Equivalently, along any path in T , we retain only those nodes upto and including the first
bad node along the path.) It is not difficult to verify that the set of nodes which remains forms a subtree
T ′ of T all of whose leaf nodes are bad and all of whose non-leaf nodes are not bad.

We claim that T ′ has only a finite number of nodes. Assuming that this is true, let the set of leaf
nodes of T ′ be {v1, v2, . . . , vm}. Since each vi is bad, there is a corresponding formula βi ∈ X such
that vi (βi) =⊥. We claim that {β1,β2, . . . ,βm} ⊆fin X is not satisfiable. Consider any valuation v .
e corresponding path πv must pass through one of the nodes in {v1, v2, . . . , vm}, say v j . But then,
vπv
(β j) = v j (β j) =⊥. us, v 2 {β1,β2, . . . ,βm}.
To see why T ′ must be finite, suppose instead that it has an infinite set of nodes. en, by König’s

Lemma, it contains an infinite path π = v0v1v2 . . . such that none of the nodes along this path is



bad. e path π is also an infinite path in T . We know that π defines a valuation vπ. Consider any
formula β ∈ X . en β ∈ X j for some j ∈ {1,2, . . .}, so vπ(β) = v j (β) =⊤. us, vπ � X , which
contradicts our assumption that X is not satisfiable. ⊣

We can now complete our proof of compactness.
Proof of eorem . (Compactness):
(⇐) If Y ⊆fin X and Y � α then it is clear that X � α. For, if v �X , then v � Y as well and, by

the assumption that Y � α, v � α as required.

(⇒) For all Z ⊆ Φ and all β ∈ Φ, it is clear that Z �β iff Z ∪{¬β} is not satisfiable.
Suppose X � α. en, X ∪ {¬α} is not satisfiable. By Lemma ., there is a subset Y ⊆fin

X ∪ {¬α} such that Y is not satisfiable. us, (Y \ {¬α}) ∪ {¬α} is not satisfiable either, where
(Y \ {¬α})⊆fin X . is implies that Y \ {¬α} � α. ⊣

With the Deduction eorem and the Compactness eorem behind us, we can prove Strong
Completeness.

Proof of eorem . (Strong Completeness):
To show that X ⊢ α implies X � α is routine. Conversely, suppose that X � α. By compactness, there
is a finite subset Y ⊆fin X such that Y � α. Let Y = {β1,β2, . . . ,βm}. It is then easy to see that
β1(⊃ (β2(⊃ · · · (βm ⊃ α) · · ·) is valid. Hence, by the completeness theorem for propositional logic, ⊢
β1(⊃ (β2(⊃ · · · (βm ⊃ α) · · ·). Applying the Deduction eorem m times we get {β1,β2, . . . ,βm} ⊢
α. Since {β1,β2, . . . ,βm} ⊆X , it follows that X ⊢ α. ⊣

Observe that we could alternatively derive compactness from strong completeness. If X � α then,
by strong completeness, X ⊢ α. We let Y ⊆fin X be the subset of formulas actually used in the
derivation of α. us, Y ⊢ α as well. By the other half of strong completeness, Y � α.

We conclude our discussion of propositional logic with two exercises. e first leads to an alternative
proof of compactness which is more along the lines of the completeness proof for propositional logic.
e second exercise leads to a direct proof of strong completeness.

Exercise . (Compactness)
Let X be a set of formulas. X is said to be a finitely satisfiable set (FSS) if every Y ⊆fin X is satisfiable.

Equivalently, X is an FSS if there is no finite subset {α1,α2, . . . ,αn} of X such that ¬(α1 ∧ α2 ∧
. . .∧αn) is valid.

(Note that if X is an FSS we are not promised a single valuation v which satisfies every finite subset
of X . Each finite subset could be satisfied by a different valuation).

Show that:

(i) Every FSS can be extended to a maximal FSS.

(ii) If X is a maximal FSS then:

(a) For every formula α, α ∈X iff ¬α /∈X .

(b) For all formulas α,β, (α∨β) ∈X iff (α ∈X or β ∈X).



(iii) Every maximal FSS X generates a valuation vX such that for every formula α, vX � α iff α ∈X .

From these facts conclude that:

(iv) Any FSS X is simultaneously satisfiable (that is, for any FSS X , there exists vX such that vX �X).

(v) For all X and all α, X � α iff there exists Y ⊆fin X such that Y � α. ⊣

Exercise . (Strong Completeness)
We define a new notion of consistency. A set X is said to be consistent if there is no formula α such
that X ⊢ α and X ⊢ ¬α.

Show that:

(i) X is consistent iff every finite subset of X is consistent.

(ii) Every consistent set X can be extended to a maximal consistent set (MCS).

(iii) Every MCS X generates a valuation vX such that for all formulas α, vX � α iff α ∈X .

(iv) Every consistent set X is satisfiable: that is, there exists a valuation vX such that vX �X .

(v) If X � α then X ∪{¬α} is not consistent.

(vi) Use the Deduction eorem to show that that if X � α then X ⊢ ¬α ⊃ (β ∧ ¬β) for some
formula β.

Conclude that if X � α then X ⊢ α. ⊣



 Modal Logic
In propositional logic, a valuation is a static assignment of truth values to atomic propositions. In
computer science applications, atomic propositions describe properties of the current state of a program.
It is natural to expect that the truth of an atomic proposition varies as the state changes. Modal logic
is a framework to describe such a situation.

e basic idea in modal logic is to look at a collection of possible valuations simultaneously. Each
valuation represents a possible state of the world. Separately, we specify how these “possible worlds” are
connected to each other. We then enrich our logical language with a way of referring to truth across
possible worlds.

. Syntax
As in propositional logic, we begin with a countably infinite set of atomic propositionsP = {p0, p1, . . .}
and two logical connectives ¬ (read as not) and ∨ (read as or). We add a unary modality � (read as
box).

e set Φ of formulas of modal logic is the smallest set satisfying the following:

• Every atomic proposition p is a member of Φ.

• If α is a member of Φ, so is (¬α).
• If α and β are members of Φ, so is (α∨β).
• If α is a member of Φ, so is (�α).

As before, we omit parentheses if there is no ambiguity. e derived propositional connectives ∧, ⊃
and ≡ are defined as before. In addition, we have a derived modality ◊ (read diamond) which is dual
to the modality �, defined as follows: ◊α def= ¬�¬α.

. Semantics
Frames A frame is a structure F = (W , R), where W is a set of possible worlds and R⊆W ×W is the
accessibility relation. If w R w ′, we say that w ′ is an R-neighbour of w.

In more familiar terms, a frame is just a directed graph over the set of nodes W . We do not make
any assumptions about the set W —not even the fact that it is countable.

Traditional modal logic arose out of philosophical enquiries into the nature of necessary and conditional truth. We
shall concentrate on the technical aspects of the subject and avoid all discussion of the philosophical foundations of modal
logic.



Models A model is a pair M = (F ,V) where F = (W , R) is a frame and V : W → 2P is a valuation.

Recall that a propositional valuation v :P → {⊤,⊥} can also be viewed as a set v ⊆P consisting
of those atomic propositions p such that v(p) = ⊤. We have implicitly used this when defining
valuations in modal logic. Formally, V is a function which assigns a propositional valuation to each
world in W —in other words, for each w ∈W , V (w) :P → {⊤,⊥}. us, V is actually a function
of the form W → (P → {⊤,⊥}), which we abbreviate as V : W → 2P .

Satisfaction e notion of truth is localised to each world in a model. We write M , w � α to denote
that α is true at the world w in the model M . e satisfaction relation is defined inductively as follows.

M , w � p iff p ∈V (w) for p ∈P
M , w � ¬α iff M , w 2 α
M , w � α∨β iff M , w � α or M , w �β
M , w ��α iff for each w ′ ∈W , if w R w ′ then M , w ′ � α

us, M , w � �α if every world accessible from w satisfies α. Notice that if w is isolated—that is,
there is no world w ′ such that w R w ′—then M , w ��α for every formula α.

Exercise . Verify that M , w � ◊α iff there exists w ′, w R w ′ and M , w ′ � α. ⊣

Satisfiability and validity As usual, we say that α is satisfiable if there exists a frame F = (W , R) and
a model M = (F ,V) such that M , w � α for some w ∈W . e formula α is valid, written � α, if for
every frame F = (W , R), for every model M = (F ,V) and for every w ∈W , M , w � α.

Example . Here are some examples of valid formulas in modal logic.

(i) Every tautology of propositional logic is valid. Consider a tautology α and a world w in a
model M = ((W , R),V). Since the truth of α depends only on V (w), and α is true under all
propositional valuations, M , w � α.

(ii) e formula �(α ⊃ β) ⊃ (�α ⊃ �β) is valid. Consider a model M = ((W , R),V) and a
world w ∈ W . Suppose that M , w � �(α ⊃ β). We must argue that M , w � �α ⊃ �β.
Let M , w � �α. en we must show that M , w � �β. In other words, we must show that
every R-neighbour w ′ of w satisfies β. Since we assumed M , w � �(α ⊃ β), we know that
M , w ′ � α ⊃ β. Moreover, since M , w � �α, M , w ′ � α. By the semantics of the connective
⊃, it follows that M , w ′ �β, as required.

(iii) Suppose that α is valid. en, �α must also be valid. Consider any model M = ((W , R),V)
and any w ∈ W . To check that M , w � �α we have to verify that every R-neighbour of w
satisfies α. Since α is valid, M , w ′ � α for all w ′ ∈W . So, every R-neighbour of w does satisfy
α and M , w ��α.

e semantics we describe here was first formalised by Saul Kripke, so these models are often called Kripke models in
the literature.



Exercise . e argument given in part (i) of Exercise . applies only to non-modal instances of
propositional tautologies—for instance, the explanation does not justify the validity of the formula
�α ∨ ¬�α. Show that all substitution instances of propositional tautologies are valid formulas in
modal logic. ⊣

As in propositional logic, one of our central concerns in modal logic is to be able to decide when formu-
las are satisfiable (or, dually, valid). Notice that unlike the truth-table based algorithm for propositional
logic, there is no obvious decision procedure for satisfiability in modal logic. To check satisfiability of
a formula α, though it suffices to look at valuations over the vocabulary of α, we also have to specify
an underlying frame. ere is no a priori bound on the size of this frame.

Later in this section we will describe a sound and complete axiomatisation for modal logic. is
will give us an effective way of enumerating all valid formulas. After that, we will encounter a technique
by which we can bound the size of the underlying frame required to satisfy a formula α. But, we first
examine an aspect of modal logic which does not have any counterpart in propositional logic.

. Correspondence eory
e modalities � and ◊ can be used to describe interesting properties of the accessibility relation R of
a frame F = (W , R). is area of modal logic is called correspondence theory.

Let α be a formula of modal logic. With α, we identify a class of frames Cα as follows:

F = (W , R) ∈Cα iff for every valuation V over W , for every world w ∈W and for every
substitution instance β of α, ((W , R),V), w �β.

In other words, when defining Cα, we interpret α as a template, much like an axiom scheme. Notice
that for any frame F = (W , R) which does not belong to Cα, we can find a valuation V , a world w
and a substitution instance β of α such that ((W , R),V), w 2β.

Characterising classes of frames We say a class of framesC is characterised by the formula α ifC =Cα.

We now look at some examples of frame conditions which can characterised by formulas of modal
logic.

Proposition . e class of reflexive frames is characterised by the formula �α⊃ α.
Proof: We first show that every reflexive frame belongs to C�α⊃α. Let M = ((W , R),V) be a model
where R is reflexive. Consider any world w ∈W . Suppose that M , w � �α. We have to show that
M , w � α as well. Since M , w ��α, every R-neighbour of w satisfies α. But R is reflexive, so w is an
R-neighbour of itself. Hence, M , w � α.

Conversely, we show that every non-reflexive frame does not belong to C�α⊃α. Let F = (W , R)
be a frame where for some w ∈W , it is not the case that w R w . Choose a proposition p and define
a valuation V as follows: V (w) = ; and V (w ′) = {p} for all w ′ ̸= w. Clearly, (F ,V), w � �p but
(F ,V), w 2 p . Hence w fails to satisfy the substitution instance �p ⊃ p of the formula �α⊃ α. ⊣



Proposition . e class of transitive frames is characterised by the formula �α⊃��α.
Proof: We first show that every transitive frame belongs to C�α⊃��α. Let M = ((W , R),V) be a
model where R is transitive. Consider any world w ∈W . Suppose that M , w ��α. We have to show
that M , w ���α as well.

For this, we have to show that every R-neighbour w ′ of w satisfies�α. Consider any R-neighbour
w ′ of w. If w ′ has no R-neighbours, then it is trivially the case that M , w ′ ��α. On the other hand,
if w ′ has R-neighbours, then we must show that each R-neighbour of w ′ satisfies α. Let w ′′ be an
R-neighbour of w ′. Since w R w ′ and w ′ R w ′′, by transitivity w ′′ is also an R-neighbour of w. Since
we assumed that M , w ��α, it must be the case that M , w ′′ � α, as required.

Conversely, we show that every non-transitive frame does not belong toC�α⊃��α. Let F = (W , R)
be a frame where for some w, w ′, w ′′ ∈W , w R w ′ and w ′ R w ′′ but it is not the case that that w R w ′′.
Choose a proposition p and define a valuation V as follows:

V (bw) =¨ {p} if w R bw
; otherwise

Since w ′′ is not an R-neighbour of w, V (w ′′) = ;. is means that M , w ′ 2 �p, for w ′′ is an R-
neighbour of w ′ and M , w ′′ 2 p . erefore, M , w 2��p , since w ′ is an R-neighbour of w. On the
other hand, M , w ��p by the definition of V . Hence, M , w 2�p ⊃��p, which is an instance of
�α⊃��α. ⊣
e characteristic formula for transitivity can dually be written ◊◊α ⊃ ◊α. is form represents
transitivity more intuitively—the formula says that if w R w ′ R w ′′ and w ′′ satisfies α, there exists an
R-neighbour bw of w satisfying α. If R is transitive, w ′′ is a natural candidate for bw. Similarly, α⊃ ◊α
is the dual (and more appealing) form of the characteristic formula for reflexivity. We have used the �
forms of these formulas because they are more standard in the literature.

Proposition . e class of symmetric frames is characterised by the formula α⊃�◊α.
Proof: We first show that every symmetric frame belongs to Cα⊃�◊α. Let M = ((W , R),V) be a
model where R is symmetric. Consider any world w ∈W . Suppose that M , w � α. We have to show
that M , w ��◊α as well.

For this, we have to show that every R-neighbour w ′ of w satisfies ◊α. Consider any R-neighbour
w ′ of w. Since R is symmetric, w is an R-neighbour of w ′. We assumed that M , w � α so M , w ′ � ◊α,
as required.

Conversely, we show that every non-symmetric frame does not belong toCα⊃�◊α. Let F = (W , R)
be a frame where for some w, w ′ ∈W , w R w ′ but it is not the case that that w ′ R w . Choose a
proposition p and define a valuation V as follows:

V (bw) =¨ ; if w ′ R bw
{p} otherwise

By construction M , w ′ 2 ◊p . Hence, since wRw ′, M , w 2 �◊p . On the other hand, M , w � p by
the definition of V , so M , w 2 p ⊃�◊p , which is an instance of the formula α⊃�◊α. ⊣



.

.w

.w ′ .w ′′

Figure : e Euclidean condition

We say that an accessibility relation R over W is Euclidean if for all w, w ′, w ′′ ∈W , if w R w ′ and
w R w ′′ then w ′ R w ′′ and w ′′ R w ′ (see Figure ).

Proposition . e class of Euclidean frames is characterised by the formula ◊α⊃�◊α.
Proof: We first show that every Euclidean frame belongs to C◊α⊃�◊α. Let M = ((W , R),V) be a
model where R is Euclidean. Consider any world w ∈W . Suppose that M , w � ◊α. We have to show
that M , w ��◊α as well.

Let w ′ be an R-neighbour of w. We must show that M , w ′ � ◊α. Since M , w � ◊α, there must
exist wα such that w R wα and M , wα � α. Since R is Euclidean, w ′ R wα as well, so M , w ′ � ◊α as
required.

Conversely, we show that every non-Euclidean frame does not belong toC◊α⊃�◊α. Let F = (W , R)
be a frame where for some w, w ′, w ′′ ∈W , w R w ′ and w R w ′′ but one of w ′ R w ′′ and w ′′ R w ′
fails to hold. Without loss of generality, assume that it is not the case that w ′′ R w ′.

Choose a proposition p and define a valuation V such that V (w ′) = {p} and V (bw) = ; for allbw ̸= w ′. en, since w R w ′, M , w � ◊p by the definition of V . On the other hand, by construction
M , w ′′ 2 ◊p, so M , w 2�◊p . So, M , w 2 ◊p ⊃�◊p , which is an instance of ◊α⊃�◊α. ⊣

Notice that if R is Euclidean, for all w ′, if there exists w such that w R w ′, then w ′ R w ′. It is not
difficult to verify that if R is reflexive and Euclidean then R is in fact an equivalence relation. On the
other hand, if R is symmetric and transitive then it is also Euclidean.

A frame (W , R) is said to be converse well-founded if for all nonempty subsets X of W , there exists
a maximal element x of X , i.e. x is in X and for all y in X , it is not the case that x R y .

Proposition . e class of transitive, converse well-founded frames is characterised by the formula�(�α⊃
α)⊃�α.
Proof: We first show that every transitive and converse well-founded frame is a model of �(�α ⊃
α)⊃�α, i.e., it belongs to C�(�α⊃α)⊃�α. Let M = ((W , R),V) be a model where R is transitive and
converse well-founded. Consider any world w ∈W . Suppose that M , w � �(�α ⊃ α). We have to
show that M , w ��α as well.



For this, we have to show that every R-neighbour w ′ of w satisfies α. Consider any R-neighbour
w ′ of w. Since w satisfies �(�α⊃ α), w ′ satisfies �α⊃ α. us, to show that every R-neighbour w ′
of w satisfies α it suffices to show that w ′ satisfies �α.

Consider the set X of worlds x such that w R x . Since R is transitive, whenever x is an element
of X and x R y , we also have w R y and hence y is in X . A path in W is any finite sequence
ρ = w0, w1, . . . , wn of worlds (n ≥ 0) such that for all i : 0 < i ≤ n, wi R wi+1. e length of such
a path, denoted len(ρ), is defined to be n. A path ρ = w0, w1, . . . , wn is said to be an x-path (for
x ∈W) if x = w0. For any node x ∈W , define the height of x , denoted ht(x) to be sup{len(ρ) | ρ
is an x-path}. e height of a given world is in general an ordinal. But the following useful property
holds: whenever x R y then ht(y)< ht(x).

For all x ∈ X , we prove by transfinite induction on ht(x) that x satisfies �α (and hence α). e
base case is when ht(x) is 0, which means that there is no y ∈W such that x R y . But then x vacuously
satisfies�α. For the induction step, consider an arbitrary world x in X . For all y ∈W such that x R y ,
y ∈X and ht(y) is strictly less than ht(x). erefore by the induction hypothesis every R-neighbour y
of x satisfies �α (and hence α), and hence x satisfies �α (and hence α).

us every R-neighbour w ′ of w satisfies α, and hence w satisfies �α.
Conversely, consider a frame F = (W , R) which is not transitive. is means that there are three

worlds of W , w, w ′, and w ′′ such that w R w ′, w ′ R w ′′, but not w R w ′′. Choose a proposition p
and define a valuation V as follows:

V (bw) =¨ {p} if w R bw and bw ̸= w ′
; otherwise

Clearly, for all bw in W such that w R bw and w ′ ̸= bw, bw satisfies p and hence �p ⊃ p . On the
other hand w ′ does not satisfy �p (since it has an R-neighbour, namely w ′′, which does not satisfy
p) and hence satisfies �p ⊃ p vacuously. Since all R-neighbours of w satisfy �p ⊃ p , w satisfies
�(�p ⊃ p). On the other hand, clearly w does not satisfy �p.

Consider now a frame F = (W , R) which is transitive but not converse well-founded. is means
that there is a subset X of W with no R-maximal world, i.e. for all x in X , there is a y in X such that
x R y . Choose a world w in X , choose a proposition p and define a valuation V as follows:

V (bw) =¨ ; if bw ∈X
{p} otherwise

Clearly, for all bw /∈ X , bw satisfies p and hence �p ⊃ p . On the other hand, every bw in X has an R-
neighbour in X (which does not satisfy p) and hence bw does not satisfy�p and thus satisfies�p ⊃ p .
us w satisfies �(�p ⊃ p). But clearly w does not satisfy �p. ⊣

Exercise . What classes of frames are characterised by the following formulas?

(i) ◊α⊃�α.

(ii) ◊α⊃ ◊◊α.



(iii) α⊃�α. ⊣

Are there natural classes of frames which cannot be characterised in modal logic? We will see later
that irreflexive frames form one such class. But first, we return to the notions of satisfiability and validity
and look for a completeness result.

. Axiomatising valid formulas
Validity revisited We said earlier that a formula α is valid if for every frame F = (W , R), every model
M = (F ,V) and every world w, M , w � α. In light of our discussion of correspondence theory we can
refine this notion by restricting the range over which we consider frames.

LetC be a class of frames. We say that a formula α isC -valid if for every frame F = (W , R) from
the class C , for every model M = (F ,V) and for every world w, M , w � α. We denote the fact that
α is C -valid by �C α.

Let F represents the class of all frames. en, the set of F -valid formulas is the same as the set
of valid formulas according to our earlier definition. In other words, the notions �F α and � α are
equivalent.

Dually, we say that a formula α is C -satisfiable if there is a frame F = (W , R) in the class C , a
model M = (F ,V) and a world w, such that M , w � α. Once again, a formula isF -satisfiable iff it is
satisfiable according to our earlier definition.

Completeness for the classF
Consider the following axiom system.

Axiom System K

Axioms

(A) All tautologies of propositional logic.
(K) �(α⊃β)⊃ (�α⊃�β).

Inference Rules

(MP) α,α⊃β
β

(G) α�α
e axiom (A) is an abbreviation for any set of axioms which are sound and complete for Propositional
Logic—in particular, we could instantiate (A) with the axioms (A)–(A) of the system AX discussed
in the previous section.

As usual, we say that α is a thesis of System K , denoted ⊢K α, if we can derive α using the axioms
(A) and (K) and the inference rules (MP) and (G). Once again, we will omit the subscript and write
⊢ α if there is no confusion about which axiom system we are referring to.

e name K is derived from Saul Kripke.



e result we want to establish is the following.

eorem . For all formulas α, ⊢K α iff �F α.

As usual, one direction of the proof is easy.

Lemma . (Soundness of System K) If ⊢K α then �F α.

Proof: As we observed in the previous section, it suffices to show that each axiom is F -valid and
that the inference rules preserve F -validity. is is precisely what we exhibited in Example . and
Exercise .. ⊣
As in Propositional Logic, we use a Henkin-style argument to show that every F -valid formula is
derivable using System K.

Consistency As before, we say that a formula α is consistent with respect to System K if 0K¬α. A finite
set of formulas {α1,α2, . . . ,αn} is consistent if the conjunction α1∧α2∧· · ·∧αn is consistent. Finally,
an arbitrary set of formulas X is consistent if every finite subset of X is consistent.

Our goal is to prove the following.

Lemma . Let α be a formula which is consistent with respect to System K. en, α isF -satisfiable.

As we saw in the case of Propositional Logic, this will yield as an immediate corollary the result
which we seek:

Corollary . (Completeness for System K) Let α be a formula which isF -valid. en, ⊢K α.

Maximal Consistent Sets
As before, we say that a set of formulas X is a maximal consistent set or MCS if X is consistent and for
all α /∈X , X ∪{α} is inconsistent. As we saw earlier, by Lindenbaum’s Lemma, every consistent set of
formulas can be extended to an MCS.

We will once again use the properties of MCSs established in Lemma .. In addition, the fol-
lowing properties of MCSs will prove useful.

Lemma . Let X be a maximal consistent set.

(i) If β is a substitution instance of an axiom, then β ∈X .

(ii) If α⊃β ∈X and α ∈X , then β ∈X .

Proof: e proof is routine and is left as an exercise. ⊣



e canonical model
When we studied propositional logic, we saw that each maximal consistent set defines a “propositional
world”. In modal logic, we have to construct frames with many propositional worlds. In fact, we
generate a frame with all possible worlds, with a suitable accessibility relation.

Canonical model e canonical frame for System K is the pair FK = (WK , RK) where:

• WK = {X |X is an MCS}.
• If X and Y are MCSs, then X RK Y iff {α |�α ∈X } ⊆ Y .

e canonical model for System K is given by MK = (FK ,VK) where for each X ∈WK , VK (X) =
X ∩P .

Exercise . We can dually define RK using the modality ◊ rather than �. Verify that X RK Y iff
{◊α | α ∈ Y } ⊆X . ⊣

e heart of the completeness proof is the following lemma.

Lemma . For each MCS X ∈WK and for each formula α ∈ Φ, MK ,X � α iff α ∈X .

Proof: As usual, the proof is by induction on the structure of α.
Basis: If α= p ∈P , then MK ,X � p iff p ∈VK(X) iff p ∈X , by the definition of VK .

Induction step:

α = ¬β: en MK ,X � ¬β iff MK ,X 2 β iff (by the induction hypothesis) β /∈ X iff (by the fact
that X is an MCS) ¬β ∈X .

α=β∨γ : en MK ,X �β∨γ iff MK ,X �β or MK ,X � γ iff (by the induction hypothesis)β ∈X
or γ ∈X iff (by the fact that X is an MCS) β∨ γ ∈X .

α=�β: We analyse this case in two parts:
(⇐) Suppose that �β ∈ X . We have to show that MK ,X � �β. Consider any MCS Y such

that X RK Y . Since �β ∈ X , from the definition of RK it follows that β ∈ Y . By the induction
hypothesis MK ,Y �β. Since the choice of Y was arbitrary, MK ,X ��β.
(⇒) Suppose that MK ,X � �β. We have to show that �β ∈ X . Suppose that �β /∈ X . en,

since X is an MCS, ¬�β ∈X . We show that this leads to a contradiction.

Claim Y0 = {γ |�γ ∈X } ∪ {¬β} is consistent.

If we assume the claim, we can extend Y0 to an MCS Y . Clearly, X RK Y . Since ¬β ∈ Y ,β /∈ Y .
By the induction hypothesis, MK ,Y 2β. is means that MK ,X 2�β which contradicts our initial
assumption that MK ,X ��β.

To complete the proof, we must verify the claim.



Proof of claim Suppose that Y0 is not consistent. en, there exists {γ1,γ2, . . . ,γn}, a finite
subset of Y0, such that γ1∧γ2∧· · ·∧γn∧¬β is inconsistent. Let us denote γ1∧γ2∧· · ·∧γn
by γ̃ .

We then have the following sequence of derivations:

⊢ ¬(γ̃ ∧¬β) By the definition of consistency
⊢ ¬γ̃ ∨β Tautology of propositional logic (Axiom A)
⊢ γ̃ ⊃β Definition of ⊃
⊢�(γ̃ ⊃β) Inference rule G
⊢�γ̃ ⊃�β Axiom K plus one application of MP
⊢ ¬(�γ̃ ∧¬�β) Tautology of propositional logic (Axiom A)

We can easily show that ⊢�(γ ∧δ)≡ (�γ ∧�δ).
In one direction, since ⊢ γ∧δ ⊃ γ is a tautology of propositional logic, we can use the rule
G to get ⊢�(γ ∧δ ⊃ γ). From axiom K and one application of MP, ⊢�(γ ∧δ)⊃�γ .
Symmetrically, it follows that ⊢�(γ ∧δ)⊃�δ . So, ⊢�(γ ∧δ)⊃ (�γ ∧�δ).
Conversely, ⊢ γ ⊃ (δ ⊃ (γ ∧ δ)) from propositional logic. By applying axiom K and
MP a couple of times, we obtain ⊢ �γ ⊃ (�δ ⊃ �(γ ∧δ)), from which it follows that
⊢ (�γ ∧�δ)⊃�(γ ∧δ).
We can extend this argument to show that ⊢�(δ1∧δ2∧· · ·∧δn)≡ (�δ1∧�δ2∧· · ·�δn)
for all n.

From the last line in our derivation above, it then follows that ⊢ ¬(�γ1∧�γ2∧· · ·�γn ∧¬�β). us the set {�γ1,�γ2, . . . ,�γn,¬�β} is inconsistent. But this is a finite subset
of X , which means that X is itself inconsistent, contradicting the fact that X is an MCS.

From the preceding result, the proof of Lemma . is immediate.
Proof of Lemma .: Let α be a formula which is consistent with respect to System K. By

Lindenbaum’s Lemma, α can be extended to a maximal consistent set Xα. By the preceding result
M ,Xα � α, so α isF -satisfiable. ⊣

Once we have proved Lemma ., we immediately obtain a proof of completeness (Corollary .)
using exactly the same argument as in propositional logic.

It is worth pointing out one important difference between the canonical model constructed for
System K and the models constructed when proving completeness for propositional logic. In propo-
sitional logic, to satisfy a consistent formula α, we build a valuation v which depends on α. On the
other hand, the construction of the canonical model for System K is independent of the choice of α.
us, every consistent formula α is satisfied within the model MK .

Completeness for other classes of frames
Can we axiomatise the set of C -valid formulas for a class of frames C which is properly included in
F ? To do this, we use the characteristic formulas which we looked at when discussing correspondence
theory.



Reflexive frames

System T is the set of axioms obtained by adding the following axiom scheme to System K.

(T) �α⊃ α
Lemma . System T is sound and complete with respect to the class of reflexive frames.

Proof: To show that System T is sound with respect to reflexive frames, we only need to verify
that the new axiom (T) is sound for this class of frames—the other axioms and rules from System K
continue to be sound. e soundness of axiom (T) follows from Proposition ..

To show completeness, we must argue that every formula which is consistent with respect to Sys-
tem T can be satisfied in a model based on a reflexive frame. To establish this, we follow the proof of
completeness for System K and build a canonical model MT = ((WT , RT),VT) for System T which
satisfies the property described in Lemma .. We just need to verify that the resulting frame (WT , RT)
is reflexive.

For any MCS X , we need to verify that X RT X or, in other words, that {α | �α ∈ X } ⊆
X . Consider any formula �α ∈ X . Since �α ⊃ α is an axiom of System T, �α ⊃ α ∈ X , by
Lemma . (i). From Lemma . (ii), it then follows that α ∈X , as required. ⊣

Transitive frames

System  is the set of axioms obtained by adding the following axiom scheme to System K.

() �α⊃��α
Lemma . System  is sound and complete with respect to the class of transitive frames.

Proof: We know that the axiom () is sound for the class of transitive frames from Proposition ..
is establishes the soundness of System .

To show completeness, we must argue that every formula which is consistent with respect to Sys-
tem  can be satisfied in a model based on a transitive frame. Once again, we can build a canonical
model M4 = ((W4, R4),V4) for System  which satisfies the property described in Lemma .. We
just need to verify that the resulting frame (W4, R4) is transitive.

In other words, if X ,Y,Z are MCSs such that X R4 Y and Y R4 Z , we need to verify that
X R4 Z—that is, we must show that {α | �α ∈ X } ⊆ Z . Consider any formula �α ∈ X . Since
�α ⊃ ��α is an axiom of System , it follows from Lemma . that ��α ∈ X . Since X R4 Y , it
must be the case that �α ∈ Y . Further, since Y R4 Z it must be the case that α ∈ Z , as required. ⊣

Exercise . e System B is obtained by adding the following axiom to System K.

(B) α⊃�◊α.

Verify that System B is sound and complete with respect to symmetric frames. ⊣



Combinations of frame conditions
By combining the characteristic formulas for different frame conditions, we obtain completeness for
smaller classes of frames.

Reflexive and transitive frames

e System S is obtained by adding the axioms (T) (for reflexivity) and () (for transitivity) to Sys-
tem K.

Lemma . System S is sound and complete with respect to the class of reflexive and transitive frames.

Proof: Since System T is sound for the class of reflexive frames and System  is sound for the class
of transitive frames, it follows that System S is sound for the class of reflexive and transitive frames.

To show completeness, as usual we build a canonical model MS4 = ((WS4, RS4),VS4) satisfying
the property in Lemma .. Using the argument in the proof of Lemma ., it follows that RS4 is
reflexive. Similarly, from the proof of Lemma . it follows that RS4 is transitive. ⊣

Equivalence relations

e System S is obtained by adding the following axioms to System K.

(T) �α⊃ α
() ◊α⊃�◊α.

We have already seen that (T) is the axiom for reflexivity, while () characterises Euclidean frames.

Exercise .

(i) Show that System S is sound and complete for the class of frames whose accessibility relation is
an equivalence relation.

(ii) Show that the axioms () and (B) can be derived in System S. ⊣

. Bisimulations and expressiveness
Intuitively, it is clear that models which have “similar” structure satisfy the same modal logic formulas.
For instance, if we choose the same valuation for all worlds in the two frames shown in Figure ., it
seems evident that no formula can distinguish the resulting pair of models.

To formalise this notion, we introduce bisimulations.



.

.w .w1 .w2 .w3 .w4 .· · ·

Figure : A pair of similar frames

Bisimulation Let M1 = ((W1, R1),V1) and M2 = ((W2, R2),V2) be a pair of models. A bisimulation
is a relation ∼ ⊆W1×W2 satisfying the following conditions.

(i) If w1 ∼ w2 and w1R1w ′1 then there exists w ′2 such that w2R2w ′2 and w ′1 ∼ w ′2.

(ii) If w1 ∼ w2 and w2R2w ′2 then there exists w ′1 such that w1R1w ′1 and w ′1 ∼ w ′2.

(iii) If w1 ∼ w2 then V1(w1) =V2(w2).

Notice that the empty relation is a trivial example of a bisimulation. Two worlds which are related by
a bisimulation satisfy exactly the same formulas.

Lemma . Let ∼ be a bisimulation between M1 = ((W1, R1),V1) and M2 = ((W2, R2),V2). For all
w1 ∈W1 and w2 ∈W2, if w1 ∼ w2, then for all formulas α, M1, w1 � α iff M2, w2 � α.

Proof: As usual, the proof is by induction on the structure of α.

Basis: Suppose α = p ∈ P . By the definition of bisimulations, we know that V1(w1) = V2(w2).
Hence, M1, w1 � p iff M2, w2 � p .

Induction step: e propositional cases α= ¬β and α=β∨ γ are easy, so we omit them and directly
consider the case α=�β.
(⇒) Suppose that M1, w1 ��β. We must show that M2, w2 ��β as well. For this, we must argue

that M2, w ′2 �β for each world w ′2 such that w2R2w ′2. Since∼ is a bisimulation, for each such w ′2 there
exists a world w ′1 such that w1R1w ′1 and w ′1 ∼ w ′2. Since M1, w1 � �β, it follows that M1, w ′1 � β.
Since w ′1 ∼ w ′2, by the induction hypothesis, it follows that M2, w ′2 � β. Since w ′2 was an arbitrarily
chosen R2-neighbour of w2, we have M2, w2 ��β, as required.
(⇐) Suppose that M2, w2 � �β. We must show that M1, w1 � �β as well. e argument is

symmetric to the earlier one and we omit the details. ⊣
We can use bisimulations to show that certain classes of frames cannot be characterised in modal

logic.

Lemma . e class of irreflexive frames cannot be characterised in modal logic.



Proof: Let α be a formula that characterises the class of irreflexive frames. Consider the pair of frames
in Figure .. Since the first frame is not irreflexive, there should be a valuation V and an instance β
of α such that β is not satisfied at w under V .

Let us define a valuation V ′ on the second model such that for each wi , V ′(wi) =V (w). We can
clearly set up a bisimulation between the two models by relating w to each of the worlds wi . is means
that w satisfies exactly the same formulas as each of the worlds wi . In particular, β is not satisfied at
each wi . is is a contradiction because the second model is irreflexive and β is an instance of the
formula α which we claimed was a characteristic formula for irreflexive frames. ⊣

Exercise . We say that a frame (W , R) is “non-connected” if there are worlds w and w ′ such that
it is not the case that w(R∪ R−1)∗w ′. In other words, we convert (W , R) into an undirected graph
by ignoring the orientation of edges in R. e frame is “non-connected” if there are two nodes in the
resulting undirected graph which are not reachable from each other.

Show that there is no axiom which characterises the class of “non-connected” frames. ⊣

Antisymmetry

We have seen that irreflexivity cannot be characterised in modal logic. Another natural frame condition
which is beyond the expressive power of modal logic is antisymmetry. Recall that a relation R on W is
antisymmetric if w R w ′ and w ′ R w imply that w = w ′.

Lemma . Let α be a formula which is satisfiable over the class of reflexive and transitive frames. en,
α is satisfiable in a model based on an reflexive, transitive and antisymmetric frame.

Proof: Let M = ((W , R),V) be a model where R is reflexive and transitive. We describe a
technique called bulldozing, due to Krister Segerberg, for constructing a new model bM = ((cW , bR), bV),
where bR is reflexive, transitive and antisymmetric, such that bM and M satisfy the same formulas.

Consider the frame (W , R). If R is not antisymmetric, there are two worlds w and w ′ in W such
that w R w ′ and w ′ R w . e idea is to break each loop of this kind by making infinitely many copies
of w and w ′ and arranging these copies alternately in a chain. We then verify that the new model
which we construct is bisimilar to the original model.

Formally, we say that X ⊆W is a cluster if X ×X ⊆ R—in a cluster, every world can “see” every
other world.

Let Cl be the class of maximal clusters of W —that is, X ∈Cl if X is cluster and for each w /∈X ,
(X ∪ {w})× (X ∪ {w}) ̸⊆ R. Since R is reflexive, every singleton {w} is a cluster. It follows that the
set Cl of maximal clusters is not empty and that every world w ∈W belongs to some maximal cluster
in Cl. In fact, W is partitioned into maximal clusters.

For each X ∈ Cl, define WX = X ×N, where N is the set {0,1,2, . . .} of natural numbers. us
WX contains infinitely many copies of each world from X . For each set WX , we define an accessibility



relation within WX . For this, we first fix an arbitrary total order ≤X on X . For X ∈ Cl, RX ⊆
WX ×WX is then defined as follows:

RX = {((w, i), (w, i)) | w ∈X and i ∈N}
∪ {((w, i), (w ′, i)) | w, w ′ ∈X and w ≤X w ′}
∪ {((w, i), (w ′, j)) | w, w ′ ∈X and i < j }

We then define a relation across maximal clusters based on the original accessibility relation R:

R′ =
∪{(WX ×WY) |X ̸= Y and for some w ∈X and w ′ ∈ Y, w R w ′}

Finally, we can define the new frame (cW , bR) corresponding to (W , R).

• cW =
∪

X∈Cl WX .

• bR= R′ ∪∪X∈Cl RX .

It can be verified that bR is reflexive, transitive and antisymmetric (Exercise .).
Each world in cW is of the form (w, i) where w ∈X for some maximal cluster X ∈Cl and i ∈N.

We extend (cW , bR) to a model by defining bV ((w, i)) =V (w) for all w ∈W and i ∈N.
We define a relation ∼ ⊆ cW ×W as follows:

∼ = {((w, i), w) | w ∈W , i ∈N}
We claim that ∼ is a bisimulation between bM and M . From the definition of bV , we have bV ((w, i)) =
V (w) for all w ∈W and i ∈ N, so the third condition in the definition of bisimulations is trivially
satisfied.

Suppose that (w, i)∼ w and (w, i) bR (w ′, j). We must show that w R w ′. If w and w ′ belong to
the same maximal cluster X , then w R w ′ because all elements in X are R-neighbours of each other.
On the other hand, if w ∈ X and w ′ ∈ Y for distinct clusters X and Y , it must be the case that
(w, i) R′ (w ′, j). is means that we have w1 ∈X and w ′1 ∈ Y such that w1 R w ′1. Since w R w1 and
w ′1 R w ′, from the transitivity of R it follows that w R w ′.

Conversely, suppose that (w, i)∼ w and w R w ′. We exhibit a world (w ′, j) such that (w, i) bR (w ′, j).
If w and w ′ belong to the same maximal cluster X , we just choose (w ′, j) such that i < j . en, by
the definition of RX , (w, i) RX (w

′, j), so (w, i) bR (w ′, j) as well. On the other hand, if w ∈ X and
w ′ ∈ Y for distinct maximal clusters X and Y , then (x, i) R′ (y, j) for all j ∈N, so once again we can
pick a (w ′, j) such that (x, i) bR (y, j).

us, ∼ is a bisimulation between bM , whose frame is antisymmetric and transitive, and M , whose
frame is transitive. Hence, for any world w ∈ W and any formula α, M , w � α iff bM , (w, i) � α
for all i ∈ N. In other words, every formula which is satisfiable in the class of transitive frames is also
satisfiable in the class of antisymmetric and transitive frames. ⊣



Exercise . Show that the relation bR constructed in the proof of Lemma . is reflexive, transitive
and antisymmetric. ⊣

Corollary . e class of antisymmetric frames cannot be characterised in modal logic.

Proof: Let α be a formula characterizing the class of antisymmetric frames. Let (W , R) be a frame
where R is reflexive and transitive but not antisymmetric. en, there exists an instance β of α and a
valuation V over (W , R) such that M , w � ¬β for some w ∈W . By Lemma ., we can convert M
into a model bM = ((cW , bR), bV)where bR is reflexive, transitive and antisymmetric, such that M , bw � ¬β
for some bw ∈ cW . is is a contradiction, since β was assumed to be an instance of the formula α
which characterises antisymmetric frames. ⊣

We have already seen that the system S is sound and complete for the class of reflexive, transitive
frames. is class is very close to the class of partial orders, which are ubiquitous in computer science.
e fact that antisymmetry cannot be characterised in modal logic means that modal logic cannot
distinguish between reflexive and transitive frames (often called preorders) and reflexive, transitive and
antisymmetric frames (or partial orders).

Corollary . e system S is sound and complete for the class of partial orders.

Proof: Since partial orders are reflexive and transitive, S is certainly sound for this class of frames.
We already know that every formula which is consistent with respect to S is satisfiable in a preorder.
e bulldozing construction described in the proof of Lemma . shows that every formula satisfiable
over a preorder is also satisfiable over a partial order. ⊣

. Decidability: Filtrations and the finite model property
ough we have looked at sound and complete axiomatisations of different classes of frames, we have
yet to establish any results concerning decidability. e basic technique for showing decidability is to
prove that any formula which is satisfiable is in fact satisfiable in a finite model.

Finite model property Let A be an axiom system which is sound and complete with respect to a class
of frames C . e system A has the finite model property if for all formulas α, 0A α implies there is a
model M = (F ,V) based on a finite frame F = (W , R) ∈C such that for some w ∈W , M , w � ¬α.

Since A is sound and complete for the class C , this is equivalent to demanding that any formula
which is satisfiable in the class C is in fact satisfiable in a model based on a finite frame from the class
C .

Assume that we can effectively decide whether or not a given finite frame belongs to the class C ,
we can then systematically enumerate all finite models built from the class C . As a consequence, the
finite model property allows us to enumerate the set of formulas satisfiable within the classC . On the
other hand, the completeness of the axiom system A allows us to enumerate the set of formulas which
are valid in this class of frames.



To check whether a formula α is valid, we interleave these enumerations. If α is valid, it will be
enumerated as a thesis of the system A. On the other hand, if α is not valid, its negation ¬α must be
satisfiable, so ¬α will appear in the enumeration of formulas satisfiable overC . us, the finite model
property yields a decision procedure for validity (and, dually, satisfiability).

Subformulas Let α be formula. e set of subformulas of α, denoted sf (α), is the smallest set of
formulas such that:

• α ∈ sf (α).

• If ¬β ∈ sf (α) then β ∈ sf (α).

• If β∨ γ ∈ sf (α) then β ∈ sf (α) and γ ∈ sf (α).

• If �β ∈ sf (α) then β ∈ sf (α).

Exercise . Show that the size of the set sf (α) is bounded by the length of α. More formally, for
a formula α, define |α|, the length of α, to be the number of symbols in α. Show that if |α|= n then
|sf (α)| ≤ n. Give an example where |sf (α)|< |α|. ⊣

For a set X of formulas, we write sf (X) to denote the set
∪
α∈X sf (α). A set of formulas X is said

to be subformula-closed (or just sf-closed) if X = sf (X).
Let M = ((W , R),V) and M ′ = ((W ′, R′),V ′) be a pair of models. We have already seen that if we

can set up a bisimulation ∼ between M and M ′, then for each pair of worlds (w, w ′) ∈∼, the worlds
w and w ′ satisfy the same formulas. Often, we are willing to settle for a weaker relationship between
w and w ′—we do not require them to agree on all formulas, but only on formulas from a fixed set X .
For sf-closed subsets X , this can be achieved using filtrations.

Filtrations Let M = ((W , R),V) and M ′ = ((W ′, R′),V ′) be a pair of models and X an sf-closed set
of formulas. An X -filtration from M to M ′ is a function f : W →W ′ such that:

(i) For all w, w ′ ∈W , if w R w ′ then f (w) R f (w ′).

(ii) e map f is surjective.

(iii) For all p ∈P ∩X , p ∈V (w) iff p ∈V ′(f (w)).

(iv) If (f (w), f (w ′)) ∈ R′, then for each formula of the form �α in X , if M , w ��α then M , w ′ �
α.

In a filtration, we have a weaker requirement on the inverse image of f than in a bisimulation.
If f (w)R′ f (w ′), we do not demand that w R w ′. We only insist that w and w ′ be “semantically”
related upto the formulas in X . It is quite possible that (w, w ′) /∈ R and hence for some �β /∈ X ,
M , w ��β while M , w ′ 2β.



Lemma . Let f be an X -filtration from M = ((W , R),V) to M ′ = ((W ′, R′),V ′) where X is an
sf-closed set of formulas. en, for all α ∈X and for all w ∈W , M , w � α iff M ′, f (w) � α.

Proof: e proof is by induction on the structure of α.
Basis If α = p ∈ P ∩X , then M , w � p iff p ∈ V (w) iff (by the definition of X -filtrations) p ∈
V ′(f (w)) iff M , f (w) � p .

Induction step e propositional cases α = ¬β and α = β∨ γ are easy, so we omit them and directly
consider the case α=�β.
(⇒) Suppose M , w � �β. To show that M ′, f (w) � �β, we must show that for each w ′ with

f (w)R′w ′, M ′, w ′ �β. Fix an arbitrary w ′ such that f (w)R′w ′. Since f is surjective, there is a world
w ′′ ∈W such that w ′ = f (w ′′). From the last clause in the definition of filtrations, it follows that
M , w ′′ � β. Since X is sf-closed, β ∈ X . From the induction hypothesis, we have M ′, f (w ′′) � β
or, in other words, M ′, w ′ � β. Since w ′ was an arbitrary R′-neighbour of f (w), it follows that
M ′, f (w) ��β.
(⇐) Suppose that M ′, f (w) � �β. To show that M , w � �β, we must show that for each

w ′ with w R w ′, M , w ′ � β. Fix an arbitrary w ′ such that w R w ′. From the first clause in the
definition of filtrations, it follows that f (w)R′ f (w ′). Since M ′, f (w) � �β, it must be the case that
M ′, f (w ′) � β. Since β ∈ X , from the induction hypothesis we have M , w ′ � β. Since w ′ was an
arbitrary R-neighbour of w, it follows that M , w ��β. ⊣

Recall that our goal is to establish the finite model property for a class of frames C—whenever a
formula α is satisfiable over C , then there is a model for α based on a finite frame from the class C .

Our strategy will be as follows: given a formula α and an arbitrary model M for α, define an sf-
closed set of formulas Xα and a finite model Mα such that α ∈Xα and there is an Xα-filtration from M
to Mα. Lemma . then tells us that α is satisfied in Mα. Since this procedure applies uniformly to
all satisfiable formulas α over the given class of frames, it follows that this class of frames has the finite
model property.

Defining Xα is easy—we set Xα = sf (α). To construct Mα, we have to define a frame (Wα, Rα) and
a valuation Vα : Wα→ 2P .

We define Wα and Vα in a uniform manner for all classes of frames. To define Wα, we begin with
the following equivalence relation≃α on W : w ≃α w ′ if for eachβ ∈Xα, M , w �β iff M , w ′ �β. In
other words, w ≃α w ′ iff the worlds w and w ′ satisfy exactly the same formulas from the set Xα. We use
[w] represent the equivalence class of w with respect to the relation≃—that is, [w] = {w ′ | w ′ ≃α w}.

Let Wα = {[w] | w ∈W }. Observe that Wα is finite whenever Xα is finite. Since Xα = sf (α), we
know that Xα is finite (recall Exercise .).

Defining Vα is simple: for each [w] ∈Wα, Vα([w]) =
∩

w ′∈[w]V (w
′).

Defining Rα is more tricky: in general, this relation has to be defined taking into account the class
of frames under consideration. We now show how to define “suitable” Rα for some of the classes of
frames for which we have already shown complete axiomatisations.

Lemma . e axiom system K has the finite model property.



Proof: Recall that system K is sound and complete for the classF of all frames. From our discussion
of the finite model property, it suffices to show that any formula satisfiable overF is in fact satisfiable
over a finite frame inF .

Let α be a satisfiable formula and let M = ((W , R),V) be a model for α—-that is, for some
wα ∈W , M , wα � α. Let Xα = sf (α) and define Wα and Vα as described earlier. Define Rα as follows:

Rα = {([w],[w ′]) | For each formula β ∈Xα, if M , w ��β then M , w ′ �β}
Let Mα = ((Wα, Rα),Vα).

Fix the function f : W →Wα such that w 7→ [w] for each w ∈W . We claim that f is an Xα-
filtration from M to Mα—for this, we have to verify that f satisfies properties (i)–(iv) in the definition
of filtrations.

It is clear that f is surjective (property (ii)).
To verify property (iii) we have to show that for each p ∈P ∩Xα and for each w ∈W , p ∈V (w)

iff p ∈Vα([w]). Since the worlds in [w] agree on all formulas in Xα, it follows that p ∈V (w) iff for
each w ′ ≃α w, p ∈V (w ′) iff p ∈∩w ′∈[w]V (w ′) iff (by the definition of Vα) p ∈Vα([w]).

Property (i) demands that (w, w ′) ∈ R implies ([w],[w ′]) ∈ Rα. By the definition of Rα,
([w],[w ′]) ∈ Rα if for each β ∈ Xα, whenever M , w � �β, M , w ′ � β as well. is is immedi-
ate from the fact that (w, w ′) ∈ R.

Finally, property (iv) states that whenever ([w],[w ′]) ∈ Rα, for each formula�β ∈Xα, if M , w �
�β then M , w ′ �β. is follows directly from the definition of Rα.

Having established that f is an Xα-filtration from M to Mα, it follows that Mα,[wα] � α. us
Mα is a finite model for α, as required. ⊣

Lemma . e axiom system T has the finite model property.

Proof: Recall that system T is sound and complete for the class of reflexive frames. Let α be a formula
satisfiable at a world wα in a model M = ((W , R),V) where (W , R) is a reflexive frame. We have to
exhibit a finite model for α based on a reflexive frame.

Define Xα and Mα = ((Wα, Rα),Vα) as in the proof of Lemma .. We have already seen that
f : w 7→ [w] then defines an Xα-filtration from M to Mα. To complete the proof of the present lemma,
it suffices to show that the frame (Wα, Rα) is reflexive.

Since R is reflexive, we have (w, w) ∈ R for each w ∈W . By property (i) of filtrations, (w, w) ∈ R
implies ([w],[w]) ∈ Rα. Since f is surjective, it then follows that Rα is reflexive as well. (Notice that
this argument actually establishes that any filtration from a reflexive model M to a model M ′ preserves
reflexivity.) ⊣

Lemma . e axiom system S has the finite model property.

Proof: Recall that S is sound and complete for the class of reflexive and transitive frames. Let α be a
formula satisfiable at a world wα in a model M = ((W , R),V) where (W , R) is reflexive and transitive.
We have to exhibit a finite model for α based on a reflexive and transitive frame.



Let Xα = sf (α) and define Wα and Vα in terms of ≃α as usual. Let Rα be defined as follows:

Rα = {([w],[w ′]) | For each formula �β ∈Xα. if M , w ��β then M , w ′ ��β.}
Let Mα = ((Wα, Rα),Vα).

As usual, we define f : W →Wα by w 7→ [w]. We have already seen that such a function satisfies
properties (ii) and (iii) in the definition of a filtration.

We have to verify that f satisfies properties (i) and (iv) with the new definition of Rα. To show
property (i), we have to verify that if (w, w ′) ∈ R then ([w],[w ′]) ∈ Rα. Suppose that M , w � �β.
Since (W , R) is transitive, M , w ��β⊃��β, so M , w ���β as well. Since (w, w ′), M , w ′ ��β.
us ([w],[w ′]) ∈ Rα.

For property (iv), we have to show that if ([w],[w ′]) ∈ Rα then for each formula of the form �β
in Xα, if M , w ��β, then M , w ′ �β. From the definition of Rα, we know that if M , w ��β, then
M , w ′ ��β as well. Since (W , R) is reflexive, M , w ′ ��β⊃β, so M , w ′ �β as required.

Having established that f is an Xα-filtration from M to Mα, it remains to prove that the frame
(Wα, Rα) is reflexive and transitive. Recall that (W , R) is assumed to be a reflexive and transitive frame.
We have already remarked in the proof of the previous lemma that any filtration from a reflexive model
preserves reflexivity, so it is immediate that (Wα, Rα) is a reflexive frame.

To show transitivity, suppose that ([w1],[w2]) and ([w2],[w3]) belong to Rα. We have to show
that ([w1],[w3]) ∈ Rα as well. is means that for each formula �β in Xα, we have to show that if
M , w1 � �β then M , w3 � �β. Suppose that M , w1 � �β. Since ([w1],[w2]) ∈ Rα, we know that
M , w2 ��β. Now, since ([w2],[w3]) ∈ Rα, it follows that M , w3 ��β as well. ⊣

Exercise .

(i) Recall that the axiom system B is sound and complete for the class of symmetric frames. Show
that B has the finite model property. Define Rα as follows:

Rα = {([w],[w ′]) | For each formula �β ∈Xα, (i) if M , w ��β then M , w ′ �β
(ii) if M , w ′ ��β then M , w �β}

(ii) Recall that the axiom system S is sound and complete for the class of frames based on equivalence
relations. Show that S has the finite model property. Define Rα as follows:

Rα = {([w],[w ′]) | For each formula �β ∈Xα, M , w ��β iff M , w ′ ��β}
⊣



Small model property In all the finite models we have constructed, we have defined Wα to be the set
of equivalence classes generated by the relation≃α. Since the size of sf (α) is bounded by |α|, it follows
that |Wα| is bounded by 2|α|. us, when we establish the finite model property using the equivalence
relation ≃α, we in fact derive a bound on the size of a finite model for α. As a result, we establish a
stronger property, which we call the small model property.

More formally, we say that a class of frames C has the small model property if there is a function
fC : N→ N such that for each formula α satisfiable over the class C , there is a model for α over C
whose size is bounded by fC (|α|). For instance, in the examples we have seen, fC (|α|) = 2|α|.

e small model property gives us a more direct decidability argument—to check if α is satisfiable,
we just have to enumerate all models of size less than fC (|α|). To show that this is possible, we first
observe that the number of frames in this subclass is bounded. To bound the number of models based
on this finite set of frames, notice that it suffices to consider valuations restricted to the finite set of
atomic propositions which occur in α. us given a finite frame, there are only finitely many different
valuations possible over that frame.

is decision procedure has the advantage of giving us a bound on the complexity of the decision
problem. is bound is just the bound on the number of different models which can be generated
whose size is less than fC (|α|).
Exercise . In the examples we have seen (axiom systems K, T etc.) verify that the satisfiability of
a formula α can be checked in time which is doubly exponential in |α|. ⊣

. Labelled transition systems and multi-modal logic
Transition systems A transition system is a pair (S ,→) where S is a set of states and → ⊆ S × S is a
transition relation. Transition systems are a general framework to describe computing systems. States
describe configurations of the system—for instance, the contents of the disk, memory and registers of
a computer at a particular instant. e transition relation then describes when one configuration can
follow another—for instance the effect of executing a machine instruction which affects some of the
memory, register or disk locations and leaves the rest of the configuration untouched.

It is clear that a transition system has exactly the same structure as a frame (W , R) in modal logic.
Hence, we can use modal logic to describe properties of transition systems. is is one of the main
reasons why modal logic is interesting to computer scientists.

Often, we are interested in a more structured representation of the configuration space of a comput-
ing system—in particular, we not only want to record that a transition is possible from a configuration
s to a configuration s ′ but we also want to keep track of the “instruction” which caused this change of
configuration. is leads us to the notion of labelled transition systems.

Labelled transition systems A labelled transition system is a triple (S,Σ,→) where S is a set of states, Σ
is a set of actions and→⊆ S ×Σ× S is a labelled transition relation.



e underlying structure in a finite automaton is a familiar example of a labelled transition system,
where the set of states is finite.

How can we reason about labelled transition systems in the framework of modal logic? One option
is to ignore the labels and consider the derived transition relation⇒= {(s , s ′) | ∃a ∈Σ : (s ,a, s ′) ∈→}.
We can then reason about the frame (S,⇒) using the modalities� and ◊. is approach is clearly not
satisfactory because we have lost all information about the labels of actions within our logic. A more
faithful translation involves the use of multi-modal logics.

Multi-modal logics A multi-relational frame is a structure (W , R1, R2, . . . , Rn) where Ri is a binary
relation on W for each i ∈ {1,2, . . . , n}. A multi-relational frame can be viewed as the superposition
of n normal frames (W , R1), (W , R2), . . . , (W , Rn), all defined with respect to the same set of worlds.

To reason about a multi-relational frame, we define a multi-modal logic whose syntax consists of a
set P of atomic propositions, the boolean connectives ¬ and ∨ and a set of n modalities �1, �2, . . . ,
�n.

To define the semantics of multi-modal logic, we first fix a valuation V : W → 2P as before. We
then define the satisfaction relation M , w � α. e propositional cases are the same as for standard
modal logic. e only difference is in the semantics of the modalities. For each i ∈ {1,2, . . . , n}, we
define

M , w ��iα iff for each w ′ ∈W , if w Ri w ′ then M , w ′ � α
us, the modalities {�i}i∈{1,2,...,n} are used to “independently” reason about the relations {Ri}i∈{1,2,...,n}.
We can then use the theory we have developed to describe properties of each of these relations. For in-
stance, the multi-relational frames where the axioms�3α⊃ α and�7α⊃�7�7α are valid correspond
to the class where R3 is reflexive and R7 is transitive. We can express interdependencies between dif-
ferent relations using formulas which combine these modalities. For instance, the formula α⊃ ◊5◊2β
indicates that a world which satisfies α has an R5-neighbour which in turn has an R2-neighbour where
β holds.

We have seen how to characterise classes of frames using formulas from modal logic. We can extend
this idea in a natural way to characterise classes of multi-relational frames.

Exercise . Consider the class of multi-relational frames (W , R1, R2) where R2 = R−1
1 . Describe

axioms to characterise this class. (Hint: e combined relation R1∪R2 is a symmetric relation on W .
Work with suitable modifications of axiom (B). You may use more than one axiom.) ⊣

To reason about labelled transition systems in this framework, we have to massage the structure
(S,Σ,→) into a multi-relational frame. To achieve this, we define a relation →a ⊆ S × S for each
a ∈Σ as follows:

→a = {(s , s ′) | (s ,a, s ′) ∈ →}
It is then clear that the multi-relational frame (S,{→a}a∈Σ) describes the same structure as the original
labelled transition system (S,Σ,→).



To reason about the structure (S,{→a}a∈Σ), we have modalities �a (read as Box a) and ◊a (read
as Diamond a) for each a ∈ Σ. Traditionally, the modality �a is written [a] and the modality ◊a is
written 〈a〉.

When reasoning about labelled transition systems, the set of atomic propositionsP corresponds to
properties which distinguish one configuration of the system from each other. For instance, we could
have an atomic proposition to denote that “memory location  is unused” or that “the printer is busy”.
In these notes, we will not go into the details of how to model a computing system in terms of such a
logic.

Assuming we have an abstract encoding of system properties in terms of atomic propositions, we
can now reason about the dynamic behavior of the system. For instance, we can assert M , s � [c]〈b 〉α
to denote that in the state s , any c-transition will lead to a state from where we can use a b -transition
to realise the property described by α. In particular, if α is just the constant⊤, this formula asserts that
a b -transition is enabled after any c-transition.

Unfortunately, we still do not have the expressive power we need to make non-trivial statements
about programs. For instance, we cannot say that after a c-transition, we can eventually reach a state
where a b -transition is enabled. Or that we have reached a portion of the state space where henceforth
only a and d transitions are possible.

For this, we need to move from modal logic to dynamic logic, which is the topic of discussion in
the next section.



 Dynamic Logic
Dynamic logic is a multi-modal logic where the modalities are indexed not by uninterpreted letters, but
by programs, which have structure. e relationship between different programs also forms an integral
part of the logic.

. Syntax
As in propositional logic, we begin with a countably infinite set of atomic propositionsP = {p0, p1, . . .}
and two logical connectives ¬ (read as not) and ∨ (read as or). We also begin with a countably infinite
set of atomic actionsA = {a0,a1, . . .}.

e set Φ of formulas of dynamic logic and the set Π of programs are simultaneously defined by
induction as the smallest sets satisfying the following:

• Every atomic proposition p is a member of Φ.

• If α is a member of Φ, so is (¬α).
• If α and β are members of Φ, so is (α∨β).
• If α is a member of Φ and π is a member of Π, then ([π]α) is a member of Φ.

• Every atomic action a is a member of Π.

• If π1 and π2 are members of Π, so are (π1+π2) and (π1 ·π2).

• If π is a member of Π, so is (π∗).

• If α is a member of Φ, (α?) is a member of Π.

As before, we omit parentheses if there is no ambiguity. e derived propositional connectives ∧, ⊃
and≡ are defined as before. In addition, we have a derived modality 〈π〉 which is dual to the modality
[π], defined as follows: 〈π〉α def= ¬[π]¬α.

Informally, [π]α is true in a world w iff all worlds w ′ which one ends up in after executing program
π in w satisfies α. e programs π1+π2, π1 ·π2, and π∗ denote nondeterministic choice between π1
and π2, sequential composition of π1 and π2, and arbitrary iteration of π, respectively. e program
α? executed at world w is just a skip if α is true at w and an abort otherwise.

. Semantics
Frames A frame is just a labelled transition system F = (W ,A ,→). For each a inA , define

a−→⊆
W ×W to be the set of pairs (w, w ′) such that (w,a, w ′) belongs to→. If w

a−→w ′ we say that w ′ is
an a-neighbour of w .

Models A model is a pair M = (F ,V) where F = (W ,A ,→) is a frame and V : W → 2P is a
valuation.



Satisfaction e notion of truth is localised to each world in a model. We write M , w � α to denote
that α is true at the world w in the model M . e satisfaction relation and the relations

π−→ for each
π in Π are defined by simultaneous induction as follows. We say that w ′ is a π-neighbour of w if
w

π−→w ′.

M , w � p iff p ∈V (w) for p ∈P
M , w � ¬α iff M , w 2 α
M , w � α∨β iff M , w � α or M , w �β
M , w � [π]α iff for each w ′ ∈W , if w

π−→w ′ then M , w ′ � α
w
π1+π2−→ w ′ iff w

π1−→w ′ or w
π2−→w ′

w
π1·π2−→ iff for some w ′′ ∈W , w

π1−→w ′′ and w ′′
π2−→w ′

w
π∗−→w ′ iff w

π−→∗w ′, where R∗ denotes the reflexive transitive closure of R

w
α?−→w ′ iff w = w ′ and M , w � α

us, M , w � [π]α if every π-neighbour of w satisfies α. Notice that if w is π-isolated—that is, there
is no world w ′ such that w

π−→w ′—then M , w � [π]α for every formula α. We say that a sequence
of worlds w0, w1, . . . , wn (n ≥ 0) is a π-path if wi

π−→wi+1 for all i such that 0≤ i < n. Such a path
is said to be of length n. It is said to be from w to w ′ if w0 = w and wn = w ′. w ′ is said to be

π-reachable from w if there is a π-path from w to w ′. Notice that w
π∗−→w ′ iff w ′ is π-reachable from

w. us M , w � [π∗]α iff every π-reachable world w ′ of w satisfies α.

Satisfiability and validity As usual, we say that α is satisfiable if there exists a frame F = (W ,A ,→)
and a model M = (F ,V) such that M , w � α for some w ∈W . e formula α is valid, written � α,
if for every frame F = (W ,A ,→), for every model M = (F ,V) and for every w ∈W , M , w � α.

Example . Here are some examples of valid formulas in dynamic logic.

(i) Every substitution instance of a tautology of propositional logic is valid. e details are trivial.

(ii) e formula [π](α ⊃β)⊃ ([π]α ⊃ [π]β) is valid. Consider a model M = ((W ,A ,→),V)
and a world w ∈W . Suppose that M , w � [π](α ⊃β). We must argue that M , w � [π]α ⊃
[π]β. Let M , w � [π]α. en we must show that M , w � [π]β. In other words, we must
show that every π-neighbour w ′ of w satisfies β. Since we assumed M , w � [π](α ⊃ β), we
know that M , w ′ � α ⊃β. Moreover, since M , w � [π]α, M , w ′ � α. By the semantics of the
connective ⊃, it follows that M , w ′ �β, as required.

(iii) e formula [π1+π2]α≡ ([π1]α∧ [π2]α) is valid. Consider a model M = ((W ,A ,→),V)
and a world w ∈W . Now M , w � [π1+π2]α iff (by semantics) M , w ′ � α for all π1+π2-

neighbours w ′ of w iff (by definition of
π1+π2−→) M , w ′ � α for all w ′ that are either π1-neighours

or π2-neighbours of w iff (by semantics) M , w � ([π1]α∧ [π2]α).



(iv) e formula [π1 ·π2]α ≡ [π1][π2]α is valid. Consider a model M = ((W ,A ,→),V) and a
world w ∈W . Now M , w � [π1 ·π2]α iff (by semantics) M , w ′ � α for all π1 ·π2-neighbours
w ′ of w iff (by definition of

π1·π2−→) M , w ′ � α for all w ′ that are π2-neighours of some π1-
neighbour w ′′ of w iff (by semantics) M , w ′′ � [π2]α for all π1-neighbours w ′′ of w iff (by
semantics) M , w � [π1][π2]α.

(v) e formula [π∗]α ≡ α ∧ [π][π∗]α is valid. Consider a model M = ((W ,A ,→),V) and
a world w ∈W . Now M , w � [π∗]α iff (by semantics) every world w ′ π-reachable from w
satisfies α iff (by definition of π-reachability) w satisfies α and for all π-neighbours w ′′ of w, all
worlds w ′ π-reachable from w ′′ satisfy α iff (by semantics) w satisfies α and every π-neighbour
w ′′ of w satisfies [π∗]α iff (by semantics, again) M , w � α∧ [π][π∗]α.

(vi) e formula (α∧ [π∗](α⊃ [π]α))⊃ [π∗]α is valid. Consider a model M = ((W ,A ,→),V)
and a world w ∈W . Suppose M , w � α and M , w � [π∗](α ⊃ [π]α). For any world w ′ of
W that is π-reachable from w , define the π-height of w ′ (with respect to w) as the length of
the shortest π-path from w to w ′. We prove by induction on the π-height that every world w ′
π-reachable from w satisfies α, thereby showing that M , w � [π∗]α. Consider any world w ′
whose π-height is zero. It follows that w ′ = w and therefore M , w ′ � α. Consider any world w ′
whose π-height is a non-zero number n. Clearly, there is a world w ′′ with π-height n− 1 such
that w ′′ π−→w ′. Now, by induction hypothesis, M , w ′′ � α. But since M , w � [π∗](α⊃ [π]α),
it follows that M , w ′′ � α⊃ [π]α. erefore M , w ′′ � [π]α, and hence M , w ′ � α.

(vii) e formula [α?]β ≡ (α ⊃ β) is valid. Consider a model M = ((W ,A ,→),V) and a world
w ∈W . Now M , w � [α?]β iff M , w ′ �β for all α?-neighbours w ′ of w iff (since w

α?−→w ′ iff
w = w ′ and M , w � α) whenever w satisfies α it also satisfiesβ iff (by semantics) M , w � α⊃β.

(viii) Suppose that α is valid. en, [π]α must also be valid. Consider any model M = ((W ,A ,→
),V) and any w ∈W . To check that M , w � [π]α we have to verify that every π-neighbour
of w satisfies α. Since α is valid, M , w ′ � α for all w ′ ∈W . So, every π-neighbour of w does
satisfy α and M , w � [π]α.

. Axiomatising valid formulas
Consider the following axiom system.

Axioms

(A) All tautologies of propositional logic.
(A) [π](α⊃β)⊃ ([π]α⊃ [π]β).
(A) [π1+π2]α≡ ([π1]α∧ [π2]α).
(A) [π1 ·π2]α≡ [π1][π2]α.
(A) [π∗]α≡ (α∧ [π][π∗]α).
(A) (α∧ [π∗](α⊃ [π]α))⊃ [π∗]α.
(A) [α?]β≡ (α⊃β).



Inference Rules

(MP) α,α⊃β
β

(G) α
[π]α

As usual, we say that α is a thesis, denoted ⊢ α, if we can derive α using the axioms (A) to (A)
and the inference rules (MP) and (G). It is easily seen that ⊢ [π](α∧β)≡ ([π]α∧ [π]β).

e result we want to establish is the following.

eorem . For all formulas α, ⊢ α iff � α.

As usual, one direction of the proof is easy.

Lemma . (Soundness) If ⊢ α then � α.

Proof: As we observed earlier, it suffices to show that each axiom is valid and that the inference rules
preserve validity. is is precisely what we exhibited in Example .. ⊣
As in Propositional Logic and Modal Logic, we use a Henkin-style argument to show that every valid
formula is derivable in our axiom system, but we do not construct a canonical model. It is technically
much simpler to directly construct a finite model for each consistent formula.

Consistency We say that a formula α is consistent if 0¬α. A finite set of formulas {α1,α2, . . . ,αn} is
consistent if the conjunction α1 ∧α2 ∧ · · · ∧αn is consistent. Finally, an arbitrary set of formulas X is
consistent if every finite subset of X is consistent.

Our goal is to prove the following.

Lemma . Every consistent formula is satisfiable.

As we saw in the case of Propositional Logic, this will yield as an immediate corollary the result we
seek:

Corollary . (Completeness for dynamic logic) Let α be a valid formula. en ⊢ α.

Atoms
Instead of working with maximal consistent sets as we did in modal logic, we work with certain subsets
of subformulas of the formula of interest. We first make precise the notion of subformula of a formula.
e definition is not completely obvious – it has some aspects which are motivated by the proof of
completeness. For convenience, in the rest of the section, we will fix a consistent formula α0 and try to
construct a model in which it is satisfied.



Subformulas Let α be formula. e set of subformulas of α, denoted sf (α), is the smallest set of
formulas such that:

• α ∈ sf (α).

• If ¬β ∈ sf (α) then β ∈ sf (α).

• If β∨ γ ∈ sf (α) then β ∈ sf (α) and γ ∈ sf (α).

• If [a]β ∈ sf (α) (for a ∈A) then β ∈ sf (α).

• If [π1+π2]β ∈ sf (α) then [π1]β ∈ sf (α) and [π2]β ∈ sf (α).

• If [π1 ·π2]β ∈ sf (α) then [π1][π2]β ∈ sf (α).

• If [π∗]β ∈ sf (α) then [π][π∗]β ∈ sf (α) and β ∈ sf (α).

• If [β?]γ ∈ sf (α) then β ∈ sf (α) and γ ∈ sf (α).

Exercise . Show that the size of the set sf (α) is bounded by the square of the length of α. More
formally, for a formula α, define |α|, the length of α, to be the number of symbols in α. Show that if
|α|= n then |sf (α)| ≤ n2. Give an example where |sf (α)|< |α|2. ⊣

It is convenient in what follows to work with negation-closed sets of formulas. For any formula α,
we define α to be β if α is of the form ¬β, and ¬α otherwise. We define the closure of a formula α,
denoted cl(α), to be the set {β,β | β ∈ sf (α)}. Note that the size of cl(α) is at most twice that of
sf (α). In what follows, we will freely use the fact that ⊢ ¬α≡ α, and loosely talk of ¬α belonging to a
particular set when we actually mean that α belongs to that set. For the rest of the section, we fix cl to
be cl(α0).

An atom is a maximal consistent subset of cl—it is a consistent subset A of cl such that for all α /∈ cl,
A∪ {α} is not consistent. It can be easily seen that the atoms are exactly sets of the form X ∩ cl for
some MCS X . e set of all atoms is denoted by AT .

As we saw earlier, by Lindenbaum’s Lemma, every consistent set of formulas can be extended to an
MCS. In particular, there is an MCS X containing α0, and hence (by the observation in the previous
paragraph), an atom A0 containing α0.

We will use the following properties of atoms.

Lemma . Let A be an atom. en:

(i) For all formulas ¬α ∈ cl, α /∈A iff ¬α ∈A.

(ii) For all formulas α∨β ∈ cl, α∨β ∈A iff α ∈A or β ∈A.

(iii) If α ∈ cl is a thesis, then α ∈A.

(iv) If A is an atom and if A∪{α} is consistent for α ∈ cl, then α ∈A.



(v) If ⊢ (α1 ∧ · · · ∧αn)⊃β, αi ∈A for each i ≤ n and β ∈ cl, then β ∈A.

(vi) For all formulas [π1+π2]α ∈ cl, [π1+π2]α ∈A iff [π1]α ∈A and [π2]α ∈A.

(vii) For all formulas [π1 ·π2]α ∈ cl, [π1 ·π2]α ∈A iff [π1][π2]α ∈A.

(viii) For all formulas [π∗]α ∈ cl, [π∗]α ∈A iff α ∈A and [π][π∗]α ∈A.

(ix) For all formulas [α?]β ∈ cl, [α?]β ∈A iff α /∈A or β ∈A.

Proof: e proof is routine and is left as an exercise. ⊣
For any finite set of formulas A = {α1, . . . ,αn}, define bA to be α1 ∧ · · · ∧ αn, and for any finite

collection V = {A1, . . . ,Am} of finite sets of formulas, define bV to becA1 ∨ · · · ∨ÓAm . We first present
the following useful properties related toÓAT .

Lemma . ⊢ÓAT .

Proof: Let AT = {A1, . . . ,Ar }. Suppose it is not the case that ⊢ÓAT . en ¬ÓAT is consistent. In
other words, ¬cA1∧ · · ·∧¬cAr is consistent. By Lindenbaum’s lemma, there is a maximal consistent set
X such that ¬cA1 ∧ · · · ∧ ¬cAr ∈ X . is means that for all i : 1 ≤ i ≤ r , ¬ bAi ∈ X . Let B = X ∩ cl.
Since X is a maximal consistent set, B is an atom, i.e. B ∈ AT . Let it be Ak for some k : 1 ≤ k ≤ r .
But then cAk ∈ X , contradicting the consistency of X . erefore it cannot be the case that ¬ÓAT is
consistent, and so ⊢ÓAT . ⊣

Lemma . Let U ⊆AT and let V =AT \U . en ⊢ bU ≡¬ bV .

Proof: Let U = {A1, . . . ,Am} and V = {B1, . . . ,Bn}. Further for all i : 1≤ i ≤ m and j : 1≤ j ≤ n,
let αi j ∈Ai \B j . e following derivation shows that if ⊢ bU ∨ bV then ⊢ bU ≡¬ bV . (e line number
ℓi j denotes 2n(i −1)+2 j +1 and the line number ℓ′i j denotes ℓi j +1 for 1≤ i ≤ m and 1≤ j ≤ n.
Note that ℓ11 = 3.)



1. bU ∨ bV Assumption.
2. ¬ bV ⊃ bU , PL.

ℓ11. (cA1 ⊃ α11)∧ (bB1 ⊃¬α11) α11 ∈A1 \B1.
ℓ′11.
cA1 ⊃¬ bB1 ℓ11, PL.

· · ·

ℓi j . (bAi ⊃ αi j)∧ (bB j ⊃¬αi j) αi j ∈Ai \B j .
ℓ′i j .
bAi ⊃¬ bB j ℓi j , PL.

· · ·

ℓmn. (ÓAm ⊃ αmn)∧ (cBn ⊃¬αmn) αmn ∈Am \Bn.
ℓ′mn. ÓAm ⊃¬cBn ℓmn , PL.

ℓ′mn + 1. (cA1 ∨ · · · ∨ÓAm)⊃ (¬ bB1 ∧ · · · ∧¬bB) ℓ′11, . . . ,ℓ
′
mn , PL.

ℓ′mn + 2. bU ⊃¬ bV ℓ′mn + 1, def. of bU , bV , PL.
ℓ′mn + 3. bU ≡¬ bV , ℓ′mn + 2, PL.

Now it follows from definitions of U and V and by Lemma . that ⊢ bU ∨ bV . From the above
derivation ⊢ bU ≡¬ bV . ⊣

Lemma . Let α ∈ cl, and let U denote the set {A∈AT | α ∈A}. en ⊢ α≡ bU .

Proof: Let U be {A1, . . . ,Am} and let V = AT \ U be {B1, . . . ,Bn}. en we have the following
derivation.

1. (cA1 ⊃ α)∧ · · · ∧ (ÓAm ⊃ α) α ∈Ai for 1≤ i ≤ m.
2. bU ⊃ α , def. of bU , PL.
3. (bB1 ⊃¬α)∧ · · · ∧ (cBn ⊃¬α) α /∈ B j , and hence ¬α ∈ B j for 1≤ j ≤ n.
4. (α⊃¬ bB1)∧ · · · ∧ (α⊃¬cBn) , PL
5. α⊃¬ bV , def. of bV , PL.
6. bU ≡¬ bV Lemma ..
7. α⊃ bU , , PL.
8. α≡ bU , , PL.

is completes the proof of the lemma. ⊣

Lemma . Suppose α and β are formulas and π is a program such that for all A∈ AT , either ⊢ α ⊃
[π]¬ bA or ⊢ bA⊃β. en ⊢ α⊃ [π]β.
Proof: Let AT be {A1, . . . ,Ar }. Consider an arbitrary atom Ai . If ⊢ bAi ⊃ β, then we have the
following sequence of derivations.



⊢ bAi ⊃β Assumption
⊢ [π](bAi ⊃β) Applying rule (G)
⊢ α⊃ [π](bAi ⊃β) from the above, by propositional logic

If, on the other hand, ⊢ α⊃ [π]¬ bAi , then we have the following sequence of derivations.
⊢ ¬ bAi ⊃ (bAi ⊃β) Propositional Logic
⊢ [π]¬ bAi ⊃ [π](bAi ⊃β) Axiom (A), Rule (G), and propositional logic
⊢ α⊃ [π]¬ bAi Assumption
⊢ α⊃ [π](bAi ⊃β) Propositional Logic

us, for all i : 1≤ i ≤ r , we have ⊢ α ⊃ [π](bAi ⊃β). Now by propositional logic and the fact
that ⊢ [π](γ ∧δ)≡ ([π]γ ∧ [π]δ), we immediately see that ⊢ α⊃ [π]((cA1 ⊃β)∧· · ·∧ (cAr ⊃β)).
It easily follows that ⊢ α⊃ [π]((cA1∨· · ·∨cAr)⊃β). But thenÓAT =cA1∨· · ·∨cAr , and by Lemma .
⊢ÓAT , so it immediately follows that ⊢ α⊃ [π]β, as desired. ⊣

e atom graph for α0

e atom graph e atom graph for α0 is defined to be F = (AT ,A ,→) where, for all A,B ∈AT and
a ∈A , A

a−→B iff bA∧ 〈a〉bB is consistent.
e atom model is given by M = (F ,V) where for each A ∈ AT , V (A) = A∩P . Given M , the

various
π−→’s for different programsπ is defined in the standard manner, as described in Subsection ..

e heart of the completeness proof is the following lemma.

Lemma . For each atom A ∈ AT and for each formula α ∈ cl, M ,A � α iff α ∈ A. In particular,
M ,A0 � α0.

Proof: e proof is by induction on the length of the formula. We precisely define the length of a
formula below. e notion is carefully defined to ensure that as many formulas in sf (α) as possible end
up having length strictly less than that of α. e notions |α| for a formula α and |π| for a programπ are
defined by simultaneous induction as follows: |p|= 1 for p ∈ P , |¬α|= |α|+1, |α∨β|= |α|+|β|+1,
|[π]α| = |π|+ |α|; |a| = 1 for a ∈ A , |π1 + π2| = |π1 · π2| = |π1|+ |π2|+ 1, |π∗| = |π|+ 1,
|α?|= |α|+ 1.

Note that the definition ensures that |[π1]α|< |[π1+π2]α| and |[π1][π2]α|< |[π1 ·π2]α|, for
instance. It can be easily checked that all appeals to the induction hypothesis in the following proof
are proper.

In what follows, we prove three claims by simultaneous induction.

(i) For each atom A∈W and for each formula α ∈ cl, M ,A� α iff α ∈A.

(ii) For any two atoms A and B , and any program π which “occurs” in α0—more formally, any π
such that [π]α ∈ cl for some α—if A

π−→B and [π]α ∈A, then α ∈ B .



(iii) For any two atoms A and B , and any program π which occurs in α0, if bA∧ 〈π〉bB is consistent
then A

π−→B .

Proof of (i)
Basis: If α= p ∈P ∩ cl, then M ,A� p iff p ∈V (A) iff p ∈A, by the definition of V .

Induction step:

α = ¬β ∈ cl: en M ,A� ¬β iff M ,A2 β iff (by the induction hypothesis) β /∈ A iff (by the fact
that A is an atom) ¬β ∈A.

α=β∨γ ∈ cl: en M ,A�β∨γ iff M ,A�β or M ,A� γ iff (by the induction hypothesis) β ∈A
or γ ∈A iff (by the fact that A is an atom) β∨ γ ∈X .

α= [π]β ∈ cl: We analyse this case in two parts:
(⇐) Suppose that [π]β ∈ A. We have to show that M ,A � [π]β. Consider any atom B such

that A
π−→B . By (ii), we know thatβ ∈ B . By induction hypothesis, M ,B �β. Since B is an arbitrary

π-neighbour of A, M ,A� [π]β, as desired.
(⇒) Suppose M ,A � [π]β. is means that for all atoms B such that A

π−→B , M ,B � β. In
other words, for all atoms B such that M ,B 2 β, it is not the case that A

π−→B . By (iii), this implies
that for all such B , ⊢ bA ⊃ [π]¬bB . By induction hypothesis on β, M ,B 2 β iff β /∈ B . us our
earlier statement is equivalent to saying that for all atoms B such that β /∈ B , ⊢ bA⊃ [π]¬bB . By the
properties of atoms, this is the same as saying that for all atoms B such that ¬β ∈ B , ⊢ bA⊃ [π]¬bB .
By propositional logic, axiom (A) and rule (G), we can see that ⊢ bA⊃ [π]¬ bU , where U is the set of
all atoms which contain ¬β. But by Lemma ., we see that ⊢ bU ≡ ¬β. erefore ⊢ bA⊃ [π]β.
But bA is a conjunction of formulas belonging to A and [π]β ∈ cl, and A is an atom, so it follows that
[π]β ∈ B , as desired.

Proof of (ii)
Basis: Suppose π= a ∈A and A and B are atoms. Let [a]α ∈A and α /∈ B . en ¬α ∈ B . Now it is
easy to see that ⊢ bA⊃ [a]α and ⊢ bB ⊃¬α. us ⊢ α⊃¬bB , and hence by rule (G), ⊢ [a]α⊃ [a]¬bB .
erefore it follows that ⊢ bA⊃ [a]¬bB . But this means that it is not the case that A

a−→B . us we see
that if A

a−→B and [a]α ∈A then α ∈ B .

Induction step:

π = π1 +π2: For any atom A, [π1+π2]α ∈ A iff [π1]α ∈ A and [π2]α ∈ A. Now A
π1+π2−→ B iff

A
π1−→B or A

π2−→B . In either case it follows from induction hypothesis that α ∈ B .

π=π1 ·π2: For any atom A, [π1 ·π2]α ∈A iff [π1][π2]α ∈A. Now A
π1·π2−→B iff there exists another

atom C such that A
π1−→C and C

π2−→B . Now by induction hypothesis it follows that [π2]α ∈C and
again by induction hypothesis it follows that α ∈ B .

π = π∗1: For any atom A, [π∗1]α ∈ A iff α ∈ A and [π1][π
∗
1]α ∈ A. Consider any atom such that

A
π∗1−→B . is means that there exists a sequence of atoms A0, . . . ,Ak (k ≥ 0) such that A=A0, B =Ak



and for all i : 0≤ i < k, Ai
π1−→Ai+1. We prove by induction that [π∗1]α ∈Ai for all i : 0≤ i ≤ k. In

particular, [π∗1]α ∈Ak = B and hence α ∈ B , as desired.
Now for the induction. Clearly [π∗1]α ∈ A0. Suppose [π∗1]α ∈ Ai . en [π1][π

∗
1]α ∈ Ai . But

since Ai
π1−→Ai+1, we can apply the induction hypothesis on

π1−→ to conclude that [π∗1]α ∈ Ai+1, as
desired.

π =β?: For any atom A, [β?]α ∈ A iff β /∈ A or α ∈ A. By applying (i) on β, β /∈ A iff M ,A2β.

Now A
β?−→B iff M ,A � β and A= B . is tells us that β ∈ A and hence it has to be the case that

α ∈A= B .

Proof of (iii)
Basis: For a ∈A , it immediately follows from the definition of

a−→ that whenever bA∧〈a〉bB , A
a−→B .

Induction step:

π = π1+π2: Suppose π1+π2 occurs in α0. We prove the desired claim in the contrapositive form.

It is not the case that A
π1+π2−→ B iff it is not the case that A

π1−→B and it is not the case that A
π2−→B . But

by induction hypothesis, this implies that ⊢ bA⊃ [π1]¬bB and ⊢ bA⊃ [π2]¬bB . It immediately follows
from Axiom (A) that ⊢ bA⊃ [π1+π2]¬bB .

π = π1 ·π2: Suppose π1 ·π2 occurs in α0. We prove the desired claim in the contrapositive form.
It is not the case that A

π1·π2−→B iff it is not the case that there exists an atom C such that A
π1−→C

and C
π2−→B . But by induction hypothesis, this implies that for all atoms C , ⊢ bA ⊃ [π1]¬ bC or

⊢ bC ⊃ [π2]¬bB . But we can appeal to Lemma . now—with bA in place of α, [π2]¬bB in place ofβ,
and π1 in place of π—and conclude that ⊢ bA⊃ [π1][π2]¬bB . But now it follows from Axiom (A)
that ⊢ bA⊃ [π1 ·π2]¬bB , as desired.

π= α?: Suppose α? occurs in α0. We prove the desired claim in the contrapositive form. It is not the
case that A

α?−→B iff it is either the case that M ,A2 α or it is the case that A ̸= B . In the first case, by
(i) applied to α, α /∈ A and hence ¬α ∈ A (A being an atom and α being in cl). erefore ⊢ bA⊃ ¬α
and, sure enough, ⊢ bA⊃ (α ⊃ ¬bB). In the second case, it is clear that there is some β ∈ A such that
¬β ∈ B . It therefore follows that ⊢ bA⊃¬bB and therefore ⊢ bA⊃ (α⊃¬bB). So in both cases it is clear
that ⊢ bA⊃ (α⊃¬bB). But by Axiom (A), this is the same as saying that ⊢ bA⊃ [α?]¬bB , as desired.

π = π∗1: Suppose π∗1 occurs in α0. We prove the desired claim in the contrapositive form. Suppose it

is not the case that A
π∗1−→B . Define U to be the set of all π1-reachable worlds from A, i.e. U = {C ∈

AT | A π∗1−→C }. Clearly B ̸= C for all C ∈ U . Now for any two distinct atoms C and D , it is easy to
see that ⊢ bC ⊃¬ bD . erefore it follows that ⊢ bU ⊃¬bB . Now suppose we prove that ⊢ bU ⊃ [π1] bU .
en it follows by axiom (A), rule (G), and propositional logic that ⊢ bU ⊃ [π∗1] bU . But ⊢ bA⊃ bU
(since A ∈ U) and ⊢ bU ⊃ ¬bB . erefore by axiom (A), rule (G) and propositional logic it follows
that ⊢ bA⊃ [π∗1]¬bB , as desired. It is only left to verify the following claim.



Claim ⊢ bU ⊃ [π1] bU .

Proof Let V = AT \ U . By Lemma ., ⊢ bU ≡ ¬ bV . us it suffices to show that
⊢ bU ⊃ [π1]¬ bV . Consider any C ∈ U and D ∈ V . en it is clear that D is not a
π1-neighbour of Y . (If it were, then by definition of U , D would also belong to U ,
which is a contradiction.) e fact that D is not a π1-neighbour of C and the induction
hypothesis on

π1−→ immediately imply that bC ∧ 〈π1〉 bD is not consistent. In other words,
⊢ bC ⊃ [π1]¬ bD . But this holds for every C ∈ U and D ∈V . us by axiom (A), rule
(G) and propositional logic, ⊢ bU ⊃ [π1]¬ bV , and the claim follows.

is completes the proof of Lemma ., and hence of Lemma .. ⊣
Once we have proved Lemma ., we immediately obtain a proof of completeness (Corollary .)

using exactly the same argument as in propositional logic. Note that we not only have completeness
but also the small model property for dynamic logic, as follows: whenever α is satisfiable it is consistent
(by soundness), whence it is satisfied in the atom model for α (which is of size at most 22·|α|2). us we
also see that the satisfiability problem for dynamic logic is decidable.



 First-Order Logic
Consider typical structures which we come across in mathematics and computer science—graphs,
groups, monoids, rings, fields, A graph, for instance, is a set of vertices with a binary relation
on this set which defines the edges. A group is a set equipped with a special constant (identity) and
a binary function on the set which is associative. In general, all these structures consist of an under-
lying set of elements together with relations and functions defined over this set which satisfy certain
properties.

First-order logic provides a natural framework for talking about such structures. In first-order logic,
we begin by fixing abstract symbols to denote relations, functions and constants. ese can then be
combined using the usual propositional connectives built up from ¬ (not) and ∨ (or). In addition,
first-order logic provides the means to quantify over elements in the structure—we have the existential
quantifier ∃ (read as “there exists”) and its dual, the universal quantifier ∀ (read as “for all”). e logic
also has the symbol ≡, denoting equality, as a primitive construct.

Defining the precise syntax and semantics of first-order logic is a little more involved than for
propositional or modal logics. Before getting into the details, let us look at an informal example.

Groups in first-order logic As we know, a group is a structure (G,+, 0) where G is a set, 0 ∈ G is a
special element called the identity and + : G ×G → G is a binary operation such that the following
properties hold:

• e operation + is associative.

• e constant 0 is a right-identity for the operation +.

• Every element in G has a right-inverse—that is, for each x ∈ G we can find another element
y ∈G such that x + y = 0.

To formalise this in first-order logic, we have to first fix the symbols in the language. We choose
a function symbol op which takes two arguments and a constant symbol ϵ. We can then write the
following formulas.

(G) ∀x∀y∀z op(op(x, y), z)≡ op(x,op(y, z))

(G) ∀x op(x,ϵ)≡ x

(G) ∀x∃y op(x, y)≡ ϵ
e “first” in first-order logic refers to the limitation placed on the quantifiers. In first-order logic, we can only quantify

over single elements of the underlying set. In second-order logic, we can quantify over functions and relations. In third-order
logic we can quantify over sets of function etc.

We use ≡ in the logical language rather than = to avoid any confusion between syntactic references to equality and
“real” equality over sets.



To assign meaning to these formulas, we fix a set S and map the symbol op to a binary function
f on S and ϵ to an element s of S . e symbol ≡ is assumed to be interpreted as equality over the
set S . e formula (G) then captures the fact that the function f denoted by op is associative. e
next formula expresses that the element s denoted by ϵ acts as a right identity for the function f . e
last formula postulates the existence of a right inverse for each element in S . If the set S , the function
f assigned to op and the element s assigned to ϵ “satisfy” the formulas (G)–(G), we say that the
structure (S, f , s) is a model for (G)–(G). It should be clear that any model (S, f , s) of (G)–(G) is
in fact a group. Conversely, any group (G,+, 0) can be made a model of (G)–(G) by assigning + to
be the function denoted by op and 0 to be the element denoted by ϵ. us, in a precise logical sense,
the formulas (G)–(G) describe groups: a structure (S, f , s) is a group iff it is a model of (G)–(G).

Our goal is to explore the extent to which first-order logic can capture properties of mathematical
structures. While several properties can be naturally described in the logic, we shall see that various
useful properties cannot. In the process of arriving at these results, we shall formally analyse first-order
logic as we have done other logics so far—we shall explore issues such as compactness, completeness
and decidability.

. Syntax
First-order languages To define the formulas of first-order logic, we have to first fix the underlying
language. A first-order language is a triple L = (R, F ,C) where R = {r1, r2, . . .} is a countable set of
relation symbols, F = { f1, f2, . . .} is a countable set of function symbols and C = {c1, c2, . . .} is a countable
set of constant symbols. Each symbol r ∈ R and f ∈ F is associated with an arity, denoted #(r) or #(f),
indicating how many arguments the symbol takes. We also fix a countable set Var = {v1, v2, . . .} of
variables. We shall use x, y, z, . . . to denote typical elements of Var.

e set of first-order formulas over a first-order language L is built up from atomic formulas using
the propositional connectives ¬ and ∨ and the existential quantifier ∃. To define atomic formulas, we
first have to define the terms of the language L.

Terms Let L= (R, F ,C) be a first-order language. e set of terms over L is the smallest set satisfying
the following conditions:

• Every constant symbol c ∈C is a term.

• Every variable x ∈Var is a term.

• Let t1, t2, . . . , tn be terms over L and let f ∈ F be a function symbol of arity n . en f (t1, t2, . . . , tn)
is a term.

A term which does not contain any variables is called a closed term. Notice that if L contains no
function symbols, then the only terms over L are constants from C and variables from Var.

Notice that though we normally write the group operation+ in infix notation as x+ y, it is just a binary function and
can just as well be written +(x, y).



As we described before in an informal way, to define the semantics of first-order logic we have to
fix a structure with respect to which the formulas of the language are interpreted. is interpretation
will map each term to a unique element of the set underlying the structure. It is helpful to think of
terms as the “names” which we can generate within L to talk about elements in the structure we are
interested in.

Atomic formulas Let L= (R, F ,C) be a first-order language. e atomic formulas over L are defined
as follows:

• Let r ∈ R be a relation symbol of arity n and let t1, t2, . . . , tn be terms over L. en, r (t1, t2, . . . , tn)
is an atomic formula.

• Let t1 and t2 be terms over L. en, t1 ≡ t2 is an atomic formula.

Atomic formulas play the role of atomic propositions in propositional logic. e first type of atomic
formula asserts that the n-tuple denoted by 〈t1, t2, . . . , tn〉 is part of the relation denoted by r while
the second type of atomic formula asserts that two different terms t1 and t2 are in fact just different
“names” for the same element. Both these types of statements can be unambiguously labelled as true or
false once we have fixed a structure and the interpretation of the symbols in the language within that
structure.

Formulas Having defined the atomic formulas, we can then define ΦL, the set of first-order formulas
over L. e set ΦL is the smallest set satisfying the following conditions:

• Every atomic formula over L belongs to ΦL.

• If φ ∈ ΦL then ¬φ ∈ ΦL.

• If φ,ψ ∈ ΦL then φ ∨ψ ∈ ΦL.

• If φ ∈ ΦL and x ∈Var, then ∃x φ ∈ ΦL.

As usual, we may use parentheses to disambiguate the structure of a formula. We can define derived
propositional connectives ∧, ⊃ and ≡ using ¬ and ∨ in the standard way. In addition, we define the
dual of ∃ as follows:

∀x φ def= ¬∃x ¬φ

. Semantics
As we saw informally earlier, to give meaning to a first-order formula over a language L = (R, F ,C),
we have to fix a set S and assign a relation over S to each relation symbol in R, a function over S to
each function symbol in F and an element of S to each constant symbol in C .



First-order structures Let L= (R, F ,C) be a first-order language. A first-order structure for L is a pair
M = (S, ι) where S is a non-empty set and ι is a function defined over R∪ F ∪C such that:

• For each relation symbol r ∈ R with #(r) = n, ι(r) is an n-ary relation over S—that is, ι(r)⊆
Sn .

• For each function symbol f ∈ F with #(f) = n, ι(f) is an n-ary function over S—that is,
ι(f) : Sn→ S .

• For each constant symbol c ∈C , ι(c) is an element of S—that is, ι(c) ∈ S .

For convenience, we often denote ι(r), ι(f) and ι(c) by rM , f M and cM respectively. We also
refer to a first-order structure for L as an L-structure.

Once we define a first-order structure, we fix the meaning of the symbols in the first-order language.
However, we also have to assign meanings to the variables in Var. Once this is done, we can assign
meaning to all formulas in the language.

Interpretation Let L= (R, F ,C) be a first-order language. An interpretation of L is a pairI = (M ,σ)
whereM = (S , ι) is a first-order structure for L and σ : Var→ S is an assignment of elements of S to
variables in Var. In informal usage, we say that an interpretation or a structure has a certain cardinality
when we mean that the associated underlying set has that cardinality.

Let σ : Var → S be an assignment. We denote by σ[x1 7→ s1, x2 7→ s2, . . . , xn 7→ sn] the
modified assignment σ ′ where σ ′(xi) = si for i ∈ {1,2, . . . , n} and σ ′(z) = σ(z) for all variables
z /∈ {x1, x2, . . . , xn}. For an interpretation I = (M ,σ), we use I [x1 7→ s1, x2 7→ s2, . . . , xn 7→ sn] to
denote the modified interpretation (M ,σ[x1 7→ s1, x2 7→ s2, . . . , xn 7→ sn]).

We mentioned earlier that terms are names for elements in the structure. We can now make this
statement precise. Once we fix an interpretation I , each term t over L maps to a unique element tI
of S . Let I = (M ,σ) whereM = (S, ι). en:

• If t is a constant c ∈C , tI = cM .

• If t is a variable x ∈Var, tI = σ(x).

• If t is of the form f (t1, t2, . . . , tn) where f ∈ F , then tI = f M (tI1 , tI2 , . . . , tIn).

Satisfaction relation Let L = (R, F ,C) be a first-order language and let I be an interpretation for
L. e notion of a formula φ ∈ ΦL being satisfied under the interpretation I = (M ,σ) is denoted
I � φ and is defined as follows:

• I � t1 ≡ t2 if tI1 = tI2 .

• I � r (t1, t2, . . . , tn) if (t
I
1 , tI2 , . . . , tIn) ∈ rM .

• I � ¬φ if I 2 φ.

• I � φ ∨ψ if I � φ or I �ψ.

• I � ∃x φ if there is an element s ∈ S such that I [x 7→ s] � φ.



Exercise . Verify that the semantics of ∀x φ is as follows:

I � ∀x φ if for each element s ∈ S, I [x 7→ s] � φ.

⊣

As usual, we say that a first-order formula φ ∈ ΦL is satisfiable if there is an interpretation I based
on an L-structureM such that I � φ. Similarly, a formula φ ∈ ΦL is valid if for every L-structure
M and every interpretation I based onM , I � φ. A model of φ is an interpretation satisfying φ.

Bound and free variables Before looking at examples of how to describe properties of structures in
first-order logic, let us look closer at the role that variables play in defining the meaning of a formula.

As we saw above, we need to augment an L-structureM with an assignment σ in order fully specify
the meaning of formulas. In principle, σ fixes a value for all variables in Var. However, for a fixed
formula φ, we only need to know the values fixed by σ for those variables mentioned in φ.

More precisely, we only need σ to fix values of variables which are not “quantified” within φ. In a
formula of the form ∃x ψ or ∀x ψ, the value assigned by σ to x is irrelevant in fixing the meaning of
the overall formula—the semantics of the quantifiers forces us to look at all possible assignments for x
in order to give meaning to the formula.

Formally, in a formula of the form ∃x ψ the scope of the quantifier ∃x is the formula ψ. We say
that a variable x is free in φ if it does not occur within the scope of a quantifier ∃x . Otherwise, x is
said to be bound. For a formula φ, the set of free variables of φ, denoted FV (φ), is defined inductively
as follows:

• If φ is an atomic formula r (t1, t2, . . . , tn), FV (φ) is the set of variables which are mentioned in
{t1, t2, . . . , tn}.

• If φ is an atomic formula t1 ≡ t2, FV (φ) is the set of variables which are mentioned in {t1, t2}.
• FV (¬φ) = FV (φ).

• FV (φ ∨ψ) = FV (φ)∪ FV (ψ).

• FV (∃x φ) = FV (φ) \ {x}.
In the rest of the notes, we often writeφ(x1, x2, . . . , xk) to denote the fact that FV (φ)⊆ {x1, x2, . . . , xk}.
e following proposition, analogous to Proposition . of Propositional Logic, formalises the fact

that the meaning of a formula does not depend on that portion of the assignment which lies outside
its set of free variables.

Proposition . Let L be a first-order language and φ ∈ ΦL. LetM be an L-structure and σ ,σ ′ be a
pair of assignments which agree on FV (φ). en (M ,σ) � φ iff (M ,σ ′) � φ.

In other words, to give meaning to a formula φ(x1, x2, . . . , xn), it is sufficient to fix a structureM
and an assignment for the variables x1, x2, . . . , xn which are potentially free in φ, rather than specifying
an assignment σ over all variables. us, we can write (M ,[x1 7→ s1, x2 7→ s2, . . . , xn 7→ sn]) � φ to
indicate that (M ,σ) � φ for every assignment σ which assigns xi the value si for i ∈ {1,2, . . . , n}.



Sentences A sentence is a first-order formula with no free variables. e formulas (G)–(G) which we
wrote earlier to describe properties of groups are all sentences. From the preceding discussion, it is clear
that the meaning of a sentence is fixed once we fix an L-structure for the language L—assignments play
no role in defining the meaning of a sentence.

Corollary . Let L be a first-order language and φ ∈ ΦL a sentence. LetM be an L-structure and σ ,σ ′
any pair of assignments. en, (M ,σ) � φ iff (M ,σ ′) � φ.

In other words, for a sentence φ and an L-structureM it makes sense to directly writeM � φ. As
usual, if X is a set of sentences, we writeM �X to denote thatM � φ for each sentence φ ∈X ..

Logical consequence We formalise the notion of logical consequence in first-order logic in the same
way that we have for propositional logic. Let X be a set of first-order sentences over L. We say that a
sentence φ is a logical consequence of X , denoted X � φ, if it is the case that for every structureM , if
M �X thenM � φ.

us, for instance, the first-order formulas which are valid over all groups are just those formulas
which are logical consequences of the sentences (G)–(G) which we used to characterise groups.

We end this section with some notation about variables and some assumptions about substitution.
Given a formula φ(x1, x2, . . . , xn), where {x1, x2, . . . , xn} ⊆ FV (φ), and terms t1, t2, . . . , tn, the formula
φ(x1, x2, . . . , xn)[x1 7→ t1, x2 7→ t2, . . . , xn 7→ tn] is obtained by substituting uniformly for xi by ti in
φ for i ∈ {1,2, . . . , n}. In the process, it may be that a variable in one of the terms ti accidentally
“intrudes” into the scope of a quantifier in φ. For instance, consider the formula φ(x) = ∃y ¬(x ≡ y)
and t = y. If we blindly substitute x by t , we end up with the formula ∃y ¬(y ≡ y), which is clearly
not what was intended. In such cases, we assume that the bound variables in φ are renamed to avoid
clashes—in the preceding example, ∃y ¬(x ≡ y) [x 7→ y] would result in a formula of the form
∃z ¬(y ≡ z). We shall not go into the precise definition of this renaming operation, but it should be
intuitively clear from the example. Henceforth, we implicitly assume that such renaming is performed
whenever we substitute a term for a free variable in a formula. We frequently abbreviate the formula
φ(x1, x2, . . . , xn)[x1 7→ t1, x2 7→ t2, . . . , xn 7→ tn] as φ(t1, t2, . . . , tn).

. Formalisations in first-order logic
We have seen, informally, how to represent groups in terms of first-order logic. Now that we have the
precise syntax and semantics of the logic in place, let us look at some more examples of how to describe
properties of structures in the logic.

Groups revisited

As we saw earlier, the three sentences (G)–(G) characterize groups, in the sense that any structure
M = (S, f , s) which is a model for (G)–(G) defines a group over the set S with group operation f
and identity s .



In groups, the cancellation law holds. is says that for any three elements x, y, z in the group, if
x ◦ z = y ◦ z , then x = y. Recall that the language we chose for groups consisted of a binary function
symbol op and a constant ϵ. In this language, the cancellation law can be stated as follows:

φc
def= ∀x ∀y ∀z (op(x, z)≡ op(y, z)⊃ x ≡ z)

Since the cancellation law φc holds in all groups, we would expect that (G1), (G2), (G3) � φc .
An element g in a group (G,+, 0) such that g ̸= 0 and g + g + · · ·+ g︸ ︷︷ ︸

n times

= 0 is said to be of order

n. We can formulate the fact that a group has no elements of order two as follows:

ψ
def= ¬∃x (¬(x ≡ ϵ)∧ op(x, x)≡ ϵ)

In other words, ifM = (S , f , s) is a model for (G)–(G) andM �ψ, thenM is a group which has
no elements of order two.

An abelian group is one in which the group operation is commutative. is is simple to state:

(Ab) ∀x ∀y op(x, y)≡ op(y, x)

us, the set of sentences {(G1), (G2), (G3), (Ab)} characterize abelian groups.
Lest we get the impression that all interesting properties of groups can be captured easily in first-

order logic, let us consider torsion groups. A group (G,+, 0) is said to be a torsion group if every
element of G has finite order—that is, for each g ∈ G, there is a natural number n ≥ 1 such that
g + g + · · ·+ g︸ ︷︷ ︸

n times

= 0. To formalize this in a “natural way”, we would have to write a formula of the

form
∀x (x ≡ ϵ∨ op(x, x)≡ ϵ∨ op(op(x, x), x)≡ ϵ∨ · · ·)

is is an infinite formula and is not permitted by our syntax. We shall show later that we cannot
capture this property in first-order logic, even if we are permitted an infinite set of formulas to replace
this single formula of infinite width.

Equivalence relations
Let r be a binary relation symbol in the language. We can force r to be interpreted as an equivalence
relation through the following three sentences.

• ∀x r (x, x)

• ∀x ∀y (r (x, y)≡ r (y, x))

• ∀x ∀y ∀z ((r (x, y)∧ r (y, z))⊃ r (x, z))

It should be clear that in any structureM , these three sentences would force rM to be reflexive,
symmetric and transitive.



Order

Ordered structures occur frequently in mathematics. A strict linear order < over a set S is a non-empty
binary relation which is irreflexive and transitive and which has the property that any two distinct
elements in S are related by <. For instance, the less-than ordering over the set of natural numbers is
a strict linear order.

Using the same symbol < to denote the ordering relation within our language, we can axiomatise
linear order using the following sentences.

• ∀x ¬(x < x)

• ∀x ∀y ∀z ((x < y ∧ y < z)⊃ x < z)

• ∀x ∀y (x < y ∨ x = y ∨ y < x)

Fields

Recall that a field is a structure (F ,+, ·, 0, 1) where:

• (F ,+, 0) is an abelian group.

• · is a associative, commutative operation over F with identity 1 such that 0 ̸= 1 and every element
other than 0 has a right-inverse with respect to ·.

• e operation · distributes over the operation +.

Exercise . Using a first-order language with two binary function symbols and two constants, ax-
iomatise fields. ⊣

Questions of cardinality
We can make assertions about the size of structures in first-order logic. Consider the sentence

φ≥2
def= ∃x ∃y ¬(x ≡ y)

Clearly, any structure which models φ≥2 must have at least two distinct elements in the underlying set.
We can easily generalize this formula to φ≥n for any natural number n as follows:

φ≥n
def= ∃x1∃x2 · · · ∃xn

∨
i ̸= j

¬(xi ≡ x j)

Conversely, the negation ¬φ≥2 = ∀x ∀y (x ≡ y) asserts that the underlying structure has at most
one element. (In fact, since we only deal with non-empty structures, ¬φ≥2 asserts that the structure
has exactly one element).



We can thus combine formulas of the form φ≥n and ¬φ≥m to tightly bound the range of elements
in the structure.

Alternatively, we can use the infinite family of sentences {φ≥2,φ≥3, . . .} to specify that the structure
we are interested is not finite.

Modal logic as a fragment of first-order logic
As a final example of formalisation in first-order logic, let us look at how to embed modal logic within
first-order logic. In order to achieve this, we have to show how to translate models and formulas of
modal logic into first-order logic in such a way that a model M = (F ,V) satisfies a formula α iff the
structureM corresponding to M satisfies the formula α̂ corresponding to α.

Let P = {p0, p2, p2, . . .} be the set of atomic propositions which are used in defining the for-
mulas of modal logic. e first-order language L which we use to embed formulas over P will
have a binary relation symbol r , to describe the underlying modal frame, and unary relation sym-
bols {P0, P1, P2, . . .} to describe the valuation. us, an L-structureM would consist of a set S , which
constitute the “possible worlds”, together with a relation rM , describing the accessibility relation, and
subsets PM0 , PM1 , PM2 , . . . describing the valuations V (p0),V (p1),V (p2),

We inductively define a translation {α 7→ α̂(x)}, where x is a variable, for all modal logic formulas
over P as follows:

• For pi ∈P , p̂i (x)
def= Pi (x), where x is a variable.

• If α= ¬β, then α̂(x) def= ¬β̂(x).
• If α=β∨ γ , then α̂(x) def= β̂(x)∨ γ̂ (x).
• If α=�β, then α̂(x) def= ∀y (r (x, y)⊃ β̂(y)).

Proposition . Let α be a modal logic formula over P . en, α is satisfiable iff α̂(x) is first-order
satisfiable.

Proof: (⇒) Suppose that M = (F ,V), with F = (W , R) such that for w ∈W , M , w � α. We use
W as the underlying set of our structureM and set rM = R and PMi =V (pi) for each pi ∈P . We
can then establish that (M ,[x 7→ w]) � α̂(x) by induction on the structure of α.

For brevity, we only consider one case in detail, when α is of the form �β. Recall that α̂(x) is
then given by ∀y (r (x, y) ⊃ β̂(y)). Since M , w � �β, we know that for all elements w ′ ∈W such
that w R w ′, M , w ′ �β. From the induction hypothesis and the fact that rM = R, it follows that for
each y such that [y 7→ w ′] and w R w ′, (M ,[y 7→ w ′]) � β̂(y). From the semantics of the universal
quantifier, it then follows that (M ,[x 7→ w]) � α̂(x).
(⇐) Conversely, suppose that there is a structureM based on a set S such that for some s ∈ S ,

(M ,[x 7→ s]) � α̂(x). We must show that α is satisfiable. We fix our frame to be (S, rM) and for each
pi ∈ P , we fix V (pi) = PMi . Once again, by induction on the structure of α, we can establish that
M , s � α. We omit the details. ⊣



Our translation from modal logic to first-order logic allows us to reduce some questions about
modal logic to the framework of modal logic. For instance, by the preceding proposition, questions
about the satisfiability or validity of a formula α in modal logic can be phrased in terms of the first-order
satisfiability or first-order validity of the corresponding formula α̂(x).

We can even reduce more sophisticated questions to first-order logic. For instance, if we want
to check whether a formula α is satisfiable over a frame whose accessibility relation is an equivalence
relation, we can check the simultaneous satisfiability of α̂(x) along with the three first-order sentences
we saw earlier which capture the fact that the relation r is an equivalence relation. In general, questions
about “relativised satisfiability” can be reduced to first-order logic whenever the properties demanded
of the accessibility relation can be captured using first-order sentences.

We can even talk about satisfiability with respect to classes of frames which cannot be axiomatised
in modal logic—for instance, the sentence ∀y (¬r (y, y)) describes the class of irreflexive frames, which
cannot be described in modal logic. In other words, the formula ∀y (¬r (y, y))∧ α̂(x) is satisfiable iff
α is satisfiable over an irreflexive frame.

e disadvantage with reducing questions about modal logic to first-order logic is that first-order
logic is too powerful from a computational point of view—for instance, we shall observe later that
satisfiability is undecidable for first-order logic. On the other hand, we showed that for many systems
of modal logic, satisfiability is in fact decidable.

Exercise . Let L be a finite first-order language and letM be a finite L-structure. Show that there
is an L-sentence φM the models of which are precisely the L-structures isomorphic toM . ⊣

Exercise .

(i) Let L = {+,×, 0} where + and × are binary function symbols and 0 is a constant symbol.
Consider the L-structure (R,+,×, 0), where R is the set of real numbers with the conventional
interpretation of +, × and 0 as addition, multiplication and zero.

Show that the relation < (”less than”) is elementary definable in (R,+,×, 0)—that is, there is a
formula φ(x, y) over L such that for all a, b in R, ((R,+,×, 0),[x 7→ a, y 7→ b]) � φ(x, y) iff
a < b .

(ii) Let L= {+, 0}. Show that the relation < is not elementary definable in (R,+, 0).

(Hint: Work with a suitable automorphism of (R,+, 0)—that is, a suitable isomorphism of
(R,+, 0) onto itself). ⊣

Exercise . Let L = {r }, where r is a binary relation. Formalize the following notions using sen-
tences over L.

(i) r is an equivalence relation with at least two equivalence classes.



(ii) r is an equivalence relation with an equivalence class containing more than one element. ⊣

Exercise . A set M of natural numbers is called a spectrum if there is a language L and a sentence φ
over L such that

M = {n | φ has a model containing exactly n element}
Show that:

(i) Every finite subset of {1,2,3, . . .} is a spectrum.

(ii) For every m ≥ 1, the set of numbers greater than  which are divisible by m is a spectrum.

(iii) e set of squares greater than  is a spectrum.

(iv) e set of nonprime numbers greater than  is a spectrum.

(v) e set of prime numbers is a spectrum. ⊣

. Satisfiability: Henkin’s reduction to propositional logic
When is a set X ⊆ ΦL of sentences in a first-order language L satisfiable—in other words, when can
we find an L-structureM such that for each φ ∈ X ,M � φ? Henkin proposed a solution to this
question which essentially reduces the problem to one of satisfiability in a propositional framework.

For the rest of this discussion, we assume that we are working with a fixed first-order language
L= (R, F ,C).

Let r be a binary relation symbol in L and t1, t2 be a pair of terms. It is immediate that the formula
r (t1, t2)∧¬(r (t1, t2)) is not satisfiable—we can treat r (t1, t2) as an atomic proposition and recognize
that this is an instance of an unsatisfiable propositional formula. How about a formula of the form
∀x r (x, t2) ∧ ¬∃x r (x, t2)? Since we assumed that all structures are non-empty, we can check that
this, too, is not satisfiable. However, there is no immediate way to represent this as an unsatisfiable
propositional formula.

Henkin’s approach is the following. Expand the language L by adding new constants. Use these
new constants to define a special set of formulas and, using this set, blow up the given set X of formulas
whose satisfiability we want to check into a larger set X ′ such that X is satisfiable iff X ′ is satisfiable.
Show that X ′ is such that its satisfiability can be deduced from its “propositional structure”.

We begin by defining a notion of “atomic proposition” with respect to first-order formulas.

Prime formulas A prime formula over L is an atomic formula or a formula which begins with the
quantifier ∃. Let PL be the set of prime formulas over L.



Example . In the formula ∃x r (x)∨ t1 ≡ t2, the prime formulas are ∃x r (x) and t1 ≡ t2. In the
formula ∀x s (x)⊃ ∃x s (x), after rewriting ∀ in terms of ∃, we have two prime formulas—∃x ¬s(x)
and ∃x s (x).

Observe that every formula in ΦL can be constructed from prime formulas using the propositional
connectives¬ and∨. e idea is to treat each distinct prime formula as an independent atomic proposi-
tion and deduce the satisfiability of a set X ⊆ ΦL from the propositional structure of its prime formulas.

Propositional satisfiability We say a formula φ ∈ ΦL is propositionally satisfiable if there is a valuation
v :PL→ {⊤,⊥} such that the prime formula structure of φ evaluates to ⊤ under v . An L-tautology
is a formula in ΦL which evaluates to ⊤ for every propositional valuation to the prime formulas PL.

Example . e formula ∃x r (x) ∨ t1 ≡ t2 is propositionally satisfiable. We can assign either
prime formula (or both) independently to ⊤ to satisfy this formula. On the other hand, the formula
∃x r (x) ∧ ¬∃x r (x) is not propositionally satisfiable—the formula is built up from a single prime
formula and has the structure p ∧¬p .

e formulas ∃x r (x)∨¬(∃x r (x)) is a tautology over L—the formula is built up from a single
prime formula and has the structure p ∨¬p . Another example of a tautology over L is the formula,
∃x r1(y)⊃∀y r2(y)∨∃x r1(x), which is of the form p ⊃ q ∨ p.

Proposition . Let I be an L-interpretation. ere exists a valuation v of PL such that for each
formula φ, I � φ iff v � φ.
Proof: For each prime formula ψ, define v(ψ) = ⊤ if I � ψ and v(ψ) = ⊥ otherwise. Since each
first-order formula can be built up from prime formulas using the connectives ¬ and ∨, the result
follows. ⊣

Corollary . Let X ⊆ ΦL be a set of formulas. If X is first-order satisfible, then X is propositionally
satisfiable.

e converse of the preceding Corollary is false. Consider the following examples.

Example . e set {c ≡ d , d ≡ e ,¬(c ≡ e)} is propositionally satisfiable—we can fix a valuation
which maps the prime formulas c ≡ d and d ≡ e to ⊤ and c ≡ e to ⊥. However, it is clearly not
first-order satifiable.

e set of formulas {∀x (r (x) ⊃ s(x)),∀x r (x),∃x ¬s(x)}, is propositionally satisfiable—once
again, the three formulas in the set are made up of different prime formulas whose truth value can be
assigned independently to make the whole set propositionally true. However, this set is not first-order
satisfiable.

e preceding examples show that the prime formula structure of ΦL does not accurately capture
the effect of the equality relation and the role played by quantifiers in the semantics of first-order logic.
Henkin’s solution is to add extra formulas which “tie together” formulas connected by the equality
relation and quantifiers so that the truth of one formula is linked to the truth of the other.



For instance, if we augment the set {c ≡ d , d ≡ e ,¬(c ≡ e)} with the formula {(c ≡ d)∧ (d ≡
e)⊃ (c ≡ e)}, the set is no longer propositionally satisfiable. e new formula links the truth value of
the prime formulas c ≡ d and d ≡ e to that of c ≡ e . Clearly the formula we have added is true in any
structure, so it has not altered the first-order satisfiability of the original set.

Similarly, consider the second example {∀x (r (x) ⊃ s(x)),∀x r (x),∃x ¬s (x)}, which may be
rewritten as {¬∃x (r (x)∧¬s (x)),¬∃x ¬r (x),∃x ¬s(x)}.

If a sentence of the form ∃y φ(y) is satisfied in a structure, we can use a term t to denote the “wit-
nessing” element where φ holds. With this intended interpretation of t , we can append the sentence
∃y φ(y)⊃ φ(t) to the set containing ∃y φ(y) without affecting its satisfiability.

Similarly, a sentence of the form ¬∃y φ(y) is satisfiable just in case ¬φ(t) holds for every term t .
us, we can expand a set of formulas containing ¬∃y φ(y) by a sentence ¬∃y φ(y)⊃ ¬φ(t), where
t is an arbitrary term, without affecting satisfiability.

If we apply this reasoning to the set {¬∃x (r (x)∧¬s (x)),¬∃x ¬r (x),∃x ¬s (x)}, we first identify a
term t to witness the formula ∃x ¬s (x) and add the formula ∃x ¬s(x)⊃¬s (t) to the set. Applying the
rule for ¬∃y φ(y) to the other two formulas, we can then add ¬∃x (r (x)∧¬s(x))⊃¬(r (t)∧¬s(t))
and ¬∃x ¬r (x) ⊃ ¬¬r (t) to the set. A valuation which satisfies the three original formulas in the
set must now also make the set {¬(r (t) ∧ ¬s(t)),¬¬r (t),¬s(t)} true. is simplifies to {¬r (t) ∨
s(t), r (t),¬s(t)}, which is not propositionally satisfiable. In other words, the expanded set is not
propositionally satisfiable, which reflects the fact that the original set of three formulas was not first-
order satisfiable.

Adding equality formulas, as we did in the first example, is not a problem. However, in the second
case, we need to have a term to denote the witnessing element for each sentence ∃y φ(y) in our set.
It may be the case that the original language L does not have enough terms to cover all existential
sentences of this form! In general, we have to expand the language in order to ensure that we do not
run out of terms.

e Witnessing Expansion of L

Let L = (R, F ,C) be the original language, with X ⊆ ΦL the set of sentences whose satisfiability we
want to establish. We shall systematically add new constants to L in order to ensure that we have
enough terms in the language to “name” all witnessing elements for existential sentences. Formally, we
inductively define new sets of constants C0,C1, . . . as follows:

• Let C0 = ; and let L0 = L.

• Assume we have defined Cn . Let Ln = (R, F ,C ∪C1 ∪C2 ∪ · · · ∪Cn). For each formula φ(x)
of ΦLn

\ΦLn−1
, with exactly one free variable x, let cφ(x) be a new constant, called the witnessing

constant of the sentence ∃x φ(x).
Let Cn+1 be the set of such constants generated by ΦLn

\ΦLn−1
.

Let CH =
∪

i≥0 Ci and let LH = (R, F ,C ∪CH).



Henkin and quantifier axioms

• e Henkin axioms are sentences over LH of the form ∃x φ(x)⊃ φ(cφ(x)).
• e quantifier axioms are sentences over LH of the form φ(t) ⊃ ∃x φ(x), where t is a closed

term over LH .

It is clear that the quantifier axioms are true in any structure and are hence first-order valid. On
the other hand, the Henkin axioms are not automatically true—we need to ensure that the witnessing
constants are interpreted properly in the structure in order for the axioms to be true.

Let ΦH denote the set of all instances of the Henkin axiom and ΦQ denote the set of all instances
of the quantifier axiom over the language LH .

e equality axioms

Adding the equality axioms is easier. Let LH be the witnessing expansion of L. To ensure that our
propositional valuations respect the notion of equality, we define the following set of axioms capturing
properties of equality. e equality axioms are all instances of the following, where t , u, v with or
without subscripts are uniformly substituted by arbitrary terms over LH , f is an arbitrary n-ary function
symbol in L and r is an arbitrary n-ary relation symbol in L.

t ≡ t
t ≡ u ⊃ u ≡ t

(t ≡ u ∧ u ≡ v) ⊃ t ≡ v
(t1 ≡ u1 ∧ t2 ≡ u2 ∧ · · · ∧ tn ≡ un) ⊃ (f (t1, t2, . . . , tn)≡ f (u1, u2, . . . , un))
(t1 ≡ u1 ∧ t2 ≡ u2 ∧ · · · ∧ tn ≡ un) ⊃ (r (t1, t2, . . . , tn)⊃ r (u1, u2, . . . , un))

Let ΦE q denote all instances of the equality axioms over LH . Notice that though these axioms are
not, in general, sentences, each formula in ΦE q is satisfied in every interpretation of LH ,

We now have the following lemma, which shows that satisifiability in first-order logic can be reduced
to a similar question in propositional logic.

Lemma . (First-order satisfiability) Let L be a first-order language and let LH be the witnessing
expansion of L. For any set X of formulas over L, the following are equivalent:

(i) ere is an L-interpretation I = (M ,σ) which is a model for X .

(ii) ere is an LH -interpretation (M ,σ) which is a model for X .

(iii) X ∪ΦH ∪ΦQ ∪ΦEq is propositionally satisfiable.



Proof: e fact that (i) implies (iii) is easily proved. Let I = (M ,σ) be an L-interpretation which
is a model for X , whereM = (S, ι). Define an LH -interpretation I ′ = ((S , ι′),σ), where ι′ is defined
on constants as follows: ι′(c) = ι(c) for c ∈ C ; for cφ(x) ∈ CH , ι(cφ(x)) = o ∈ S such that I � φ(o) if
M � ∃x φ(x) and o is arbitrary otherwise. It is clear that I ′ � X ∪ΦH ∪ΦQ ∪ΦEq . It follows now
from Proposition . that X ∪ΦH ∪ΦQ ∪ΦEq is propositionally satisfiable.

at (ii) implies (i) is immediate. e details are left as an exercise.
So, what remains is to establish that (iii) implies (ii). In other words, if there is a valuation v of

the prime formulas over LH such that v � X ∪ ΦH ∪ ΦQ ∪ ΦEq , we must be able to construct an
interpretation I = (M ,σ) whereM = (S, ι), such that I �X . We will in fact show that I has the
property that for every formula φ over LH , I � φ iff v � φ.

e main function of ΦH is to ensure that if v � ∃x φ(x), then v � φ(cφ(x)) for every existential
sentence ∃x φ(x) over LH .

To define I , we must

(a) Define the underlying set S .

(b) Fix an interpretation rM ⊆ Sn for each n-ary relation symbol r in LH .

(c) Fix an interpetation f M : Sn→ S for each n-ary function symbol f in LH .

(d) Fix an interpretation cM ∈ S for each constant symbol c in LH .

(e) Fix an assignment σ .

e construction ofM is as follows.

(a) Let LH = (R, F ,C ∪CH). To fix S , we define an equivalence relation ≃ on terms over LH by

t ≃ u iff v � t ≡ u

e equality axioms guarantee that≃ is in fact an equivalence relation. For instance, let us show
that ≃ is transitive. Suppose that t ≃ u and u ≃ w. As an instance of the third equality axiom
we have t ≡ u∧ u ≡ w ⊃ t ≡ w. Since v � ΦEq , it must be the case that v � t ≡ u∧ u ≡ w ⊃
t ≡ w. Since t ≃ u and u ≃ w, v � t ≡ u and v � u ≡ w . Hence v � t ≡ w as well, which
means that t ≃ w as required. For each constant symbol t , let [t] denote the equivalence class
containing t . We define S to be the set {[t] | t is a term over LH}.

(b) Let r be an n-ary relation symbol. Fix rM = {〈[t1],[t2], . . . ,[tn]〉 | v � r (t1, t2, . . . , tn)}. To
check that this is well-defined, we must verify that whenever t1 ≃ u1, t2 ≃ u2, . . . , tn ≃ un and
v � r (t1, t2 . . . , tn) then v � r (u1, u2 . . . , un) as well. As an instance of the last equality axiom,
we have

t1 ≡ u1 ∧ t2 ≡ u2 ∧ · · · ∧ tn ≡ un ⊃ (r (t1, t2 . . . , tn)⊃ r (u1, u2 . . . , un))

Since ti ≃ ui for i ∈ {1,2, . . . , n}, we have v � ti ≡ ui for i ∈ {1,2, . . . , n}. We also know
that v � r (t1, t2, . . . , tn). Since v � ΦEq , it must then be the case that v � r (u1, u2, . . . , un) as
required.



(c) Let t1, . . . , tn be terms over LH and f an n-ary function symbol in F . We define f M ([t1], . . . ,[tn])
to be [f (t1, . . . , tn)].

To check that f M is well-defined, we have to show that if ti ≃ ui for i ∈ {1,2, . . . , n}, then
f (t1, t2, . . . , tn) ≃ f (u1, u2, . . . , un). Let ti ≃ ui for i ∈ {1,2, . . . , n}. is implies that v �
ti ≡ ui for each i . From the fourth equality axiom, it then follows that v � f (t1, t2, . . . , tn) ≡
f (u1, u2, . . . , un), so f (t1, t2, . . . , tn)≃ f (u1, u2, . . . , un)

(d) For c ∈C ∪CH , let cM = [c].

(e) For x ∈Var, let σ(x) = [x].

is completes the construction ofM and, at the same time, establishes that for atomic sentences
φ, M � φ iff v � φ. Indeed, I � r (t1, . . . , tn) iff (by semantics) 〈[t1], . . . ,[tn]〉 ∈ rM iff (by
definition) v � r (t1, . . . , tn). On the other hand, I � t1 ≡ t2 iff (by semantics) tI1 = tI2 iff (by
definition) t1 ≃ t2 iff (by definition, again) v � t1 ≡ t2.

To extend this argument to all sentences φ, we proceed by induction on the structure of φ. e
cases where φ = ¬ψ and φ =ψ1 ∨ψ2 are straightforward, so suppose that φ = ∃x ψ(x).

If (M ,σ) � φ then there is an element s in the underlying set S such that (M ,σ[x 7→ s]) �ψ(x).
Since every element in S corresponds to an equivalence class [t] for some term t over LH , we can
find a constant ts ∈ LH such that tMs = s . Clearly, (M ,σ) � ψ(ts). By the induction hypothesis,
v � ψ(ts). Since ψ(ts) ⊃ ∃x ψ(x) is a quantifier axiom, we must have v � ψ(ts) ⊃ ∃x ψ(x) and
hence v � ∃x ψ(x), as required.

Conversely, suppose that v � ∃x ψ(x). en, since ∃x ψ(x) ⊃ ψ(cψ(x)) is a Henkin axiom, we
must have v �ψ(cψ(x)) as well. By the induction hypothesis, it then follows that I �ψ(cψ(x)). From
the semantics of the quantifier ∃, we must then have I � ∃x ψ(x). ⊣

Exercise . Let L be a first-order language and let LH be the witnessing expansion of L. Prove that
for any set X of formulas over L, if there is an LH -interpretation which is a model for X , there is also
an L-interpretation which is a model for X . ⊣

. Compactness and the Löwenheim-Skolem eorem
Using the First-Order Satisfiability Lemma (Lemma .), we can immediately derive some powerful
and important results.

eorem . (Compactness) Let X be any set of First-Order formulas and let φ be a formula. en,
X � φ iff there is a finite subset Y ⊆fin X such that Y � φ.

As we saw in the case of Propositional Logic (Page ), this follows directly once we establish the
following finite satisfiability result.



Lemma . (Finite Satisfiability) Let L be a First-Order language and let X be a set of formulas over
L. en, X is satisfiable iff every Y ⊆fin X is satisfiable.

Proof: e non-trivial half of the statement is to show that if every Y ⊆fin X is satisfiable then X
is satisfiable. From the First-Order Satisfiability Lemma, it is sufficient to establish that (X ∪ ΦH ∪
ΦQ ∪ΦEq) is propositionally satisfiable. From the Finite Satisfiability Lemma for propositional logic
(Lemma .), it suffices to show that every finite subset (X ∪ ΦH ∪ ΦQ ∪ ΦEq) is propositionally
satisfiable. By assumption, each finite subset Y ⊆fin X is satisfiable. From the First-Order Satisfiability
Lemma, we can then conclude that for each Y ⊆fin X , (Y∪ΦH∪ΦQ∪ΦEq) is propositionally satisfiable.
Since each finite subset of (X∪ΦH∪ΦQ∪ΦEq) is contained in (Y ∪ΦH∪ΦQ∪ΦEq) for some Y ⊆fin X ,
it then follows that each finite subset of (X ∪ ΦH ∪ ΦQ ∪ ΦEq) is propositionally satisfiable. us,
(X ∪ΦH ∪ΦQ ∪ΦEq) is propositionally satisfiable, or, in other words, X is First-Order satisfiable. ⊣

To derive the Compactness eorem from the Finite Satisfiability eorem, we use the same argu-
ment as in propositional logic (Page ).

e next result we derive from the First-Order Satisfiability Lemma has no counterpart in propo-
sitional logic.

eorem . (Löwenheim-Skolem) Let L be a first-order language and let X be a set of formulas over
L.

(i) If L is finite or countable, then if X is satisfiable, X is satisfiable in a structure whose underlying set
is countable.

(ii) If L is not countable, then if X is satisfiable, X is satisfiable in a structure whose underlying set has a
cardinality bounded by the cardinality of L.

Proof: Let us look at the first case in detail. If L is finite or countable, thenΦL is countable. If X is
satisifiable, then it is satisfiable in the structure constructed in the proof of Lemma .. e underlying
set in that structure is bounded by the number of constants in L together with the number of constants
in the witnessing expansion of L. Recall the construction of CH , the set of set of witnessing constants
for L. Initially, C1 contains a constant cφ(x) for each formula φ(x) ∈ ΦL. Since ΦL is countable,
so is C1 and, thus, L1 is countable. Inductively, assuming that Ln is countable, the same argument
establishes that the next set of witnessing constants Cn+1 is countable. us, CH is the countable
union of countable sets and is thus countable.

A similar argument applies in the second case. We omit the details. ⊣
In particular, the Löwenheim-Skolem eorem says that if L is a countable first-order language,

then no set of axioms over L can completely capture the properties of real numbers. Any attempt to
describe a theory of real numbers over L will have to admit a countable model.

. A Complete Axiomatisation
Before exploring the semantic consequences of the Compactness and Löwenheim-Skolem eorems,
let us look at an axiomatisation of first-order logic.



Axiom System FOL-AX e axiom system FOL-AX consists of three categories axioms and two infer-
ence rules.

(A) All tautologies of propositional logic.
(Aa) x ≡ x
(Ab) t ≡ u ⊃ (φ(t)≡ φ(u)), where φ is an atomic formula
(A) φ(t)⊃ ∃x φ(x)

(MP: Modus Ponens)
φ, φ ⊃ψ

ψ

(G: Generalisation)
φ(x)⊃ψ
∃x φ(x)⊃ψ , where x /∈ FV (ψ)

As usual, if X is a set of formulas over L, we write X ⊢ φ to indicate that there is a finite sequence of
formulas φ1,φ2, . . . ,φn such that φn = φ and for each i ∈ {1,2, . . . , n}, φi is either a member of X ,
an instance of the axioms (A)–(A) or is derived from earlier formulas in the sequence using one of
the two inference rules.

e following is an interesting lemma:

Lemma . All the equality axioms over L can be derived using the above axioms and rules.

Proof: Consider the equality axiom t ≡ t for some term t . Here is a derivation of it:
1. x ≡ x Aa.
2. y ≡ y Aa.
3. ¬(x ≡ x)⊃¬(y ≡ y) , PL.
4. ∃ x¬(x ≡ x)⊃¬(y ≡ y) , rule (G).
5. ¬(t ≡ t)⊃ ∃ x¬(x ≡ x) A.
6. ¬(t ≡ t)⊃¬(y ≡ y) ,,PL.
7. t ≡ t ,,PL.

Now consider the equality axiom t ≡ u ⊃ u ≡ t . is is easily derivable as follows, where we let
α(x) be x ≡ t (note that α(t) is t ≡ t and α(u) is u ≡ t):

1. t ≡ t by the earlier derivation.
2. t ≡ u ⊃ (α(t)≡ α(u)) Ab.
3. t ≡ u ⊃ u ≡ t ,,PL.

Consider (t ≡ u ∧ u ≡ v) ⊃ t ≡ v . Again the following is an easy derivation, letting α(x) be
t ≡ x (note that α(u) is t ≡ u and α(v) is t ≡ v):

1. u ≡ v ⊃ (α(u)≡ α(v)) Ab.
2. (t ≡ u ∧ u ≡ v)⊃ t ≡ v , PL.

Now consider,without loss of generality, a ternary function symbol f and the equality axiom (t1 ≡
u1 ∧ t2 ≡ u2 ∧ t3 ≡ u3) ⊃ (f (t1, t2, t3) ≡ f (u1, u2, u3)). We provide a derivation below. We define
α(x1, x2, x3) to be f (t1, t2, t3)≡ f (x1, x2, x3), where x1, x2, x3 do not occur in t1, t2, t3, u1, u2, u3. Also



define α1(x1) to be f (t1, t2, t3) ≡ f (x1, t2, t3), α2(x2) to be f (t1, t2, t3) ≡ f (u1, x2, t3), and α3(x3) to
be f (t1, t2, t3)≡ f (u1, u2, x3). Notice that α1(t1) is the same as f (t1, t2, t3)≡ f (t1, t2, t3). Also notice
that α3(u3) is just f (t1, t2, t3) ≡ f (u1, u2, u3), so line 6 in the derivation below contains the desired
formula. Further note that α1(u1) is the same as α2(t2) and α2(u2) is the same as α3(t3).

1. α1(t1) instance of t ≡ t .
2. (t1 ≡ u1 ∧ t2 ≡ u2 ∧ t3 ≡ u3)⊃ α1(u1) Ab, , PL.
3. (t1 ≡ u1 ∧ t2 ≡ u2 ∧ t3 ≡ u3)⊃ α2(t2) , α1(u1)≡ α2(t2), PL.
4. (t1 ≡ u1 ∧ t2 ≡ u2 ∧ t3 ≡ u3)⊃ α2(u2) , Ab, PL.
5. (t1 ≡ u1 ∧ t2 ≡ u2 ∧ t3 ≡ u3)⊃ α3(t3) , α2(u2)≡ α3(t3), PL.
6. (t1 ≡ u1 ∧ t2 ≡ u2 ∧ t3 ≡ u3)⊃ α3(u3) , Ab, PL.

Consider, without loss of generality, a binary relation symbol r and the equality axiom (t1 ≡ u1 ∧
t2 ≡ u2) ⊃ (r (t1, t2) ⊃ r (u1, u2)). Let x1, x2 not occur in t1, t2, u1, u2. Now consider the following
derivation:

1. t1 ≡ u1 ⊃ (r (t1, x2)⊃ r (u1, x2)) Ab.
2. (t1 ≡ u1 ∧ t2 ≡ u2)⊃ (r (t1, t2)⊃ r (u1, u2)) 1,Ab,PL.

us we see that all the equality axioms are derivable in our axiom system. ⊣
e theorem we are after is the following:

eorem . Let X be a set of formulas over L and φ a sentence over L. en X ⊢ L iff X � L.

As usual, the proof of this theorem is in two parts, soundness and completeness.

Lemma . (Soundness) If X ⊢ φ then X � φ.

Proof: As usual, this is proved by the length of the derivation X ⊢ φ. It suffices to argue that the
axioms (A)–(A) are valid and that the rules (MP) and (G) preserve validity.

e validity of (A) is obvious. We have already observed that (A) and (A) are valid when
discussing the witnessing expansion used in the proof of Lemma ..

As for the rules, when discussing propositional logic, we have already verified that (MP) preserves
validity. us, we just need to argue that (G) preserves validity.

Suppose that the formula φ(x) ⊃ ψ is valid, where x /∈ FV (ψ). In other words, for any interpre-
tation (M ,σ), (M ,σ) � φ(x)⊃ψ.

Consider an arbitrary interpretation (M ′,σ ′), whereM ′ = (S ′, ι′). We must show that if (M ′,σ ′) �
∃x φ(x) then (M ′,σ ′) �ψ as well.

Suppose that (M ′,σ ′) � ∃x φ(x). From the semantics of the quantifier ∃, (M ′,σ ′) � ∃x φ(x)
iff for some s ∈ S ′, (M ′,σ ′[x 7→ s]) � φ(x). From the validity of φ(x) ⊃ ψ, we can conclude that
(M ′,σ ′[x 7→ s]) �ψ. But, x /∈ FV (ψ), so σ ′[x 7→ s] and σ ′ agree on FV (ψ). From Proposition .,
it follows that (M ′,σ ′) �ψ as well, as required. ⊣

To establish that the axiomatisation AX-FOL is complete, we need the following lemma.

Lemma . Let X be a set of formulas.



(i) If X ⊢ (φ ⊃ψ) and X ⊢ (¬φ ⊃ψ) then X ⊢ψ.
(ii) If X ⊢ (φ ⊃ θ)⊃ψ, then X ⊢ (¬φ ⊃ψ) and X ⊢ (θ⊃ψ).
(iii) If x /∈ FV (ψ) and X ⊢ [(∃y φ(y)⊃ φ(x))⊃ψ], then X ⊢ψ.
Proof:

(i) Since [(φ ⊃ ψ) ⊃ ((¬φ ⊃ ψ) ⊃ ψ)] is a tautology, X ⊢ [(φ ⊃ ψ) ⊃ ((¬φ ⊃ ψ) ⊃ ψ)]. Given
X ⊢ (φ ⊃ψ) and X ⊢ (¬φ ⊃ψ), we can apply (MP) twice to obtain X ⊢ψ.

(ii) is follows from the fact that [((φ ⊃ θ) ⊃ ψ) ⊃ (¬φ ⊃ ψ)] and [((φ ⊃ θ) ⊃ ψ) ⊃ (θ ⊃ ψ)]
are tautologies.

(iii) Suppose X ⊢ [(∃y φ(y) ⊃ φ(x)) ⊃ ψ], where x /∈ FV (ψ). By (ii), X ⊢ (¬∃y φ(y) ⊃ ψ) and
X ⊢ φ(x) ⊃ ψ. We can apply rule (G) to the second formula and rename bound variables to
obtain X ⊢ ∃y φ(y)⊃ψ. From (i), it then follows that X ⊢ψ.

⊣

Lemma . (Completeness) If X � φ then X ⊢ φ.
Proof: Suppose that X � φ. en, X ∪ {¬φ} is not first-order satisfiable. By Lemma .,

X ∪ ¬φ ∪ ΦH ∪ ΦQ ∪ ΦEq is not propositionally satisfiable. From the Compactness eorem for
propositional logic, it follows that there is a finite subset Y ⊆fin X ∪ΦH∪ΦQ∪ΦEq such that Y ∪{¬φ}
is not propositionally satisfiable.

Let the formulas in Y be listed in the order α1,α2, . . . ,αn,β1,β2, . . . ,βm, such that:

• e sequence α1,α2, . . . ,αn consists of those members of Y which belong to X ∪ ΦQ ∪ ΦEq ,
listed in any order.

• e sequence β1,β2, . . . ,βm are those members of Y which belong to ΦH . ese sentences
must be listed more carefully.

Recall that LH , the witnessing expansion of L, was constructed as the limit of a sequence of
languages L0 (L1 (· · · . For each formula ψ over LH , let the rank of ψ be the least k such that
ψ is a formula over Lk .

e list β1,β2, . . . ,βm is arranged in such a way that the rank of βi is greater than or equal to
the rank of βi+1 for each i ∈ {1,2, . . . , m−1}. Recall that each βi is of the form ∃x ψ(x) ⊃
ψ(cψ(x))—let us call cψ(x) the witnessing constant for βi . By arranging the list β1,β2, . . . ,βm
in decreasing rank order, we ensure that the witnessing constant for βi does not appear in
βi+1,βi+2, . . . ,βm for each i ∈ {1,2, . . . , m−1}.



Since Y ∪{¬φ} is not propositionally satisfiable, we have

α1 ⊃ (α2 ⊃ · · · ⊃ (αn ⊃ (β1 ⊃ (β2 ⊃ · · · ⊃ (βm ⊃ φ) · · ·)
to be a tautology, so we can derive

X ⊢ α1 ⊃ (α2 ⊃ · · · ⊃ (αn ⊃ (β1 ⊃ (β2 ⊃ · · · ⊃ (βm ⊃ φ) · · ·)
If we replace each witnessing constant in this formula by a distinct variable, the result

(α′1 ⊃ (α′2 ⊃ · · · ⊃ (α′n ⊃ (β′1 ⊃ (β′2 ⊃ · · · ⊃ (β′m ⊃ φ′) · · ·)
is still a tautology. Note however, that φ′ is the same as φ, since φ is a formula over L and does not
contain any witnessing constants.

Each formula in α′1,α
′
2, . . . ,α

′
n is either a member of X or a logical axiom, so we may apply (MP)

n times to obtain
X ⊢β′1 ⊃ (β′2 ⊃ · · · ⊃ (β′m ⊃ φ) · · ·)

Recall that each formula β′i is of the form ∃x ψ(x)⊃ ψ(y), where the variable y does not appear
in β′i+1,β

′
i+2, . . . ,β

′
m,φ. We can thus apply Lemma . (iii) n times to obtain X ⊢ φ. ⊣

. Variants of the Löwenheim-Skolem eorem
e Löwenheim-Skolem and Compactness eorems play a dominant role in the semantics of first-
order languages and in applying them to mathematical structures. Here we use the Compactness e-
orem to obtain variants of the Löwenheim-Skolem eorem.

Let us first prove the following easy consequence of the Compactness eorem.

eorem . Let X be a set of formulas which has arbitrarily large finite models (i.e. for every n ∈ N
there is a model for X whose cardinality is at least n). en X also has a countable model.

Proof: Let Y def= X ∪ {φ≥n | 2 ≤ n} (φ≥n was presented in Subsection . under the head
Questions of cardinality). Every model of Y is also a model of X and is infinite in size. erefore we
only need to prove that Y is satisfiable. By the Compactness eorem it suffices to show that every
finite subset Y0 of Y is satisfiable. Each such Y0 is a subset of Xn0

def= X ∪ {φ≥n | 2≤ n ≤ n0} for an
appropriate n0 ∈N. But according to hypothesis there is a model for X whose size is at least n0. is
is also a model for Xn0

and hence Y0. us we are done. ⊣
We next prove that if a set of formulas has a model of a certain cardinality, it has models of every

larger cardinality.

eorem . (“Upward” Löwenheim-Skolemeorem) Let X be a set of formulas which has an
infinite model. en for every set A there is a model for X which has at least as many elements as A (what
we mean is that there is an injective map from A into the underlying set).



Proof: Let L be the language of X and let C be the set of constants in L. For each a ∈A let ca be a
new constant (ca /∈C) such that ca ̸= cb for distinct a, b ∈A. Let L′ be the language L augmented with

the set of constants {ca | a ∈A}. Suppose we show that the set Y def= X∪{¬(ca ≡ cb) | a, b ∈A,a ̸= b}
of L′-formulas is satisfiable. Consider any model I of Y . Since I � ¬(ca ≡ cb) for all distinct
a, b ∈A, it is clear that I (ca) ̸=I (cb) for distinct a, b ∈A. us {(a,I (ca)) | a ∈A} is an injective
map from A into the underlying set of I , and the theorem would be proved.

We now turn our attention to proving that Y is indeed satisfiable. By Compactness it suffices to
show that all finite subsets Y0 of Y are satisfiable. But that is very easy to see. Every such Y0 is a subset
of Z = X ∪ {¬(cai

≡ ca j
) | 1 ≤ i , j ≤ n, i ̸= j } for some appropriate subset {a1, . . .an} of A. Now

let I be some infinite model for X . Clearly we can choose n distinct elements b1, . . . , bn from the
underlying set of I . We can now extend I to L′ by setting I (ai) = bi for i ≤ n, and giving I (ca)
an arbitrary value, for the other elements a occurring in A. It is easily checked that I , extended as
above, is a model for Z—and hence for Y0. We are done. ⊣

e above theorem can be put to good use in the study of algebraic theories. For instance, let
X be the set of group axioms. Since there exist infinite groups, the above theorem says that there
exist arbitrarily large groups. Similarly, there are arbitrarily large orderings and arbitrarily large fields.
While each of these facts can be derived using algebraic methods specific to the theory, first-order logic
provides us with the framework and with methods to state and prove such results in a general form.

. Elementary Classes
For a set of L-formulas we call

ModL X def= {I | I is an L-structure and I �X }
the class of models of X . We drop the superscript when there is no scope for confusion. We also write
Mod φ instead of Mod {φ}.
Definition . Let C be a class of L-structures.

(i) C is called elementary if there is an L-formula φ such that C =Mod φ.

(ii) C is called ∆-elementary if there is as set X of L-formulas such that C =Mod X .

Every elementary class is∆-elementary. Conversely, every∆-elementary class is the intersection of
elementary classes. is is because, for any set X of sentences, Mod X =

∩
φ∈X

Mod φ.

In the rest of this section we will see some examples of elementary and ∆-elementary classes of
structures. We will also see some examples of classes of structures that are not elementary, and some
which are not ∆-elementary. is gives us an indication of the expressive power of first-order logic.

For example, the class of fields is elementary since it consists of precisely those models which satisfy
the conjunction of the (finitely many) field axioms. e class of ordered fields is also elementary since
order can also be characterised using a finite number of axioms. Similarly the class of groups, the class of
equivalence relations, the class of partial orderings, the class of directed graphs, etc. are all elementary.



Fields of prime characteristic and of characteristic 0 Let p be a prime. A field F has characteristic
p if 1+ 1+ · · ·+ 1︸ ︷︷ ︸

p times

= 0. If there is no prime p for which F has characteristic p , F is said to have

characteristic 0. For every prime p the field Z/(p) of the integers modulo p has characteristic p. e
field R of real numbers has characteristic 0. Let φF be the conjunction of all the field axioms, and let
χp be the formula 1+ 1+ · · ·+ 1︸ ︷︷ ︸

p times

≡ 0 (we use the 0 and 1 both as constant symbols of the language of

fields as well as names of the additive and multiplicative identities of fields). en the class of fields of
characteristic p is exactly the same as Mod (φF∧χp). Hence this class is elementary. e class of fields of
characteristic 0 is∆-elementary — it is easily seen to be the same as Mod ({φF }∪{¬χp | p is prime}).
In what follows, we show that it is not elementary.

Let φ be a sentence in the lenaguage of fields which is valid in all fields of characteristic 0, that is

{φF } ∪ {¬χp | p is prime} � φ.

By the Compactness eorem there is an n0 such that

{φF } ∪ {¬χp | p is prime, p < n0} � φ.

Hence φ is valid in all fields of characteristic ≥ n0. us we have proved the following theorem.

eorem . A sentence (in the language of fields) which is valid in all fields of characteristic 0 is also
valid in all fields whose characteristic is sufficiently large.

From this we conclude that the class of fields of characteristic 0 is not elementary, for otherwise,
there would have to be a sentence φ (characterising the class) which is valid precisely in all the fields of
characteristic 0.

e class of finite structures and the class of infinite structures It is easily seen that the class of finite L-
structures (for a fixed L), the class of finite groups, the class of finite fields are not ∆-elementary. e
proof is simple: If, for example, the class of finite groups were of the form Mod X , then X would be a
set of formulas having arbitrarily large finite models (groups of the form Z/(p)) but no infinite model.
at would contradict eorem ..

On the other hand the corresponding classes of infinite structures is ∆-elementary. In fact, let C
be any ∆-elementary class of structures, characterised by the set of formulas X . en the class C∞ of
infinite structures in C is characterised by X ∪{φ≥n | n ≥ 2}.
Torsion groups A group G is called a torsion group if every element is of finite order, i.e. if for every
a ∈G there is an n ≥ 1 such that a+ a+ · · ·+ a︸ ︷︷ ︸

n times

= 0. An ad-hoc formalization of this property would

be
∀x(x ≡ 0∨ x + x ≡ 0∨ x + x + x ≡ 0∨ · · ·).

However, we may not form infinitely long disjunctions in first-order logic. Indeed, the class of torsion
groups is not even ∆-elementary.



Suppose, for a contradiction, that X is a set of formulas that characterises the class of torsion groups.
Let

Y def= X ∪{¬(x + x + · · ·+ x︸ ︷︷ ︸
n times

≡ 0) | n ≥ 1}.

Every finite subset Y0 of Y has a model. Choose an n0 such that Y0 ⊆ X ∪ {¬(x + x + · · ·+ x︸ ︷︷ ︸
n times

≡
0) | 1 ≤ n < n0}. en every cyclic group of order n0 is a model of Y0 if x is interpreted as the
generating element. Since every finite subset of Y is satisfiable, Y is also satisfiable. Let I be a model
of Y . enI (x) does not have a finite order, showing thatI is a model of X but not a torsion group,
a contradiction.

e class of connected graphs A graph G = (V , E) is said to be connected if, for arbitrary a, b ∈V with
a ̸= b , there are n ≥ 2 and a1, . . . ,an ∈V with

a1 = a,an = b ,ai E ai+1 for i = 1, . . . , n− 1

(i.e., if for any two distinct elements in V there is a path connecting them). For n ∈ N, the regular
(n + 1)-gon Gn with the vertices 0, . . . , n is a connected graph. More precisely, Gn is the structure

(Vn, En) with Vn
def= {0, . . . , n} and

En
def= {(i , i + 1) | i < n}∪ {(i , i − 1) | 1≤ i ≤ n} ∪ {(0, n), (n, 0)}.

We now prove that the class of connected graphs is not ∆-elementary. Assume, towards a contra-
diction, that a set X of formulas characterises the class of connected graphs. For n ≥ 2 we set

ψn
def= ¬(x ≡ y)∧¬∃x1 . . .∃xn(x1 ≡ x ∧ xn ≡ y ∧ x1 E x2 ∧ · · · ∧ xn−1 E xn)

and
Y def= X ∪{ψn | n ≥ 2}.

en every subset Y0 of Y has a model: For Y0 choose an n0 such that Y0 ⊆X ∪{ψn | 2≤ n < n0};
then G2·n0

is a model of Y0 if x is interpreted by 0 and y by n0. Since every finite subset of Y has a
model, Y is also satisfiable. LetI be a model of Y . en there is no path connectingI (x) andI (y).
erefore I is a model of X but not a connected graph. is contradicts the assumption on X .

. Elementarily Equivalent Structures
In this section, we look at a new notion of equivalence between structures based on the set of formu-
las they satisfy. is offers another interesting means of studying the power of first-order formulas.
While in the previous section we were concerned with the expressive power of first-order logic (i.e.,
what classes of structures can be charaterised by first-order formulas?), in this section we look at the
distinguishing power of first-order logic (i.e., when can a first-order formula tell two structures apart?).
We can also sometimes prove facts about expressibility using facts about distinguishability. We will see
some examples of this later. But first we begin by introducing two new notions.



Definition .

(i) Two structures (for the same language)M andM ′ are called elementarily equivalent (written:
M ≡M ′) if for every formula φ (in the appropriate language) we haveM � φ iffM ′ � φ.

(ii) For an interpretationM let Th(M) def= {φ | M � φ}. Th(M) is called the (first-order) theory
ofM .

Lemma . For two structuresM andM ′,
M ≡M ′ iffM ′ �Th(M).

Proof: IfM ≡M ′ then, sinceM � Th(M), alsoM ′ � Th(M). Conversely, supposeM ′ �
Th(M). Consider a sentence φ. IfM � φ then φ ∈ Th(M) and henceM ′ � φ. If, on the other
hand,M 2 φ thenM � ¬φ and thus ¬φ ∈Th(M). HenceM ′ � ¬φ and thereforeM ′ 2 φ. us
M ≡M ′. ⊣

It can be easily seen by a simple (but probably tedious) induction that any two isomorphic structures
satisfy the same first-order formulas. In other words, they are elementarily equivalent. e converse
is not immediately clear though: Are any two elementarily equivalent structures isomorphic to each
other?

eorem . For every structureM , the class C = {M ′ | M ′ ≡ M} is ∆-elementary; in fact
C =Mod Th(M). Moreover, C is the smallest ∆-elementary class which containsM .

Proof: From Lemma . it is clear thatM ′ ∈ Mod Th(M) iffM ′ ≡ M . Now if Mod X
is another ∆-elementary class containingM , thenM � X and thereforeM ′ � X for everyM ′
elementarily equivalent toM . Hence {M ′ | M ′ ≡M}⊆Mod X . ⊣

eorem . IfM is infinite then the class of all structures isomorphic toM is not ∆-elementary; in
other words, no infinite structure can be characterised up to isomorphism by a set of first-order formulas.

Proof: LetM = (S , ι) be an infinite structure. Suppose, towards a contradiction, that X is a set
of first-order formulas whose models are exactly the structures isomorphic toM . X has an infinite
model, and hence by the upward Löwenheim-Skolem theorem, X has a modelM ′ with at least as many
elements as the power set of S . But thenM ′ is a model of X but not isomorphic toM , contrary to
what we supposed. is proves the theorem. ⊣

If we choose X = Th(M) in the above proof, thenM andM ′ are elementarily equivalent but
not isomorphic. is shows that not all elementarily equivalent structures are isomorphic to each other.

eorem . tells us that a ∆-elementary class contains, together with any given structure, all
elementarily equivalent ones. In certain cases, one can use this to show that a class C is not ∆-
elementary. We simply specify two elementarily equivalent structures, of which one belongs toC , and
the other does not. We illustrate this method in the case of archimedean fields.



An ordered field F is called archimedean if for every a ∈ F there is n ∈N such that a < 1+ 1+ · · ·+ 1︸ ︷︷ ︸
n times

.

For example, the ordered field of rational numbers and the ordered field of reals R< are archimedean.
We show that there is an non-archimedean ordered field elementarily equivalent to the ordered field of
real numbers. is will prove the following.

eorem . e class of archimedean fields is not ∆-elementary.

Proof: Let
X def= Th(R<)∪{0< x,1< x,2< x, . . .},

where 0,1,2, . . . stand for the terms 0,1,1+ 1, . . . in the language of arithmetic. Every finite subset of
X is satisfiable, for instance, by an interpretation of the form (R<,σ), where σ(x) is a sufficiently large
natural number. By the Compactness eorem there is a model (M ′,σ ′) of X . SinceM ′ �Th(R<),
M ′ is an ordered field elementarily equivalent to R<, but (as shown by the element σ ′(x)) is not
archimedean. ⊣

e use of the Compactness eorem in the above is typical. We provide further examples of its
use below, when we turn our attention to the structure N of natural numbers, and the structure N< of
ordered natural numbers. (Note that the signatures of interest here are {0, s ,+, ·} and {0, s ,+, ·,<}.)
ese structures can be characterised up to isomorphism by a finite set of axioms, usually called Peano’s
axioms, which includes a second-order induction axiom. But in what follows, we show that no system
of first-order axioms can characterise the structuresN andN< up to isomorphism. From this it follows
that the induction axiom cannot be formulated as set of first-order formulas.

A theory is said to be categorical if all its models are isomorphic to one another. e (second-order)
Peano’s axiom system is an example of a categorical theory. No first-order theory can be categorical;
this is a consequence of the Löwenheim-Skolem theorems (both “upward” and “downward”). It is
more interesting to study if a theory is ℵ-categorical for a given cardinal number ℵ. In particular,
we are interested in seeing whether arithmetic is ℵ0-categorical, i.e. if all the countable models of
Th(N) are isomorphic to one another. e following two theorems say that Th(N) and Th(N<) are
not ℵ0-categorical.

Let us introduce another bit of terminology before stating the results. A structure which is elemen-
tarily equivalent, but not isomorphic to N is called a nonstandard model of arithmetic.

eorem . (Skolem’s eorem) ere is a countable nonstandard model of arithmetic.

Proof: Let
X def= Th(N)∪{¬(x ≡ 0),¬(x ≡ 1),¬(x ≡ 2), . . .},

where 0,1,2, . . . stands for the terms 0, s(0), s(s(0)), Every finite subset of X has a model of the form
(N,σ), where σ(x) is a sufficiently large natural number. By the Compactness eorem there is a model
(M ′,σ ′) of X , which by the countability of the language of arithmetic and the Löwenheim-Skolem
theorem we may assume to be at most countable.M is a structure elementarily equivalent toN. Since
for m ̸= n the sentence ¬(m ≡ n) belongs to Th(N),M is infinite and hence is countable. M and



N are not isomorphic, since an isomorphism from N ontoM would have to map the interpretation
of n in the structure N (this turns out to be the number n) to the interpretation of n in the structure
M , and thus σ(x) would not belong to the range of the isomorphism at all. ⊣

Considering the set Th(N<)∪ {¬(x ≡ 0),¬(x ≡ 1),¬(x ≡ 2), . . .}, we obtain the following theo-
rem.

eorem . ere is a countable nonstandard model of Th(N<).

What do nonstandard models of Th(N) or Th(N<) look like? In the following we gain some insight
into the order structure of a nonstandard modelM of Th(N<).

In N< the sentences

∀x(0≡ x ∨ 0< x),
0< 1∧∀x(0< x ⊃ (1≡ x ∨ 1< x)),
1< 2∧∀x(1< x ⊃ (2≡ x ∨ 2< x)), . . .

hold. ey say that 0 is the smallest element, 1 is the next smallest element after 0, 2 is the next smallest
element after 1, and so on. Since these sentences also hold inM , the “initial segment” ofM looks as
follows:

.
.0M .1M .2M .3M

In addition, S (the underlying set ofM) contains a further element, say a, since otherwiseM and
N< are isomorphic. Furthermore, N< satisfies a sentence φ which says that for every element there is
an immediate successor and for every element other than 0 there is an immediate predecessor. From
this it follows easily that S contains, in addition to a, infinitely many other elements which together
with a are ordered like the integers inM :

.
.0M .1M .2M .3M

. .a .

If we consider the element a+ a we are led to further elements of S :

.
.0M .1M .2M .3M

. .a . .
.a+M a

.

It is clear that a + a lies in a different copy of Z than a. If they belonged to the same copy, then
a + a = a + n for some natural number n. By the cancellation law for addition, a = n, which is a
contradiction. We can also show that between every two copies of Z< inM there lies another. is is
because N< satisfies a sentence φ which says that for any two elements m and n, if m < n there exists



a “midpoint” p (i.e. m + n = 2 · p or m + n = 2 · p + 1). e same statement is satisfied byM as
well. If we now consider two elements a and b which lie in different copies of Z< inM , they have a
midpoint c which has to lie in between a and b but cannot lie in either of their copies Z< (since that
would imply that a and b lie in the same copy). us any nonstandard model of arithmetic looks like
the rational line (to the right of and including the point 0) with the point 0 replaced by a copy of N<
and every other point replaced by a copy of Z<.

. An Algebraic Characterisation of Elementary Equivalence
In the previous sections we saw that the notion of elementary equivalence was weaker than the notion of
isomorphism. is leads us to ask whether there is a purely algebraic notion (not referring to first-order
formulas and the like) which is equivalent to elementary equivalence. is would be of much use, since
we can now prove two structures elementarily equivalent through means other than showing that the
two structures satisfy the same formulas. In this section, we provide such an algebraic characterisation
(due to Fraisse) and give examples of its use.

Fraisse’s theorem

In the following, we provide a simple proof of Fraisse’s theorem. We assume that we are working with
the signature of graphs, consisting of a single binary relation symbol R. It is easy to see that what we
prove here can be generalised to all signatures containing only relational symbols. Later we will show
how to extend the result to arbitrary signatures.

We introduce the following notation to simplify the presentation. We use a to denote a tuples of
elements. |a| denotes the number of elements in the tuple. We also write φ(x) (where x = x1, . . . , xr)
to indicate the fact that FV (φ)⊆ {x1, . . . , xr }. For a structureM , a tuple a of elements fromM , and
a formula φ(x) with |x|= |a|, we write (M ,a) � φ(x) to mean that (M ,σ) � φ, with σ(xi) = ai for
all i ≤ |x|.
Definition . Let G = (V , E) and H = (W , F) be two graphs. Let a and b be finite tuples of elements
from V and W respectively, such that |a| = |b |. We say that (G,a) and (H , b) are m-equivalent—in
symbols (G,a)≡m (H , b)—if for every formula φ(x) whose quantifier rank (the maximum nesting depth
of quantifiers in the formula) is not more than m, (G,a) � φ(x) if and only if (H , b) � φ(x).

Note that for the above definition to make sense, |x| should be equal to |a|. But we will not crib
about such minor details here and in what follows.

We now motivate the notion of m-isomorphism. e least we require is that any two m-isomorphic
graphs are m-equivalent. Consider two graphs G = (V , E) and H = (W , F), a from V and b from
W . Suppose that (G,a) ̸≡m (H , b). Let us say that there is a formula φ(x, y) with quantifier rank
≤ m− 1 such that (G,a) � ∃yφ(x, y) and (H , b) 2 ∃yφ(x, y). is means that for some c ∈V and
for all d ∈W , (G,ac) � φ(x, y) and (H , b d) 2 φ(x, y). us there is c ∈V such that for all d ∈W ,
(G,ac) ̸≡m−1 (H , b d). In the symmetric case involving the universal quantifier, we infer that there is
d ∈W such that for all c ∈V , (G,ac) ̸≡m−1 (H , b d). We have proved the following



Lemma . Suppose that for every c ∈V there is a d ∈W such that (G,ac) ≡m−1 (H , b d) and that
for every d ∈W there is a c ∈V such that (G,ac)≡m−1 (H , b d). en (G,a)≡m (H , b).

is lemma leads to the following definition.

Definition . Let G = (V , E) and H = (W , F) be two graphs, and let a and b be tuples of ele-
ments from V and W respectively. We say that (G,a) is 0-isomorphic to (H , b)—in symbols, (G,a) ∼=0

(H , b)—if a 7−→ b is a partial isomorphism from G to H (i.e. for any two i , j ≤ |a|, Eai a j iff F bi b j).

For m > 0, we say that (G,a)∼=m (H , b) if and only if

• for all c ∈V , there is a d ∈W such that (G,ac)∼=m−1 (H , b d), and

• for all d ∈W , there is a c ∈V such that (G,ac)∼=m−1 (H , b d).

It is easy to see that (G,a) ∼=0 (H , b) iff (G,a) ≡0 (H , b). is can be used as the base case in a
proof by induction that for any m, if (G,a) ∼=m (H , b) then (G,a) ≡m (H , b). e induction step
follows immediately from the above definition and the previous lemma.

Fraisse’s theorem says that the other direction also holds. For proving that we need the following
lemma.

Lemma . ere are only finitely many inequivalent formulas of quantifier depth ≤ m having at most
k free variables.

Proof: Let C (m, k) denote the number of formulas of quantifier depth ≤ m having at most k
free variables. (To be precise, C (m, k) is the size of a maximal set of pairwise inequivalent formulas
each of which is of quantifier depth ≤ m and has at most k free variables.) We prove by induction on
m that for all k, C (m, k) is finite.

For any k, there are exactly p = 2 · k2 atomic formulas, xi ≡ x j and Rxi x j where i , j ≤ k. us
there are at most 22p inequivalent quantifier-free formulas. us C (0, k) is finite.

For the case where m > 0, we know by the induction hypothesis that C (m − 1, k) is finite for
all k. A formula of quantifier depth ≤ m is a boolean combination of formulas of quantifier depth
≤ m−1 and formulas of the form ∀yφ(x, y) where φ is of quantifier depth≤ m−1. us C (m, k)≤
222·C (m−1,k+1) and is hence finite. ⊣

eorem . If (G,a)≡m (H , b) then (G,a)∼=m (H , b).

Proof: When m = 0, the theorem is immediate, as has already been noted.
Suppose m > 0 and that (G,a) ̸∼=m (H , b). en one of the folowing two cases holds and in both

cases we prove that (G,a) ̸≡m (H , b).



• ere is c ∈ V such that for all d ∈W , (G,ac) ̸∼=m−1 (H , b d). By the induction hypothesis,
(G,ac) ̸≡m−1 (H , b d). us for each d ∈W , there is a formula φd (x, y) of quantifier depth
≤ m−1 such that (G,ac) � φd (x, y) and (H , b d) 2 φd (x, y). Since there are only finitely many
φd ’s which are inequivalent their conjunction is equivalent to a formula ψ(x, y) of quantifier
depth ≤ m − 1. Now (G,ac) � ψ(x, y) but for all d ∈ W , (H , b d) 2 ψ(x, y). erefore
(G,a) � ∃yψ(x, y) but (H , b) 2 ∃yψ(x, y). is shows that (G,a) ̸≡m (H , b).

• ere is d ∈W such that for all c ∈ V , (G,ac) ̸∼=m−1 (H , b d). By the induction hypothesis,
(G,ac) ̸≡m−1 (H , b d). us for each c ∈ V , there is a formula φc (x, y) of quantifier depth
≤ m − 1 such that (G,ac) � φc (x, y) and (H , b d) 2 φc (x, y). Since there are only finitely
many φc ’s which are inequivalent their disjunction is equivalent to a graph formula ψ(x, y) of
quantifier depth ≤ m − 1. Now for all c ∈ V , (G,ac) � ψ(x, y) but (H , b d) 2 ψ(x, y).
erefore (G,a) � ∀yψ(x, y) but (H , b) 2 ∀yψ(x, y). is shows that (G,a) ̸≡m (H , b). ⊣

We say that (G,a) is finitely isomorphic to (H , b) (in symbols (G,a) ∼= f (H , b)) iff (G,a) is m-

isomorphic to (H , b) for all m ≥ 0. From the definitions and the previous theorem, the following
immediately follows, giving us the required algebraic characterisation of elementary equivalence.

eorem . (Fraisse’s theorem) For any two graphs G and H , and tuples a and b of the same length
from G and H respectively,

(G,a)∼= f (H , b) iff (G,a)≡ (H , b).

Extending the theorem to arbitrary signatures

It is clear that the definitions and proofs in the above section extend to arbitrary (finite) relational
signatures (signatures containing only relation symbols) almost verbatim. e definition of partial
isomorphism needs to be extended, but that is fairly straightforward. Note also that for any relational
signature, there are only finitely many inequivalent formulas with k free variables and quantifier depth
≤ m. is property does not hold for signatures containing function symbols.

Let L be an arbitrary (finite) signature. For every n-ary function symbol f occurring in L, define a
new (n+1)-ary relation symbol F and, for each constant symbol c occurring in L, define a new unary
relation C . Let Lr consist of the relation symbols from L together with the new relation symbols.
Lr is relational. For an L-structure M , let M r be the Lr structure obtained from M , with the
following interpretation for the new relation symbols: FM r (a1, . . . ,an,a) iff f M (a1, . . . ,an) = a, and
CM r (a) iff cM = a. One can systematically construct an Lr -formula φ r for every L-formula φ such
that M � φ iff M r � φ r . For example, if φ is the formula f (f (g (c , x))) = y, then φ r is the
formula ∃z1z2z3 [C (z1)∧G(z1, x, z2)∧F (z2, z3)∧F (z3, y)]. We leave it as an exercise to the reader to
formally state and prove the result. From the above considerations, it follows that (M ,a)≡ (M ′, b)
iff (M r ,a) ≡ ((M ′)r , b). (But note that it is not the case that (M ,a) ≡m (M ′, b) iff (M r ,a) ≡m

((M ′)r , b) for all m.)
We also need to extend the definition of partial isomorphism to arbitrary signatures. Here it is.



Definition . LetM = (S, ι) andM ′ = (S ′, ι′) be two L-structures and let p be a partial function
from S to S ′. We call p a partial isomorphism iff:

• p is injective.

• p is a homomorphism in the following sense:

– For n-ary relation symbols P in L and a1, . . . ,an ∈ dom(p),

PM (a1, . . . ,an) iff PM ′(p(a1), . . . , p(an)).

– For n-ary function symbols f in L and a1, . . . ,an,a ∈ dom(p),

f M (a1, . . . ,an) = a iff f M ′(p(a1), . . . , p(an)) = p(a).

– For constant symbols c in L and a ∈ dom(p),

cM = a iff cM ′ = p(a).

From the above definition it is clear that a given p is a partial isomorphism fromM toM ′ iff it is
a partial isomorphism fromM r to (M ′)r . us it follows thatM ∼=mM ′ iffM r ∼=m (M ′)r , for
any given m. We can now easily prove Fraisse’s theorem for arbitrary finite signatures. M ∼= f M ′ iffM r ∼= f (M ′)r iffM r ≡ (M ′)r iffM ≡M ′.

Examples

We give two examples in this section, which illustrate the use of the easier half of Fraisse’s theorem.

Example . Suppose L= (s , 0) where s is a unary “successor” function symbol and 0 is a constant.
Let X consist of the “successor axioms”:

• ∀x(¬(x ≡ 0)≡ ∃y(s (y)≡ x)),

• ∀x∀y((s(x)≡ s(y))⊃ (x ≡ y)), and

• for every m ≥ 1 : ∀x¬(s m(x)≡ x). (s 0(x) def= x and for all m ≥ 0, s m+1(x) = s(s m(x)).)

e natural numbers with the usual successor function is a model of X . We want to prove that any
two models of X are elementarily equivalent. Towards that end we prove that any two models of X
are finitely isomorphic. If any two models of X are elementarily equivalent, then for any sentence φ,
either all models of X satisfy φ or all models of X satisfy ¬φ. us for any sentence φ, X � φ or
X � ¬φ. us X is an example of a so-called complete theory, a theory which can decide any statement
one way or the other. A further point to note is that X is a recursive set of sentences, and so forms
the basis of a procedure to decide the truth or falsity of any L-sentence φ in the structure N. Simply
enumerate longer and longer proofs which use formulas from X as additional axioms, apart from the



standard axioms and rules. Since either X ⊢ φ or X ⊢ ¬φ, eventually a proof of φ or ¬φ will turn up.
Halt and announce the result at that point.

Let us return to our present concern, which is that of proving any two models of X finitely isomor-
phic. First, we fix the following notation: For a modelM = (S, ι) of X and a ∈ S we set a(m) def= f m(a),
where f = sM . For every n ∈N we define a “distance function” dn on S × S by

dn(a,a′) def=


m if a(m) = a′ and m ≤ 2n

−m if (a′)(m) = a and m ≤ 2n

∞ otherwise.

Now suppose M = (S, ι) and M ′ = (S ′, ι′) are two models of X . For notational simplicity we
will assume that every tuple a we mention below contains 0M as the first element and every tuple b
contains 0M ′ as the first element. Let a and b be tuples of elements fromM andM ′ respectively,
both having the same number of elements. We say that (M ,a) and (M ′, b) are “dn-equivalent”
if (M ,a) ∼=0 (M ′, b) and for all i , j ≤ |a|, dn(ai ,a j) = dn(bi , b j). We wish to prove that whenever

(M ,a) and (M ′, b) are dn-equivalent, (M ,a)∼=n (M ′, b). e base case is quite easy, since whenever
(M ,a) and (M , b) are d0-equivalent, a0 = 0M , b0 = 0M ′ , and (M ,a) ∼=0 (M ′, b) by definition.
Suppose (M ,a) and (M ′, b) are dn+1-equivalent. Consider an arbitrary c ∈ S . Now it could be the
case that for some i ≤ |a|, |dn(ai , c)| ≤ 2n . If that is so, choose d ∈ S ′ with dn(bi , d) = dn(ai , c).
It is easy to check that (M ,ac) and (M ′, b d) are dn-equivalent. If |dn(ai , c)| > 2n for all i ≤ |a|
then choose d ∈ S ′ such that |dn(bi , d)| > 2n for all i (such an element d must exist since every
model of X is infinite!). Now again it is easy to see that (M ,ac) and (M ′, b d) are dn-equivalent.
But by the induction hypothesis (on n) this means that for all c ∈ S there exists a d ∈ S ′ such that
(M ,ac)∼=n (M ′, b d). By symmetric reasoning, we can show that for any d ∈ S ′, there exists a c such
that (M ,ac)∼=n (M ′, b d). ese two facts imply, by definition, that (M ,a)∼=n+1 (M ′, b d).

In earlier sections, we showed that some classes of structures are not∆-elementary. e arguments
involved the Compactness eorem and used infinite structures. With the techniques at our disposal
now, we can show that certain properties cannot be expressed by a first-order sentence, even if we restrict
ourselves to finite structures. We illustrate this approach by the following example.

eorem . Let L be the language of graphs. ere is no L-sentence whose finite models are the finite
connected graphs. (Hence, in particular, the class of connected graphs is not elementary.)

Proof:
For k ≥ 0 let Gk = (Vk , Ek) be the graph corresponding to the regular (k + 1)-gon, where

Vk = {0, . . . , k}
and

Ek = {(i , i + 1) | i < k} ∪ {(i , i − 1) | 1≤ i ≤ k} ∪ {(0, k), (k , 0)},



and let Hk = (Wk , Fk) consist of two disjoint copies of Gk , say,

Wk = {0, . . . , k}× {0,1}
and

Fk = {((i , 0), (j , 0)) | (i , j) ∈ Ek} ∪ {((i , 1), (j , 1)) | (i , j) ∈ Ek}.
We claim that:

For all k ≥ 2m : Gk
∼=m Hk .

en we are done. In fact, let φ be an L-sentence and m be the quantifier rank of φ. en we have
that G2m

∼=m H2m , i.e. G2m ≡m H2m and therefore G2m � φ iff H2m � φ. Since G2m is connected,
but H2m is not, the class of finite models of φ cannot be identical with the class of all finite connected
graphs.

For proving that for all k ≥ 2m : Gk
∼=m Hk , we proceed as follows. For fixed k ≥ 2m and n ≥ 0,

we define “distance functions” d on Vk ×Vk and d ′ on Wk ×Wk , as follows:

d (a, b) def=

(
length of the shortest path connecting a and b in Gk , if this length is ≤ 2m;
∞, otherwise;

d ′((a, i), (b , j)) def=

(
d (a, b) if i = j ;
∞ otherwise.

We say that (Gk ,a) and (Hk , b) are (d , d ′)-equivalent iff for all i , j ≤ |a|, d (ai ,a j) = d ′(bi , b j). Just

like in the previous example, we can prove that whenever (Gk ,a) and (Hk , b) are (d , d ′)-equivalent,
(Gk ,a)∼=m (Hk , b). ⊣

Ehrenfeucht Games

e algebraic description of elementary equivalence is well-suited for many purposes. However, it lacks
the intuitive appeal of a game-theoretical characterisation due to Ehrenfeucht, which we look at in the
present section.

Let L be an arbitrary signature and letM = (S, ι) andM ′ = (S ′, ι′) be L-structures. To simplify
the formulation we assume S ∩ S ′ = ;. e Ehrenfeucht game G (M ,M ′) corresponding toM and
M ′ is played by two players, Spoiler and Duplicator, according to the following rules:

Each play of the game begins with Spoiler choosing a natural number r ≥ 1; r is the number
of subsequent moves each player has to make in the course of the play. ese subsequent moves are
begun by the Spoiler, and both players move alternately. Each move consists of choosing an element
from S ∪ S ′. If Spoiler chooses an element ai ∈ S in his i -th move, then Duplicator must choose
an element bi ∈ S ′ in his i -th move. If Spoiler chooses an element bi ∈ S ′ in his i -th move, then
Duplicator must choose an element ai ∈ S in his i -th move. After the r -th move of Duplicator the play
is completed. Altogether some number r ≥ 1, elements a1, . . . ,ar ∈ S and b1, . . . , br ∈ S ′ have been
chosen. Duplicator has won the play iff (M ,a)∼=0 (M ′, b).



We say thatDuplicator has a winning strategy inG (M ,M ′) and write “Duplicator winsG (M ,M ′)”
if it is possible for him to win each play. (Following Ebbinghaus, Flum, and omas, we omit an exact
definition of the notion of “winning strategy”.)

Lemma . M ∼= f M ′ iff Duplicator wins G (M ,M ′).

Proof: We prove a more general statement: (M ,a)∼= f (M ′, b) iffDuplicator winsG (M ,a,M ′, b).

Suppose (M ,a)∼= f (M ′, b). We describe a winning strategy for Duplicator:

If Spoiler chooses the number r at the beginning of a G (M ,a,M ′, b)-play, then for i = 1, . . . , r
Duplicator should choose the elements ci ∈ S (or respectively di ∈ S ′) so as to maintain (M ,ac1 . . . ci)∼=r−i

(M ′, b d1 · · ·di). at we can always do this follows from the fact that (M ,a)∼=r (M ′, b). For i = r
it follows that Duplicator has a winning strategy for the game.

Conversely, suppose (M ,a) ̸∼= f (M ′, b). en we give a winning strategy in r moves for Spoiler in

G (M ,M ′). If (M ,a) ̸∼=0 (M ′, b) then it is immediate that Spoiler wins all plays inG (M ,a,M ′, b),
even the play with no moves. Suppose (M ,a) ̸∼=r (M ′, b). en Spoiler chooses r at the beginning of
the game. Now it is clear that either there is a c ∈ S such that for all d ∈ S ′, (M ,ac) ̸∼=r−1 (M ′, b d),
or there is a d ∈ S ′ such that for all c ∈ S , (M ,ac) ̸∼=r−1 (M ′, b d). Suppose the former. en the
Spoiler chooses the element c such that for all d ∈ S ′, (M ,ac) ̸∼=r−1 (M ′, b d). From this and the
induction hypothesis it follows that no matter what d Duplicator plays, Spoiler has a winning strategy
in r − 1 moves in G (M ,ac ,M ′, b d). Similarly in the case where there is a d ∈ S ′ such that for all
c ∈ S , (M ,ac) ̸∼=r−1 (M ′, b d). us Spoiler has a winning strategy in r moves in the original game.

⊣
e above lemma and Fraisse’s theorem together yield the following:

eorem . (Ehrenfeucht’s eorem) Let L be a finite signature. en for any L-structuresM and
M ′:

M ≡M ′ iff Duplicator wins G (M ,M ′).

. Decidability
We consider in this section the satisfiability problem for first-order logic. is is the problem of deter-
mining whether a given first-order formula is satisfiable. We saw earlier that the corresponding problem
for propositional logic, many modal logics, and dynamic logic is decidable. In contrast, the problem
is undecidable for first-order logic. We present a particularly simple proof of this result here. Our
undecidability proof proceeds by reducing the reachability problem for two-counter machines to the
satisfiability problem.

A two-counter machine is a finite-state automaton equipped with two counters which can contain
arbitrary natural numbers. Formally it is a tuple M = (Q, q0,∆, F) where:

• Q is a finite set of states,



• q0 ∈Q is the initial state,

• F ⊆Q is the set of final states, and

• ∆⊆Q ×{0,1}2×Q ×{−1,0,1}2 is the transition relation satisfying the following condition:

– for all (q , z1, z2, q ′,δ1,δ2) ∈∆ and i ∈ {1,2}, if δi =−1 then zi = 1.

In a transition (q , z1, z2, q ′,δ1,δ2), for i ∈ {1,2}, zi = 0 denotes the fact that the value of the i -th
counter is zero, and zi = 1 denotes the fact that the value of the i -th counter is nonzero. δi specifies
the value to be added to the i -th counter. e condition on transitions reflect the fact that we can
decrement only positive counters.

A configuration of a two-counter machine M is a triple (q , m1, m2) ∈Q×N×N. For a transition
t = (r, z1, z2, r ′,δ1,δ2) and configurations (q , m1, m2) and (q ′, m′1, m′2), (q , m1, m2)

t−→(q ′, m′1, m′2)
exactly when q = r , q ′ = r ′, and for i ∈ {1,2}, (i) zi = 0 iff mi = 0 and (ii) m′i = mi +δi .

We say that (q , m1, m2)
∗−→(q ′, m′1, m′2) iff there is a sequence of transitions leading from (q , m1, m2)

to (q ′, m′1, m′2). e configuration (q0, 0, 0) is called the initial configuration. (q , m1, m2) is called a
final configuration if q ∈ F . e reachability problem for two-counter machines is the problem of
determining whether a final configuration is reachable from the initial configuration. We assume that
the reader is familiar with the fact that this problem is undecidable.

Given a two-counter machine M one can define a first-order language LM and a first-order formula
φM over LM such that a final configuration is reachable in M iff φM is valid. It is easy to see now
that the satisfiability problem for first-order logic is undecidable. Suppose, on the contrary, that it is
decidable. en we could decide the reachability problem for two-counter machines as follows: given
any two-counter machine M , construct φM and declare a final configuration to be reachable exactly
when ¬φM is not satisfiable.

e reduction

Let M = (Q, q0,∆, F) be a given two-counter machine. en LM is defined to be (CM , FM , RM)where:

• CM = {q | q ∈Q} ∪ {},
• FM = {s} with #(s) = 1, and

• RM = {conf} with #(conf) = 3.

For each t = (q , z1, z2, q ′,δ1,δ2) ∈∆ we define a formula φt . Rather than giving the most general
definition, we show the construction for two representative examples:
Let t = (q , 0, 1, q ′, 1,−1). en φt is the following formula:

∀x [(conf (q,, x)∧∃y (x = s(y)))⊃ conf (q′, s(), y)].

Let t = (q , 1, 1, q ′, 0, 1). en φt is the following formula:

∀x y [(conf (q, x, y)∧∃x ′ y ′ (x = s(x ′)∧ y = s(y ′)))⊃ conf (q′, x, s(y))].

Now we define the following sequence of formulas:



• init
def= conf (q,,).

• final
def= ∃x ∃y ∧

q∈F

conf (q, x, y).

• φ∆
def=
∨
t∈∆

φt .

• φM
def= (φ∆ ∧ init)⊃ final.

e following two lemmas prove that the reduction is correct. (We use m as an abbreviation for
sm() in the formulas, in what follows.)

Lemma . For every configuration (q , m1, m2) of M ,

(q0, 0, 0) ∗−→(q , m1, m2) =⇒� (φ∆ ∧ init)⊃ conf(q,m,m).

In particular, if a final configuration is reachable in M then φM is valid.

Proof: We prove that whenever (q0, 0, 0) ∗−→(q , m1, m2), it is also the case that � (φ∆ ∧ init) ⊃
conf (q,m,m). We do this by induction on the number of steps it takes to reach (q , m1, m2).

Basis: e only configuration reachable in zero steps is (q0, 0, 0) itself, and sure enough, � (φ∆∧init)⊃
conf (q,,).

Induction step: Suppose (q0, 0, 0) ∗−→(q ′, m′1, m′2)
t−→(q , m1, m2) and� (φ∆∧init)⊃ conf (q′,m′


,m′


).

Now it is an easy exercise to check that � (conf (q′,m′

,m′


)∧φt) ⊃ conf (q,m,m). It follows that

� (φ∆ ∧ init)⊃ conf (q,m,m), as desired. ⊣
Lemma . If φM is valid, then a final configuration is reachable in M .

Proof: We prove the desired statement in the contrapositive form. Suppose no final state is reachable
from the initial configuration. Now we define an LM structureM = (S, ι) as follows: S = N; for
each q ∈Q, ι(q) is an arbitrary distinct natural number; ι() = 0; ι(s) is the successor function on N;
and ι(conf) def= {(ι(q′), m′1, m′2) | (q0, 0, 0) ∗−→(q ′, m′1, m′2)}. It is again an easy exercise to check that
M � φt for all t ∈∆, and of course,M � init∧¬final. us we see thatM 2 (φ∆ ∧ init)⊃ final.
It follows that φM is not valid.

us we see that if φM is valid, then a final configuration is reachable in M . ⊣
e above two lemmas, in conjunction with the fact that the reachability problem for two-counter

machines is undecidable, immediately yields the following theorem.

eorem . e satisfiability problem (as also the validity problem) for first-order logic is undecidable.

e above reduction uses a language with a unary function symbol, a ternary relation symbol, and some
constants. Using some coding tricks, we can get by with using just the ternary relation symbol and
constants. Working out the minimal expressive power which leads to undecidability is an interesting
problem, which has generated a lot of research over the years. In fact, there are books solely devoted to
the study of the status of decidability of various fragments of first-order logic.



