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Abstract

We present a scalable probabilistic frame-
work for learning from multi-relational
data, given in form of entity-relation-entity
triplets, with a potentially massive num-
ber of entities and relations (e.g., in multi-
relational networks, knowledge bases, etc.).
We define each triplet via a relation-specific
bilinear function of the embeddings of en-
tities associated with it (these embeddings
correspond to “topics”). To handle mas-
sive number of relations and the data spar-
sity problem (very few observations per re-
lation), we also extend this model to allow
sharing of parameters across relations, which
leads to a substantial reduction in the num-
ber of parameters to be learned. In addition
to yielding excellent predictive performance
(e.g., for knowledge base completion tasks),
the interpretability of our topic-based em-
bedding framework enables easy qualitative
analyses. Computational cost of our mod-
els scales in the number of positive triplets,
which makes it easy to scale to massive real-
world multi-relational data sets, which are
usually extremely sparse. We develop simple-
to-implement batch as well as online Gibbs
sampling algorithms and demonstrate the ef-
fectiveness of our models on tasks such as
multi-relational link-prediction, and learning
from large knowledge bases.

1 INTRODUCTION

Learning from multi-relational data is ubiquitous
in problems from a wide variety of areas such
as social/biological network analysis (Goldenberg
et al., 2010; Jenatton et al., 2012), and modeling
of large knowledge bases such as YAGO (Suchanek
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et al., 2007), NELL (Carlson et al., 2010), Free-
base (Bollacker et al., 2008), Google Knowledge Vault
project (Dong et al., 2014), etc. Data in these prob-
lems usually consist of a sparsely observed set of
triplets of the form entity-relation-entity and can
be represented as a three-way binary sparse tensor Y
of size N × N × R where N and R denote the num-
ber of entities and relations, respectively. The r-th
slice Yr ∈ {0, 1}N×N corresponds to the r-th relation
type where Yrij = 1 (denoting a positive example or a
“valid” fact ) denotes that existence of the relationship
of type r between entities i and j. On the other hand,
Yrij = 0 means that this relationship is either known to
be invalid, or is unknown. Subsequently, at places, we
will refer to Yrij as a fact (valid/invalid). The number
of positives (valid facts) is typically much smaller than
the number of negatives (invalid/unknown facts).

Given such data, we may be interested in predicting
the existence of the unknown links between entities
(e.g., in social/biological networks) or in predicting the
validity of new facts based on the knowledge of pre-
viously known facts (e.g., for knowledge base comple-
tion (Nickel et al., 2015)). Other examples of learning
from such data include clustering of entities and/or re-
lations, or ranking of entities for a given entity and a
relation (e.g., for answering queries from a database).

Commonly used methods for learning from such
data include methods based on tensor decomposi-
tion (Nickel et al., 2011; Sutskever et al., 2009; Jenat-
ton et al., 2012; Hu et al., 2015), and more generally,
methods that learn embeddings of the entities and re-
lations (Socher et al., 2013; Bordes et al., 2013; Wang
et al., 2014a; Yang et al., 2014; Dong et al., 2014).
These embeddings are usually learned by optimizing
some objective that assigns a higher score to an ob-
served (positive) triplet as compared to unobserved
(assumed negative) triplets, where the score is a func-
tion of the embeddings. In Section 4 on Related Work,
we discuss these and other methods in more detail.

In this paper, we present a scalable Bayesian frame-
work for the problem of learning from multi-relational
data. Our embedding-based framework defines each
triplet/fact Yrij to be generated via a bilinear model

of the form p(Yrij = 1|ui,uj ,Λr) = f(u>i Λruj). Here,
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ui,uj denote K-dimensional embeddings of entities i
and j, respectively, Λr is a K ×K matrix which pa-
rameterizes the relation type r, and f denotes the link
function (defined subsequently in Sec. 2).

In contrast to the existing embedding-based ap-
proaches for multi-relational data (Socher et al., 2013;
Bordes et al., 2013; Yang et al., 2014; Dong et al.,
2014), an attractive aspect of our framework is that
the learned embeddings naturally correspond to “top-
ics” (each topic is a distribution over entities), which
leads to improved interpretability and easy qualita-
tive analyses, e.g., clustering entities/relations based
on the topic(s) in which they are most “active”.

Another appealing aspect of the proposed framework is
its computational scalability. Instead of the commonly
employed squared loss or logistic/probit likelihood for
modeling binary multi-relational data (Nickel et al.,
2011; Sutskever et al., 2009; Jenatton et al., 2012;
Socher et al., 2013; Bordes et al., 2013), we leverage
the Bernoulli-Poisson likelihood model (Zhou, 2015;
Hu et al., 2015) for triplet generation (Sec. 2), which
leads to an inference time-complexity that scales in
the number of positive triplets in the data. There-
fore our framework scales considerably better than the
existing approaches for which the computational cost
depends on the number of both positive and nega-
tive triplets (Nickel et al., 2011; Socher et al., 2013;
Sutskever et al., 2009; Bordes et al., 2013; Yang et al.,
2014; Dong et al., 2014). Moreover, as we discuss in
Sec. 2.3, as compared to logistic/probit models, the
Bernoulli-Poisson link function is also a more realistic
model for imbalanced binary data, which is a charac-
teristic exhibited in most real-world multi-relational
data sets for which the number of positive triplets is
far fewer than the number of negative triplets.

To handle the potentially massive number of relations
commonly encountered in modern multi-relational
data sets, we also extend our model to allow sharing of
parameters across multiple relations, which leads to a
substantial reduction in the number of parameters to
be learned and also makes the model more robust in
cases where the number of observations available for
each relation is very small. To accomplish this, we
model each of the relation-specific parameter matri-
ces {Λr}Rr=1 as a combination of a small set of “basis”
relation matrices {Gm}Mm=1, where M � R.

Finally, our fully Bayesian framework admits full lo-
cal conjugacy, which allows deriving closed-form Gibbs
sampling updates for all the model parameters. This,
combined with the fact that the inference cost only de-
pends on the number of positive triplets in the data,
enable a fully Bayesian analysis for large-scale multi-
relational data. We also develop an online inference

algorithm that can process data in small minibatches
and therefore can easily handle data sets that are too
massive to deal with using batch algorithms.

2 BAYESIAN NON-NEGATIVE
BILINEAR FACTOR MODEL

We first describe the basic setup of our Bayesian frame-
work which is based on a bilinear non-negative latent
factor model (Fig. 2) for multi-relational data, with
the property that leads to scaling in the number of
positive triplets. Then, in Section 2.1, we describe in
more detail our first model with its properties that lead
to efficient, fully Bayesian inference. Subsequently, in
Section 2.2, we will generalize the first model to allow
further sharing of statistical strength across the pa-
rameters of multiple relations. In Section 2.3, we will
also provide a justification of why both these models,
can more realistically model imbalanced binary data
(very few positives), such as real-world multi-relational
data sets.

One key aspect of both the proposed models is their
departure from the standard logistic/probit link func-
tions for binary-valued triplets, and the use of thresh-
olded counts (Zhou, 2015; Hu et al., 2015) to model the
binary-valued triplets. Specifically, each binary-valued
triplet Yrij is assumed generated by thresholding a la-
tent count X rij at 1, where the latent count X rij , in turn,
is assumed drawn from a bilinear non-negative latent
factor model

Yrij = 1(X rij ≥ 1), X rij ∼ Poisson(u>i Λruj) (3)

Intuitively, for relation r, the strength of the inter-
action between entities i and j depends the score
u>i Λruj , which defines the Poisson rate for X rij .
Marginalizing out X rij from Eq. 3, we have

Yrij ∼ Bernoulli(1− e−u
>
i Λruj ) (4)

Also note that the conditional posterior of the latent
count X rij can be written as

(X rij |Yrij ,ui,Λr,uj) ∼ Yrij · Poisson+(u>i Λruj) (5)

From Eq. 5, if Yrij = 0 then X rij = 0, almost surely

(a.s.), and if Yrij = 1 then X rij ∼ Poisson+(u>i Λruj),
a draw from zero-truncated Poisson. Therefore we
only need to sample X rij if Yrij = 1. We leverage this
property in Section 3 to design scalable inference al-
gorithms for our framework. We next describe both of
our models which are based on this overall framework.

2.1 Model-1

The complete generative story for the first model,
along with the prior distributions over the various
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Yrij = 1(X rij ≥ 1)

X r ∼ Poisson(UΛrUT )

U:,k ∼ Dirichlet(a, . . . , a) ∀k = 1, . . . ,K

Λr
k1k2 ∼

{ Gamma(εrdrk1 ,
1
β ), if k1 = k2

Gamma(drk1d
r
k2
, 1
β ), if k1 6= k2

drk ∼ Gamma(γ0/K, 1/c0)

εr ∼ Gamma(e0, 1/f0)

Yrij = 1(X rij ≥ 1) X r ∼ Poisson(UΛrUT )

U:,k ∼ Dirichlet(a, . . . , a) ∀k = 1, . . . ,K

Λrk1k2 =

M∑
m=1

ηmrG
m
k1k2 , ηmr ∼ Gamma(h0,

1

q0
)

Gmk1k2 ∼
{ Gamma(εmdmk1 ,

1
β ), if k1 = k2

Gamma(dmk1d
m
k2
, 1
β ), if k1 6= k2

dmk ∼ Gamma(γ0/K, 1/c0) εm ∼ Gamma(e0, 1/f0)

Figure 1: Left: Model-1 with each relation r having its own independent parameter matrix Λr. Right: Model-2 with
parameter sharing across relations via a set of basis matrices

Figure 2: The basic setup of the bilinear latent factor
model for multi-relational data

model parameters is shown in Fig. 1 (left). The N×K
matrix U = [u1 . . .uN ]> contains the K-dimensional
embeddings of each of the N entities. We further as-
sume each N -dimensional column of U is drawn from
a Dirichlet, which can therefore be thought of as a
distribution (or “topic”) over the N entities (akin to
a topic model). In contrast to the other embedding
based models (Nickel et al., 2011; Sutskever et al.,
2009; Jenatton et al., 2012; Socher et al., 2013; Bor-
des et al., 2013), this aspect of our model provides a
nice interpretability to the entity embeddings, because
each of the K embedding coordinates of an entity can
now be thought of as how “active” it is in each of the
K topics. This naturally allows to group/cluster the
entities based on topics, without having to perform a
separate step of running a clustering algorithm over
the learned embeddings.

Although the model in Fig. 1 (left) is not origi-
nally conjugate, using the Poisson-multinomial equiv-
alence (Dunson and Herring, 2005; Zhou et al., 2012),
we are able to develop a Gibbs sampler with closed-
form sampling updates for all the model parameters.
To see this, note that a Poisson distributed count-
valued random variable can be expressed as a sum of
Poisson distributed latent counts which, in turn, can
be generated by repeatedly sampling from a multino-
mial. To illustrate this in the context of our model,
note that we can express each latent count X rij ∼
Poisson(

∑K
k1

∑K
k2
uik1Λrk1k2ujk2) as a sum of latent

counts, i.e., X rij =
∑K
k1

∑K
k2
Xik1k2j where Xik1k2j ∼

Poisson(uik1Λrk1k2ujk2), and then using the Poisson-

multinomial equivalence, we have ∀k1, k2

{Xik1k2j} ∼ Mult

(
X rij ;

{uik1Λrk1k2ujk2}∑K
k1=1

∑K
k2=1 uik1Λrk1k2ujk2

)

This, coupled with the multinomial-Dirichlet conju-
gacy, allows us to develop a Gibbs sampler for our
model. Section 3 briefly describes the Gibbs sampler
(both batch as well as a more efficient online version)
and the Supplementary Material provides the addi-
tional details.

2.2 Model-2: Sharing Parameters Across
Relations

Model-1 parametrizes each relation type r by Λr, a
K × K matrix. In real-world multi-relational data
sets with potentially thousands of relation types, of-
ten many relation types may be similar to each other
and therefore, instead of modeling each Λr indepen-
dently, it may be more appropriate to jointly model
these in order to share statistical strength across rela-
tions. This significantly reduces the number of param-
eters that need to be learned and can also be helpful to
handle the data sparsity problem, i.e., when the num-
ber of triplets observed per relation is very small. Our
second model, with generative story shown in Fig. 1
(right), allows such a sharing by modeling the param-
eters Λr of each relation type as a linear combination
of M “basis” relation parameter matrices {Gm}Mm=1

shared by all the relations, i.e.,

Λr =

M∑
m=1

ηmrG
m

Fig. 3 illustrates this idea pictorially. If two relations
r and r′ are similar, their combination weight vec-
tors ηr and ηr′ are also expected to be similar. Note
that, in this model, we can also view the combination
weights ηr = [η1r, . . . , ηMr] ∈ RM+ as an embedding of
relation type r. Therefore, unlike other bilinear mod-
els (Nickel et al., 2011; Sutskever et al., 2009), this
model also provides a vector embedding for relations as
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well. Interestingly, this model structurally resembles
a non-negative variant of Tucker tensor factorization
model (Kolda and Bader, 2009) with U as the factor
matrix of the entity dimension, η = [η1, . . . , ηR] as the
factor matrix of the relation dimension, and {Gm}Mm=1

being the core tensor. Just like model-1, leveraging the
Poisson-multinomial equivalent allows us to to develop
closed-form Gibbs sampling updates for all the model
parameters (Section 3.2 provides further details).

Figure 3: Parameter sharing across relations for Model-2

2.3 Connection with the complementary
log-log link function

It is interesting to note that the form of the likeli-

hood function Yrij ∼ Bernoulli(1 − e−u
>
i Λruj ), aris-

ing in both our models, resembles the complemen-
tary log-log (cloglog) function (Piegorsch, 1992; Col-
lett, 2002) often used to model imbalanced binary
data. In particular, the rate of growth of the func-

tion p(Yrij = 1) = 1 − e−u
>
i Λruj (where u>i Λruj is

non-negative) along the Y axis from 0.5 to 1 tends to
be much slower than the rate it drops from 0.5 to 0.
Therefore, our generative model more realistically cap-
tures the data imbalance in real-world multi-relational
data sets that have very few positive triplets.

3 INFERENCE

As discussed in Section 2.1, using data-augmentation
and Poisson-multinomial equivalence (Dunson and
Herring, 2005; Zhou et al., 2012), we are able to de-
rive closed-form Gibbs sampling updates for all the
model parameters. Note again that since we only
need to sample the latent counts X rij for the positive
triplets, our sampling algorithms scale in the num-
ber of positive triplets, thereby leading to a very ef-
ficient inference. In Section 3.1 and 3.2, we first de-
scribe the batch Gibbs sampling algorithms for model-
1 and model-2, respectively, and then, in Section 3.3,
we briefly describe an online Gibbs sampler for both
models (further details given in the Supplementary
Material). In the rest of the exposition, we refer to
the model-1 as BPBFM-1 and model-2 as BPBFM-
2, where BPLFM denotes Bernoulli-Poisson Bilinear
Factor Model to reflect our generative model.

3.1 Gibbs Sampling for BPBFM-1

Note that, for BPBFM-1 (generative model shown in
Fig. 1-left), the latent count for each triplet Yrij is de-

fined as X rij =
∑K
k1=1

∑K
k2=1 Xik1k2j . In what follows,

we will also make use of the following quantities, de-
fined in terms of the Xik1k2j ’s:

X rik·· =

K∑
k2=1

N∑
j=1

X rikk2j (6)

Xik·· =

R∑
r=1

X rik·· (7)

X r·k1k2· =

N∑
i=1

N∑
j=1

X rik1k2j (8)

Sampling X rij: For each triplet Yrij = 1, the latent
count X rij can be sampled as

X rij ∼ Yrij · Poisson+(

K∑
k1=1

K∑
k2=1

uik1Λrk1k2ujk2) (9)

Note that this only needs to be done for the observed
triplets (i.e., if Yrij = 1).

Sampling X rik1k2j: Due to the Poisson-multinomial
equivalence, X rik1k2j can be sampled as

{X rik1k2j} ∼ Mult(X rij ;
{uik1Λrk1k2ujk2}∑K

k1=1

∑K
k2=1 uik1Λrk1k2ujk2

)

(10)
Sampling U:,k: Using Dirichlet-multinomial conju-
gacy, each column of U can be sampled as

U:,k ∼ Dirichlet(a+ X1k··, a+ X2k··, . . . , a+ XNk··)
(11)

Sampling drk:. Using the additive property of the
Poisson draws, we have

X r·k1k2· ∼ Poisson(

N∑
i=1

N∑
j=1

uik1Λrk1k2ujk2) (12)

Marginalizing out Λrk1k2 from Eq.(12), we have

X r·k1k2· ∼ NegBin((εr)δk1k2drk1(drk2)1−δk1k2 , pk1k2)
(13)

where δk1k2 = 1 if k1 = k2, and δk1k2 = 0 otherwise,
and NegBin denotes the Negative Binomial distribu-

tion. In the above, pk1k2 is define as pk1k2 =
θk1k2

θk1k2+β

where θk1k2 =
∑N
i=1

∑N
j=1 uik1ujk2 . Using Eq.(13)

and the data augmentation scheme proposed in ((Zhou
et al., 2012)), drk can be sampled by first sampling

`rkk2 ∼
∑Xr·k1k2·
t=1 Bernoulli(

(εr)
δk1k2 drk1

(drk2
)
1−δk1k2

(εr)
δk1k2 drk1

(drk2
)
1−δk1k2 +t−1

)

and then sampling drk as drk ∼ Gamma(γ0K +∑K
k2=1 `

r
kk2

, 1

c0−
∑K
k2

(εr)
δkk2 (drk2

)
1−δkk2 ln(1−pkk2 )

).
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Sampling εr: εr can be sampled as εr ∼ Gamma(e0 +∑K
k=1 `

r
kk,

1
f0−

∑K
k drk ln(1−pkk)

)

Sampling Λrk1k2 : Using Gamma-Poisson
conjugacy, Λrk1k2 can be sampled as

Gamma((εr)δk1k2drk1(drk2)1−δk1k2 + X r·k1k2·,
1

β+θk1k2
).

3.2 Gibbs Sampling for BPBFM-2

Proceeding in a manner similar to as we did for
BPBFM-1, we can express each latent count X rij
in BPBFM-2 (which models each Λr as Λr =∑M
m=1 ηmrG

m) as a sum of the following form: X rij =∑K
k1=1

∑K
k2=1

∑M
m=1X

r
ik1k2mj

where

X rik1k2mj ∼ Poisson(uik1ηmrG
m
k1k2ujk2)

We further define

X ··k1k2m· =

N∑
i=1

N∑
j=1

R∑
r=1

X rik1k2mj

X r···m· =

N∑
i=1

N∑
j=1

K∑
k1=1

K∑
k2=1

X rik1k2mj

Using additive property of Poisson distribution

X ··k1k2m· ∼ Poisson(θk1k2G
m
k1k2

R∑
r=1

ηmr) (14)

X r···m· ∼ Poisson(ηmr

K∑
k1=1

K∑
k2=1

θk1k2G
m
k1k2) (15)

The Gibbs sampler updates for BPBFM-2 depend on
these quantities. For brevity, we provide the detailed
update equations in the Supplementary Material.

3.3 Online Gibbs Sampling

Although the Gibbs sampler we presented in the pre-
vious sections is efficient for moderate-sized data sets,
when the number of observed triplets (and the num-
ber of entities and/or relations), batch Gibbs sam-
pling can be prohibitive to run and/or may have
slow mixing. We therefore also develop online Gibbs
sampling algorithms for both of our models. The
proposed online Gibbs sampling algorithms for our
models are based on the idea of the recently devel-
oped Bayesian Conditional Density Filtering (BCDF)
framework (Guhaniyogi et al., 2014). They key idea
in BCDF is to process data in small minibatches, and
maintain and update sufficient statistics of the model
parameters with each new minibatch of the data. In
our models, these sufficient statistics are the latent
counts. We briefly outline the online Gibbs sampler
for BPBFM-1 below:

Denoting It as indices of valid triplets in minibatch
selected at iteration t, and I as the indices of all
the valid triplets in training data. Define X r,tik·· =
|I|
|It|
∑K
k2=1

∑N
j=1,ij∈It X

r
ikk2j

, X tik·· = |I|
|It|
∑R
r=1 X

r,t
ik··,

and X r,t·k1k2· = |I|
|It|
∑N
i,j∈It X

r,t
ik1k2j

, where |I| and It are

cardinalities of the two sets. Then similar to batch
Gibbs Sampling, define following quantities for t ≤ 2:

X r,tik·· = (1 − ρ)X r,t−1
ik·· + ρ |I||It|

∑K
k2=1

∑N
j=1,ij∈It X

r
ikk2j

,

X tik·· = (1 − ρ)X t−1
ik·· + ρ |I||It|

∑R
r=1 X rtik··, and X r,t·k1k2· =

(1 − ρ)X r,t−1
·k1k2· + ρ |I||It|

∑N
ij,ij∈It X

r,t
ik1k2j

. Here ρ = (t +

t0)−w is a decaying learning rate, as used in other on-
line inference algorithms, such as stochastic variational
inference (Hoffman et al., 2013). Here, t0 > 0 and
w ∈ (0.5, 1] are required to guarantee convergence.

We omit the full details of the online Gibbs sampler
here due to the lack of space. The Supplementary
Material provides more details of the update equations
for online inference for both BPBFM-1 and BPBFM-2.

4 RELATED WORK

There has been a significant amount of recent interest
in the problem of learning from multi-relational data,
both in the social/biological network analysis prob-
lems, as well as in modeling of large knowledge bases
(such as YAGO, NELL, Freebase, etc.) that consist
of a massive number of triplet-based facts of the form
entity-relation-entity, involving very large number of
entities and relations. Because a natural representa-
tion for multi-relational data is in form of a three-way
tensor (or a collection of matrices), a number of meth-
ods, closely related to each other, such as those based
on tensor decomposition, collective matrix factoriza-
tion, and generalizations of stochastic blockmodels for
multi-relational data, have been proposed for learning
from such data (Nickel et al., 2011; Sutskever et al.,
2009; Jenatton et al., 2012; Rai et al., 2014; Zhu, 2012).

Another class of methods, especially in the context
of learning from large knowledge bases, involve learn-
ing the embeddings of entities and relations, and us-
ing these embeddings to predict the unknown facts
(or “links”) involving pairs of entities, given a spe-
cific relation. This class of methods typically includes
(i) models such as those based on minimizing an en-
ergy function (Bordes et al., 2011; Socher et al., 2013;
Bordes et al., 2014) involving valid entity-relation-
entity triplets; and (ii) translated embedding based ap-
proaches (Bordes et al., 2013; Wang et al., 2014a; Yang
et al., 2014) that embed the entities and the relations
in a vector space based on the criteria that, for each
valid triplet (h, r, t), the distance between the embed-
dings of the head and the tail, after the head entity em-
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bedding translated by the embedding of the relation, is
smaller than the corresponding distance computed for
an invalid triplet generated by perturbing either the
head or the tail entity. We use some of these methods
as baselines in our experiments.

There has been relatively little work on Bayesian
methods for learning from large multi-relational data
and knowledge bases (Sutskever et al., 2009; Rai
et al., 2014; Zhu, 2012; Hu et al., 2015). Although
some of the existing Bayesian methods, such as the
Bayesian Clustered Tensor Factorization (Sutskever
et al., 2009), do provide nice modeling flexibility (e.g.,
discovering clusters of entities and relations in addition
to being applicable for tasks such as link prediction),
these methods are not able to scale to large modern-
day knowledge bases. In contrast, our proposed frame-
work offers the various benefits of a generative, fully
Bayesian model, in addition to being easily scalable for
large multi-relational data sets, due to its dependence
only on the positive triplets and the computational ef-
ficiency of the accompanying batch and online Gibbs
sampling algorithms.

Finally, we would like to note that the Bernoulli-
Poisson link for binary data has also been used re-
cently in (Zhou, 2015). However, there are several
key differences from our proposed framework: (1) the
model in (Zhou, 2015) can only deal with a single rela-
tion type, whereas our framework allows learning from
multi-relational networks and knowledge bases that
consist of multiple types of relations; (2) in addition
to handling multiple types of relations (BPBFM-1),
our second model (BPBFM-2) allows further sharing
of statistical strengths across multiple relations; and
(3) while the model in (Zhou, 2015) relies on batch
Gibbs sampling, we also develop online Gibbs sam-
pling algorithms for both of our models, which allows
us to apply these models to large-scale multi-relational
data sets and knowledge bases.

5 EXPERIMENTS

We evaluate both of our proposed models BPBFM-
1 and BPBFM-2 on several benchmark data sets
consisting of both moderate-sized multi-relational
data sets, as well as large-scale benchmark knowl-
edge bases (Section 5.1 provides more details of
these data sets). In our experiments, we com-
pare both our models (BPBFM-1 and BPBFM-2)
with several state-of-the-art methods that include:
(1) two bilinear latent factor models: RESCAL
(Nickel et al., 2011) and LFM (Jenatton et al.,
2012); (2) Bayesian logistic tensor factorization (Rai
et al., 2014) (BLTF) for link-prediction from multi-
relational data; (3) Zero-Truncated Poisson CP fac-

torization (ZTP-CP) (Hu et al., 2015) (4) Embed-
ding based methods - TransE (Bordes et al., 2013)
and TransH (Wang et al., 2014a), both of which are
recently proposed state-of-the-art methods for mod-
eling large-scale knowledge bases. We report results
on both quantitative comparisons (in terms of link-
prediction/knowledge base completion accuracies), as
well as qualitative analyses (e.g., analyzing clusters of
entities/relations inferred by our models).

All our experiments were performed on a standard
desktop with 24 GB RAM. In all our experiments, the
hyperparameters β0, β1 and β were fixed to 1, , which
worked well in practice.

5.1 Datasets

We use two groups of data sets in our experiments.
The first group consists of three moderate-sized multi-
relational data sets

• Kinship: This is a 104 × 104 × 26 binary ten-
sor (Nickel et al., 2011) containing 26 types of
relations among a set of 104 individuals.

• Nations: This is a 14×14×56 dataset describes
the relations among 14 countries with respect to
56 types of interactions.

• UMLS: This is a 135×135×49 dataset describes
the causal influence among 135 biomedical con-
cepts with respect to 49 types of interactions.

The other group consists of three large knowledge
bases, and includes Freebase-15K, Wordnet-100K, and
NELL-50K. Table- 1 shows statistics of these data sets.

Table 1: Statistics of FB-15K, NELL-50K, and WN-100K

Datasets FB-15K NELL-50K WN-100K
Entity # 14,951 29,904 38,696
Relation # 1345 233 11
Valid Triplet # (Train) 483,142 57365 112,581
Valid Triplet # (Test) 118,142 21,412 42,176

5.2 Experiments on Multi-Relational Data

In our first set of experiments, we evaluate both our
models (using both batch as well as online infer-
ence) on the three multi-relational data sets (Kinship,
UMLS, Nations) for the task of link-prediction, as well
as for doing qualitative analyses (clustering entities
and relations based on the topic-based embeddings in-
ferred by our models).

5.2.1 Link Prediction and Computational
Efficiency

We compare both our model with LFM, BLTF, and
ZTPCP. For all methods, we set K = 30, and use 90%
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Table 2: Most Prominent Entities in Topics Inferred from UMLS

Topic 1 (Group) Topic 2 (Function) Topic 3 (Chemical) Topic 4 (Method/Procedure)
professional/occupational group cell function nucleic acid molecular bio research tech
population group organism function steroid human-caused phenomenon/process
age group physiologic function amino acid laboratory procedure
group molecular function carbohydrate diagnostic procedure
family group organ/tissue function lipid laboratory/test result

Table 3: Most Prominent Relations in Topics Inferred From UMLS

Topic 1 (isa/part) Topic 2 (diagnose/treat) Topic 3 (Experiments) Topic 4 (Adjacent/Surround)
part of treats manifestation of adjacent to
isa prevents measurement of connected to
issue in diagnoses evaluation of surrounds
conceptual part of complicates indicates traverses

Table 4: AUC Comparison for Multi-relational Data

Datasets Kinship UMLS Nation
RESCAL (Nickel et al., 2011) 0.968 0.973 0.872
LFM (Jenatton et al., 2012) 0.999 0.991 0.836
BLTF (Rai et al., 2014) 0.983 0.988 0.856
ZTP-CP (Hu et al., 2015) 0.932 0.989 0.889
BPBFM-1 (Batch Gibbs) 0.971 0.988 0.882
BPBFM-1 (Online Gibbs) 0.975 0.988 0.891
BPBFM-2 (Batch Gibbs) 0.946 0.981 0.871
BPBFM-2 (Online Gibbs) 0.976 0.994 0.896

Table 5: Computational time comparison

Datasets Kinship UMLS Nation
LFM (Jenatton et al., 2012) 1.8704 6.4563 0.0726
BPBFM-1 (Batch Gibbs) 0.1993 0.1433 0.0709
BPBFM-2 (Batch Gibbs) 0.7142 0.4005 0.1240

of valid triplets as training dataset and the remaining
as testing. For LFM, we use default settings for other
parameters as the code shared online 1. For model 2,
we set M = 50. All other parameters in our two mod-
els are randomly initialized; however smarter initial-
izations of the embeddings can also be used. Receiver
Operating Characteristic AUC (AUC) and Precision
Recall AUC (AUC-PR) are used to evaluate the per-
formance for link prediction. As shown in Table 4,
except for Kinship, our models achieve comparable or
better AUC as compared to the other methods.

We also compare per-iteration computation times of
our model with LFM (both methods implemented in
Matlab) on the three small datasets, as shown in Ta-
ble 5. We do not report timings of other baselines be-
cause the implementations are not directly comparable
(Matlab vs Python vs C). Since the computational cost
of our model scales only in the number of nonzeros in
the data, we gain maximum speed-up for UMLS and
minimum speed-up for Nation dataset. This is consis-
tent with the fraction of nonzero entries for three data
sets (Kinship: 0.0384, UMLS: 0.0076, Nation: 0.1844).

5.2.2 Qualitative Analysis on UMLS Data

Since each column of the matrix U inferred by our
models corresponds to a topic, we use the columns of
U to rank most prominent entities in each topic (based
on the magnitude of entries in that column), as shown

1http://tinyurl.com/q6a66ro

in Table 2. Likewise, using the M × R non-negative
matrix η inferred by BPBFM-2, we can group similar
relation types by treating each row of η as a “topic”
and sorting the entries in that row to rank the relations
(Table 3 shows the top 4 relations for each topic).

5.3 Experiments on Large Knowledge Bases

In our second set of experiments, we evaluate our mod-
els on large knowledge bases (Freebase15K, Wordnet-
100K, and NELL-50K) on two tasks: knowledge
base completion (predicting the validility of held-out
triplets) and qualitative analyses (grouping entities
and relations using the topic based embeddings learned
by our models, as we did previously for UMLS data).

5.3.1 Knowledge Base Completion

For this task, in Table 8, we compare BPBFM-1 with
two state-of-the-art knowledge base embedding meth-
ods - TransE (Bordes et al., 2013) and TransH (Wang
et al., 2014a). We also provide, in Table 9, a separate
comparison between BPBFM-1 and BPBFM-2 to dis-
cuss the benefits of using BPBFM-2 which is able to
share information across the different relations.

For the comparison between BPBFM-1 and BPBFM-
2 (Table 9), for all three data sets, we set K = 10
for both models. For BPBFM-2, we set M = 5 for
WN-100K since it has only 11 relations, and M = 80
for Freebase-15K and NELL-50 as the number of rela-
tions is much larger (Freebase-15K has 1345 relations
and NELL-50K has 233 relations). As shown in Ta-
ble 9, BPBFM-2 outperforms BPBFM-1, even if K is
as small as 10.

5.4 Qualitative Analyses on Freebase15K,
NELL-50K, and WN-100K

The topic-based non-negative embeddings learned by
our model can be useful for qualitative analyses. To
illustrate this, we show results of our qualitative analy-
ses on Freebase15K, NELL-50K, and WN-100K. Six of
the factors (each factor represents a topic) inferred by
BPBFM-2 are presented in table 6, and for each topic,
we show top-8 entities. As the larger datasets contain
more and richer entities than the smaller dataset, we

http://tinyurl.com/q6a66ro
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Table 6: Most Prominent Entities in Topics Inferred for FB-15K, WN-100K and NELL-50K

FB-15K WN-100K NELL-50K
Topic 1 (Biology) Topic 2 (Country) Topic 3 (Film) Topic 4 (Position) Topic 5 (Football) Topic 6 (Band)
animal kingdom britain valentine’s day midfielder washington redskins zeppelin
worm genus america harry potter forward(football) eagles beatles
edible nut france new york stories defender colts dream theater
family emerald isle love actually goalkeeper seahawks poison
anacardiaceae japan grindhouse winger dallas cowboys ramones
bird footed dinosaur canada terror in the aisles head coach packers iron maiden
accipitridae italia who framed roger rabbit forward(hockey) oakland raiders blondie
aschelminthes deutschland Om Shanti Om infielder bills rush

Table 7: Most Prominent Relations in Topics Inferred for FB-15K

Topic 1 (Education) Topic 2 (Film/Award) Topic 3 (Family Relation) Topic 4 (Individual Info) Topic 5 (Sports)
institution film sibling nationality /sports/team
degree actor split to location /sports/position
major field of study nominated for parents gender /football/positions
student award nominee child place of birth /football/position
specialization honored for children cause of death /football/team

can see a diverse set of factors, such as biology, coun-
tries, films, sports and musical bands, and all entities
in each factor seem to be closely related to each other.

Table 8: AUC-PR for Knowledge Bases

Datasets FB-500K NELL-50K WN-100K
TransE 0.645 0.623 0.674
TransH 0.744 0.681 0.613
BPBFM-1 0.780 0.774 0.681

Table 9: AUC and AUC-PR (A-PR below) comparison
between BPBFM-1 and BPBFM-2

Datasets FB-500K NELL-50K WN-100K
AUC A-PR AUC A-PR AUC A-PR

BPBFM-1 0.724 0.648 0.742 0.793 0.648 0.622
BPBFM-2 0.727 0.665 0.783 0.806 0.725 0.717
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Figure 4: Similarities between Relations in Wordnet

In addition, to indicate BPBFM-2’s ability in learning
the prominent relations in different topics, we present
five topics of relations, and for each topic show top-5
relations. The results are shown in Table 7. In factor
1, we find that these relations are all about education,
and the other relations in the other four topics make
sense as well.

We also show the inferred similarities between differ-
ent relations by treating each column of matrix η as
the feature vector for the corresponding relation. As
WN-100K has only 11 relations, it is an ideal dataset
to intuitively show relation similarities via a corre-
lation plot. The consine similarity among relations

are shown in figure 4. In the plot three pairs of re-
lations, {type of, has instance}, {part of, has part},
and {member holonym, member meronym}, are found
similar to each other, which makes a lot sense because
if we switch the head and tail in a triplet{head, rela-
tion, tail}, the two relations in each pair are basically
the same relation.

Figure 4 the pairwise similarities between the 11 rela-
tions present in the Wordnet data as computed using
the inferred η matrix by BPBFM-2. As shown in the
plot, the model is able to correctly infer the similarities
between the relations.

6 CONCLUSION

We have presented a scalable and fully Bayesian bi-
linear non-negative latent factor model to analyze
large multi-relational data. A rich generative model-
ing framework enables to our models to not just learn
embeddings of entities and relations and perform tasks
such as link-prediction and knowledge-based comple-
tion, but also gives interpretable results for further
qualitative analyses. In particular, the topic-based em-
beddings learned by our models can be useful in itself,
e.g., for grouping entities and/or relations in terms of
the topics they represent. Computational cost that
scales w.r.t. the number of positive triplets makes our
framework an ideal choice for learning from real-world
multi-relations data that are massive (in terms of num-
ber of entities and relations) yet have very few positive
triplets. Our framework can be extended in several
directions; for example, allowing new entities and/or
relations to be added; adding a temporal dimension
(e.g., a fact may be a true over a period of time but
not forever (Dong et al., 2014)); or incorporating other
sources of information, e.g., a text corpus in addition
to the knowledge base (Wang et al., 2014b).
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Supplementary: Scalable Bilinear Non-negative Latent Factor
Models for Multi-Relational Data

1 Gibbs Sampling for BPBFM-2

Just as we did for BPBFM-1, we can express each
latent count X rij in BPBFM-2 (which models each

Λr as Λr =
∑M
m=1 ηmrG

m) as a sum of the fol-

lowing form: X rij =
∑K
k1

∑K
k2

∑M
m Xr

ik1k2mj
where

X rik1k2mj ∼ Poisson(uik1ηmrG
m
k1k2

ujk2). We fur-

ther define X ··k1k2m· =
∑N
i

∑N
j

∑R
r=1 X rik1k2mj and

X r···m· =
∑N
i

∑N
j

∑K
k1=1

∑K
k2=1 X rik1k2mj , using addi-

tive property of Poisson distribution

X ··k1k2m· ∼ Poisson(θk1k2G
m
k1k2

R∑
r=1

ηmr) (1)

X r···m· ∼ Poisson(ηmr

K∑
k1=1

K∑
k2=1

θk1k2G
m
k1k2) (2)

With these defined, we proceed to give the update
equations for the Gibbs sampler for BPBFM-2.

Sampling X rij: Xr
ij is sampled just as in model-1.

Sampling X rik1k2mj: X
r
ik1k2mj

can be sampled as

X rik1k2j ∼ Mult(X rij ;
uik1ηmrG

m
k1k2

ujk2∑K
k1=1

∑K
k2=1 uik1Λrk1k2ujk2)

(3)
Sampling U:,k: Using Dirichlet-multinomial conju-
gacy, each column of U can be sampled as

U:,k ∼ Dir(a+ X ·1k···, a+ X ·2k···, . . . , a+ X ·Nk···) (4)

where X ·ik··· =
∑K
k2=1

∑N
j=1

∑M
m=1

∑R
r=1 X rikk2mj .

Sampling dmm:. Marginalizing out Gmk1k2 from Eq.(1),
we have

X ··k1k2m· ∼ NegBin((εm)δk1k2dmk1(dmk2)1−δk1k2 , pk1k2)
(5)

where pk1k2 =
θk1k2

∑R
r=1 ηmr

θk1k2

∑R
r=1 ηmr+β

. Using the data aug-

mentation scheme proposed we used for BPBFM-1, dmk
can be sampled by first sampling

`mkk2 ∼
X·

·k1k2m·∑
t=1

Bern(
(εm)δk1k2dmk1(dmk2)1−δk1k2

(εm)δk1k2dmk1(dmk2)1−δk1k2 + t− 1
)

(6)
and then sampling

dm ∼ (7)

Ga(
γ0
K

+

K∑
k2

`mkk2 ,
1

c0 −
∑K
k2

(εm)δkk2 (dmk2)1−δkk2 ln(1− pkk2)
)

Sampling εm: εm can be sampled as

εr ∼ Ga(e0 +

K∑
k

`rkk,
1

f0 −
∑K
k d

m
k ln(1− pkk)

) (8)

Sampling Gmk1k2 : Using Gamma-Poisson conjugacy,
Gmk1k2 can be sampled by

Gmk1k2 ∼ (9)

Ga((εm)δk1k2drk1(drk2)1−δk1k2 +X ··k1k2m·,
1

β + θk1k2
∑R
r=1 ηmr

)

Sampling ηmr: Using equation (2) and Gamma-
Poisson conjugacy, ηmr can be sampled by

ηmr ∼ Ga(h0 + X r···m·,
1

q0 +
∑K
k1=1

∑K
k2=1 θk1k2G

m
k1k2

)

(10)

2 Online Gibbs Sampling

In this section, we provide the details of the online
Gibbs sampling algorithms for both of our models.
Our online Gibbs sampling algorithms are based on the
idea of the recently developed Bayesian Conditional
Density Filtering (BCDF) framework (Guhaniyogi
et al., 2014). They key idea in BCDF is to process
data in small minibatches, and maintain and update
sufficient statistics of the model parameters with each
new minibatch of the data. In our models, these suffi-
cient statistics are the latent counts.

2.1 Online Gibbs Sampling for BPBFM-1

Denoting It as indices of valid triplets in minibatch
selected at iteration t, and I as the indices of all
the valid triplets in training data. Define X r,tik·· =
|I|
|It|

∑K
k2=1

∑N
j=1,ij∈It X

r
ikk2j

, X tik·· = |I|
|It|

∑R
r=1 X

r,t
ik··,

and X r,t·k1k2· = |I|
|It|

∑N
i,j∈It X

r,t
ik1k2j

, where |I| and It are

cardinalities of the two sets. Then similar to batch
Gibbs Sampling, define following quantities for t ≤ 2:

X r,tik·· = (1 − ρ)X r,t−1ik·· + ρ |I||It|
∑K
k2=1

∑N
j=1,ij∈It X

r
ikk2j

,

X tik·· = (1 − ρ)X t−1ik·· + ρ |I||It|
∑R
r=1 X rtik··, and

X r,t·k1k2· = (1 − ρ)X r,t−1·k1k2· + ρ |I||It|
∑N
ij,ij∈It X

r,t
ik1k2j

.

Here ρ = (t + t0)−w is a decaying learning rate,
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as used in other online inference algorithms, such
as stochastic variational inference (Hoffman et al.,
2013). Here, t0 > 0 and w ∈ (0.5, 1] are required to
guarantee convergence. With these defined, online
Gibbs sampling at iteration t proceeds as:

Sampling U:,k: Each column of U can be sampled as

U:,k ∼ Dir(a+ X t1k··, a+ X t2k··, . . . , a+ X tNk··) (11)

Sampling drk: d
r
k can be sampled by first sampling

`rkk2 ∼
Xr,t

·k1k2·∑
t=1

Bern(
(εr)δk1k2drk1(drk2)1−δk1k2

(εr)δk1k2drk1(drk2)1−δk1k2 + t− 1
)

(12)
and then sampling

drk ∼ (13)

Ga(
γ0
K

+

K∑
k2

`rkk2 ,
1

c0 −
∑K
k2

(εr)δkk2 (drk2)1−δkk2 ln(1− pkk2)
)

Sampling εr: εr can be sampled as

εr ∼ Ga(e0 +

K∑
k

`rkk,
1

f0 −
∑K
k d

r
k ln(1− pkk)

) (14)

Sampling Λrk1k2 : Λrk1k2 can be sampled by

Λrk1k2 ∼ (15)

Ga((εr)δk1k2drk1(drk2)1−δk1k2 + X r,t·k1k2·,
1

β + θk1k2
)

X rij , εr and X rik1k2j are sampled the same way as the
batch Gibbs sampling.

2.2 Online Gibbs Sampling for BPBFM-2

Similar to online BPBFM-1, we define X ·,t·k1k2m· =

(1−ρ)X ·,t−1·k1k2m·+ρ
|I|
|It|

∑
ij,ij∈It

∑R
r=1 X rik1k2mj , X

r,t
···m· =

(1 − ρ)X r,t−1···m· + ρ |I||It|
∑
ij,ij∈It

∑K
k1=1

∑K
k2=1 X rik1k2mj ,

and X ·,tik··· = (1 − ρ)X ·,t−1ik · ·· +

ρ |I||It|
∑K
k2=1

∑N
j=1,ij∈It

∑M
m=1

∑R
r=1 X rikk2mj . With

these defined, we proceed to give the update equations
for the online Gibbs sampler for model-2:

Sampling U:,k: Each column of U can be sampled as

U:,k ∼ Dir(a+ X ·,t1k···, a+ X ·,t2k···, . . . , a+ X ·,tNk···) (16)

Sampling dmm: dmk can be sampled by first sampling

`mkk2 ∼
X·,t

·k1k2m·∑
t=1

Bern(
(εm)δk1k2dmk1(dmk2)1−δk1k2

(εm)δk1k2dmk1(dmk2)1−δk1k2 + t− 1
)

(17)
and then sampling

dmk ∼ (18)

Ga(
γ0
K

+

K∑
k2

`mkk2 ,
1

c0 −
∑K
k2

(εm)δkk2 (dmk2)1−δkk2 ln(1− pkk2)
)

Sampling Gmk1k2 : Using Gamma-Poisson conjugacy,
Gmk1k2 can be sampled by

Gmk1k2 ∼ (19)

Ga((εm)δk1k2drk1(drk2)1−δk1k2 +X ·,t·k1k2m·,
1

β + θk1k2
∑R
r=1 ηmr

)

Sampling ηmr: ηmr can be sampled by

ηmr ∼ Ga(h0 + X r,t···m·,
1

q0 +
∑K
k1=1

∑K
k2=1 θk1k2G

m
k1k2

)

(20)

X rij , X rik1k2mj , ε
m εm can be sampled the same way as

the batch Gibbs sampling.
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