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Abstract

Deep learning models suffer from catastrophic forget-
ting when trained in an incremental learning setting. In
this work, we propose a novel approach to address the
task incremental learning problem, which involves training
a model on new tasks that arrive in an incremental man-
ner. The task incremental learning problem becomes even
more challenging when the test set contains classes that are
not part of the train set, i.e., a task incremental general-
ized zero-shot learning problem. Our approach can be used
in both the zero-shot and non zero-shot task incremental
learning settings. Our proposed method uses weight rec-
tifications and affine transformations in order to adapt the
model to different tasks that arrive sequentially. Specifi-
cally, we adapt the network weights to work for new tasks by
“rectifying” the weights learned from the previous task. We
learn these weight rectifications using very few parameters.
We additionally learn affine transformations on the outputs
generated by the network in order to better adapt them for
the new task. We perform experiments on several datasets in
both zero-shot and non zero-shot task incremental learning
settings and empirically show that our approach achieves
state-of-the-art results. Specifically, our approach outper-
forms the state-of-the-art non zero-shot task incremental
learning method by over 5% on the CIFAR-100 dataset. Our
approach also significantly outperforms the state-of-the-art
task incremental generalized zero-shot learning method by
absolute margins of 6.91% and 6.33% for the AWA1 and
CUB datasets, respectively. We validate our approach us-
ing various ablation studies.

1. Introduction

Deep learning models are used to solve many real-
world problems, and they have even surpassed human-
level performance in many tasks. However, deep learn-
ing models generally require all the training data to be
available at the beginning of the training. If this is not
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the case, deep learning models suffer from catastrophic
forgetting [18], and their performance on the previously
seen classes or tasks starts degrading. In contrast, human
beings can continually learn new classes of data without
losing the previously gained knowledge. To avoid catas-
trophic forgetting, deep learning models should perform
lifelong/continual/incremental learning [5, 20]. Deep learn-
ing models also require all the classes to be present in the
train set. When the test set contains classes not seen during
training, the performance of these models degrades signif-
icantly [30, 42]. This is known as the zero-shot learning
problem. The incremental learning problem becomes even
more challenging when coupled with the zero-shot learning
problem. In this paper, we solve for the task incremental
learning problem in the zero-shot and non zero-shot setting.

The task incremental learning problem involves training
the model on one task at a time, where each task has a set of
non-overlapping classes. When a new task becomes avail-
able to the network for training, the previous task data is
no longer accessible. Training on only the new task data
causes the network to forget all the previous task knowl-
edge. Therefore, the model has to prevent the forgetting of
older tasks when training on new tasks. The task incremen-
tal generalized zero-shot learning problem involves training
the model on one task at a time, where each task has a set of
unseen classes not seen during training, which is the same
as the zero-shot learning setting. The objective of the model
is to successfully identify the seen and unseen classes of all
the trained tasks.

We propose a novel approach called Rectification-based
Knowledge Retention (RKR) for the task incremental learn-
ing problem in the zero-shot and non zero-shot setting. Our
approach (RKR) learns weight rectifications to adapt the
network weights for a new task. After learning these weight
rectifications, we can quickly adapt the network to work for
images from that task by simply applying these weight rec-
tifications to the network weights. We utilize an efficient
technique for learning these weight rectifications to limit
the model size. We also learn affine transformations (scal-
ing factors) for all the intermediate outputs of the network
that allow better adaptation of the network to the respective
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task.
We perform various experiments for the task incremen-

tal learning problem in both the zero-shot and non zero-shot
settings in order to show the effectiveness of our approach.
Using various ablation experiments, we validate the com-
ponents of our approach. Our contributions can be summa-
rized as follows:

• We propose a novel approach for the task incremental
learning problem in the zero-shot and non zero-shot
settings that learns weight rectifications and scaling
factors in order to quickly adapt the network to the re-
spective tasks.

• RKR introduces very few parameters during training
for learning the weight rectifications and scaling fac-
tors. The model size growth in our method is signif-
icantly low as compared to other dynamic network-
based task incremental learning methods.

• We experimentally show that our method
Rectification-based Knowledge Retention (RKR)
significantly outperforms the existing state-of-the-art
methods for the task incremental learning problem in
both the zero-shot and non zero-shot settings.

2. Related Work
2.1. Incremental Learning

Incremental learning is a setting where we have to train
the model on tasks that arrive incrementally. The model has
to retain the knowledge gained from the older task while
learning the new tasks [24, 1, 40]. We can categorize incre-
mental learning methods into: replay-based, regularization-
based, and dynamic network-based methods.

Replay-based methods require saving data from old tasks
in order to fine-tune the network along with the new task
data to reduce forgetting. The authors in [24] propose to
use an exemplar-based prototype rehearsal technique along
with distillation. The methods proposed in [11, 10] use a
custom architecture to produce pseudo samples for the older
tasks to be used for rehearsal.

Regularization-based methods make use of regulariza-
tion techniques to prevent network outputs from changing
significantly while training on new tasks to preserve the
knowledge gained from the older tasks. The work in [17]
proposes to use knowledge distillation as the regularization
technique. In [24, 2], the authors propose to use modified
classification techniques suited to continual learning in ad-
dition to the distillation loss.

Dynamic network-based methods [36, 8, 3, 31, 16] use
network expansions/modifications for training new tasks.
The work in [26] proposes to create an extra network for
each new task with lateral connections to the networks of

the older tasks. The method proposed in [37] uses rein-
forcement learning to determine how many neurons to add
for each new task. DEN [39] performs efficient selective re-
training and dynamically expands the network for each task
with only the required amount of units. The method pro-
posed in [23] uses a random path selection methodology for
each task. The authors in [38] propose an order-robust ap-
proach APD, which uses task-shared and task-adaptive pa-
rameters. Recently the authors in [29] proposed CCLL that
calibrates the feature maps of convolutional layer outputs to
perform incremental learning.

Our method RKR follows the dynamic network ap-
proach, but it is the first work that learns rectifications for
the layer weights and outputs to adapt the model to any
task quickly. Even though our method is dynamic network-
based, it does not use the parameter isolation approach,
which incrementally reserves a set of model parameters for
new tasks. Therefore, our model will not run out of model
capacity to accommodate future tasks. Our method intro-
duces a significantly less number of parameters to learn the
weight rectifications and scaling factors, e.g., for CIFAR-
100 tasks using the ResNet-18 architecture, RKR introduces
only 0.5% additional parameters per task.

2.2. Zero-Shot Learning

Zero-Shot Learning (ZSL) [30, 42, 43, 4] is a prob-
lem setting where the model has to recognize classes not
seen during training. In the generalized zero-shot learn-
ing setting, the test data can be from both the seen and un-
seen classes. Zero-shot learning methods utilize side infor-
mation in the form of class embeddings/attributes that en-
code the semantic relationship between classes. The most
popular way to deal with ZSL is to learn an embedding
space where the image data and the class embedding are
close to each other [4]. Another popular approach is to
generate images/features of unseen classes by using their
class embeddings [7, 44]. The authors in [35] propose f-
CLSWGAN, which uses conditional Wasserstein GANs, to
generate features for unseen classes. Cycle-WGAN [7] im-
proves upon f-CLSWGAN by using reconstruction regular-
ization in order to preserve the discriminative features of
classes. CADA-VAE [27] uses a VAE to learn to gener-
ate class embedding features in a latent embedding space to
train a zero-shot classifier. However, these methods require
data replay to work in the continual learning setting [33].

Recently, the authors in [33] proposed an approach
LZSL for the task incremental generalized zero-shot learn-
ing problem. LZSL performs selective parameter retraining
and knowledge distillation to preserve old domain knowl-
edge and prevent catastrophic forgetting in the image fea-
ture encoder. We extend our proposed method RKR to the
task incremental generalized zero-shot learning setting [33].
In this setting, RKR “rectifies” the weights and outputs of
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the image features encoder network in order to perform con-
tinual learning and prevent catastrophic forgetting.

3. Problem Definition
3.1. Task Incremental Learning

In the task incremental learning setting, the network re-
ceives a sequence of tasks containing new sets of classes.
When a new task becomes available, the previous task data
are not accessible. The objective of task incremental learn-
ing is to obtain a model that performs well on the current
task as well as the previous tasks.

3.2. Task Incremental Generalized Zero-Shot
Learning

The task incremental generalized zero-shot learning set-
ting also involves training the model on a sequence of tasks,
but each task contains a set of seen and unseen classes, and
the final model should perform well on the seen and unseen
classes of the current task as well as the previous tasks. For
this problem, we follow the setting defined in [33], where
each task is a separate dataset. When a new task becomes
available for training, the older tasks are no longer accessi-
ble for further training/fine-tuning.

4. Proposed Method
4.1. Rectification-based Knowledge Retention

We propose a task incremental learning approach called
Rectification-based Knowledge Retention (RKR) that ap-
plies network weight rectifications and scaling transforma-
tions to adapt the network to different tasks.

Let us assume that we have a deep neural network with
N layers, i.e., {L1, L2..., LN}. Each layer can be a convo-
lutional layer or a fully connected layer. Let Θl represent
the parameter weights of layer Ll. If we train this network
on a task containing a set of classes, the network will learn
the parameter weights Θl for each layer l ∈ {1, 2, .., N}.
However, if we then train the network on a new task (with a
new set of classes), it will learn new parameter weights Θ∗l
to work for this task and will lose information regarding the
previous tasks (catastrophic forgetting).

We propose to avoid this problem using the dynamic
network-based approach. For each task, we learn the rec-
tifications needed to adapt the layer weights of the network
to work for that task. Let Rt

l refer to the weight rectifica-
tion needed to adapt the lth layer of the network to work
for task t. We use a rectification generator (RG) for learn-
ing these rectifications. RG uses very few parameters to
learn the weight rectifications as described in Sec. 4.2. The
weight rectifications Rt

l are added to the layer weights Θl

for each task t (Figs. 1, 2).

Θt
l = Θl ⊕Rt

l (1)

where Θl refers to weights of layer l of the network, Rt
l

refers to the rectifications to be learned for the weights of
the layer l for task t, Θt

l refers to the rectified weights of
the layer l for task t, ⊕ refers to element-wise addition.
The layer weight Θl is trained only on the first task and is
adapted using the weight rectifications Rt

l (that are learned
for all tasks) to obtain Θt

l .
Apart from the weight rectifications, we also learn scal-

ing factors for performing affine transformations on the in-
termediate outputs generated by each layer of the network.
We use a scaling factor generator (SFG) for learning the
scaling factors. In the case of a fully connected layer l, the
scaling factors F t

l have the same size as the layer output
Ol, and we multiply them element-wise to each component
of Ol (Fig. 2). In the case of a convolutional layer l, the
scaling factors F t

l have the same number of elements as the
number of feature maps in Ol, and we multiply them to the
corresponding feature maps of Ol (Fig. 1). These learned
scaling factors represent the rectifications needed to adapt
the intermediate network outputs to the corresponding task.

Ot
l = Ol ⊗ F t

l (2)

whereOl refers to the output from the layer l of the network,
F t
l refers to the scaling factors learned for the output of the

layer l of the network for task t, ⊗ refers to the scaling
operation, and Ot

l denotes the scaled layer output for task t.
Our approach applies the weight rectifications and scaling
factors to quickly adapt the network for any task t.

4.2. Reducing Parameters for Weight Rectification

4.2.1 Convolutional Layers

The weight rectifications for a convolutional layer requires
to be of the same size as the convolutional layer weights.
Let Wf ,Hf ,Cin be the width, height and number of chan-
nels of each filter of the convolutional layer Ll and Cout be
the number of filters used in Ll. Therefore, the total size of
the convolutional layer weights is Wf ×Hf ×Cin ×Cout.
The weight rectification Rt

l for layer Ll has to be of the
same size. In order to reduce the number of parame-
ters needed to generate these weight rectifications, we use
a rectification generator (RG). The rectification generator
(RG) learns two matrices of smaller size i.e., LM t

l of size
(Wf ∗Cin)×K and RM t

l of size K × (Hf ∗Cout), where
∗ represents scalar multiplication. Here, K � (Wf ∗ Cin)
and K � (Hf ∗ Cout). This matrix factorization ensures
that we introduce very few parameters to generate these
weight rectifications. The product of these two matrices
produces the weight rectifications which are reshaped to the
size Wf ×Hf ×Cin×Cout and added to the convolutional
layer weights element-wise. Therefore, RG computes the
weight rectifications Rt

l for task t as:

Rt
l = MATMUL(LM t

l , RM
t
l ) (3)
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Figure 1: RKR for a convolutional layer. The weight rectifications Rt
l produced by the rectification generator (RGt

l) are
added to the layer weights (Θl) of the convolutional layer l for task t. The task-adapted convolution layer weights (Θt

l) are
applied to the input Il to produce the layer output Ol. The scaling factor generator (SFGt

l) produces scaling factors F t
l that

are applied to Ol to produce the scaled layer output (Ot
l ).

Figure 2: RKR for a fully connected layer. The weight rec-
tifications Rt

l produced by the rectification generator (RGt
l)

are added to the layer weights (Θl) of the fully connected
layer l for task t. The task-adapted fully connected layer
weights (Θt

l) are applied to the input Il to produce the layer
output Ol. The scaling factor generator (SFGt

l) produces
scaling factors F t

l that are applied to Ol to produce the
scaled layer output (Ot

l ).

where MATMUL refers to matrix multiplication.
We apply the adapted convolution layer weights (Θt

l) to
the input (Il) of size, say, W ×H×Cin, to obtain an output
of size W ′ ×H ′ ×Cout (See Fig. 1). Here, W , W ′ refer to
the width of the feature maps before and after applying the
convolution. H , H ′ refer to the height of the feature maps
before and after applying the convolution. We then apply
scaling transformation to the output Ol. The scaling factor
generator (SFG) learns a scaling parameter for each feature
map. Therefore, SFG introduces a very insignificant num-
ber of parameters, i.e., Cout, which is equal to the number
of feature maps in Ol.

EPconv =
K ∗ (Wf ∗ Cin +Hf ∗ Cout) + Cout

Wf ∗Hf ∗ Cin ∗ Cout
∗ 100

(4)

where EPconv refers to the percentage of extra parameters
introduced by our approach for each convolutional layer.

4.2.2 Fully Connected Layers

The weight rectifications Rt
l for the fully connected layers

require to be of the same size as the layer weights Θl. Let
Θl be of size Hin × Hout. Here Hin and Hout refer to
the size of input and output of the fully connected layer,
respectively. In order to reduce the number of parameters
needed to generate the weight rectifications, the rectifica-
tion generator (RG) learns two matrices of smaller size, i.e.,
LM t

l of size Hin ×K and RM t
l of size K ×Hout. Here,

K < Hin and K < Hout. Therefore, the total parameters
added will not be significant. The product of these two ma-
trices will give the weight rectifications of size Hin ×Hout

which we add to the layer weights Θl element-wise to pro-
duce the adapted layer weight Θt

l . Therefore, RG computes
the weight rectifications Rt

l for task t as follows:

Rt
l = MATMUL(LM t

l , RM
t
l ) (5)

where MATMUL refers to matrix multiplication.
We apply the adapted fully connected layer weights (Θt

l)
to the input (Il) of size Hin, to obtain an output (Ol) of size
Hout (See Fig. 2). We then apply scaling transformation to
the output Ol. The scaling factor generator (SFG) learns a
parameter for each component ofOl. Therefore, SFG intro-
duces a very insignificant number of parameters, i.e., Hout.

EPfc =
K ∗ (Hin +Hout) +Hout

Hin ∗Hout
∗ 100 (6)

where, EPfc refers to the percentage of extra parameters
introduced by our approach for each fully connected layer.

Therefore, our approach introduces very few parameters
per task to learn weight rectifications, and scaling factors
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in the incremental learning setting, e.g., for the ResNet-18
architecture RKR introduces only 0.5% additional parame-
ters per ImageNet-1K task. Intuitively, this simulates sepa-
rate networks for each task using very few parameters, e.g.,
our model for ImageNet-1K with 10 tasks has (100 + 10 ∗
0.5)% capacity. However, directly using separate networks
will lead to an impractical model with (100 ∗ 10)% capacity.

5. Task Incremental Learning Experiments
(Non Zero-shot Setting)

5.1. Datasets

We perform the task incremental learning experiments
on the CIFAR [14] and ImageNet [25] datasets for the non
zero-shot setting. We perform experiments on CIFAR-100
with 10 tasks where each task contains 10 classes. For
split CIFAR-10/100 experiments, we use all the classes of
CIFAR-10 for the first task and randomly choose 5 tasks
of 10 classes each from CIFAR-100. So we have 6 tasks for
this setting. In the case of ImageNet-1K, we group the 1000
classes into 10 tasks of 100 classes each.

5.2. Implementation Details

In our approach, we learn weight rectifications and scal-
ing factors for each convolutional layer and fully connected
layer of the network (except the classification layer). We
train the full network on the first task (base network). For
every new task, we only learn weight rectifications and scal-
ing factors for all network layers to adapt them to the new
task. During testing, depending on the task, we apply the
corresponding weight rectifications and scaling factors to
the base network to work for that task.

For CIFAR-100 experiments, we use the ResNet-18 ar-
chitecture [9]. For split CIFAR-10/100 experiments, we use
ResNet-32 architecture [9]. In the above experiments, we
train the network for 150 epochs for each task with the ini-
tial learning rate as 0.01, and we multiply the learning rate
by 0.1 at the 50, 100, and 125 epochs. We also perform ex-
periments with the LeNet architecture [15] on CIFAR-100.
We train the network on each task for 100 epochs with the
initial learning rate as 0.01 and multiply the learning rate
with 0.5 at the 20, 40, 60, and 80 epochs. For ImageNet-1K
experiments, we use the ResNet-18 architecture and train
the network for 70 epochs for each task with the initial
learning rate as 0.01, and we multiply the learning rate by
0.2 at the 20, 40, and 60 epochs. We use the SGD optimizer
in all our experiments. In all the cases, we run experiments
for 5 random task orders and report the average accuracy.
We perform experiments with K = 2 since this is a good
choice considering the accuracy/extra-parameters trade-off
as shown in Table 2. Our method utilizes task labels during
testing similar to [29, 38, 39].

Figure 3: Experimental results on CIFAR-100 using
ResNet-18. ‘∗’ denotes replay-based approach.

5.3. CIFAR-100 Results

For the experiments on the CIFAR-100 incremental
learning tasks using 10 classes at a time, we perform exper-
iments with various methods such as CCLL [29], SI [41],
EWC [13], iCARL [24] and RPS [23]. CCLL uses task la-
bels at test time, and we modify SI and EWC to use task
labels during testing for a fair comparison. We addition-
ally report the result for iCaRL, RPS-Net which are replay-
based methods. These methods store data from the previ-
ous tasks as additional data to use this data along with the
new task data to train the network to reduce catastrophic
forgetting. RKR does not store previous task data and is
more scalable in this regard. We provide these additional re-
sults for completeness (replay-based and non replay-based).
However, replay-based should not be directly compared
with RKR. Figure 3 indicates that our approach RKR out-
performs all existing methods. RKR outperforms CCLL
[29] by an absolute margin of 5.1% in the overall accu-
racy. Our approach performs consistently better than all
other methods as more tasks arrive.

RKR applies the weight corrections to adapt the network
to the new task, which is very natural and intuitive because
training on a new task changes the network layer weights
and, consequently, the corresponding features. In contrast,
CCLL adapts the network to the new task by only calibrat-
ing the convolutional layer output feature maps that are bi-
ased to the initial task. This is the reason why we see a
significant performance gap between RKR and CCLL. This
problem becomes even more apparent if the new task is very
different from the initial task. In such a case, the features
extracted by the model trained on the initial task will not
be relevant to the new task, and it will be very difficult to
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Methods Capacity Accuracy
L2T [38] 100% 48.73%
EWC [13] 100% 53.72%
P&C [28] ICML’18 100% 53.54%
PGN [26] 171% 54.90%
RCL [37] NIPS’18 181% 55.26%
DEN [39] ICLR’18 181% 57.38%
APD [38] ICLR’20 135% 60.74%
CCLL [29] NIPS’20 100.7% 63.71%
RKR-Lite (Ours) 100.7% 66.32%
RKR (Ours) 104.3% 69.58%

Table 1: Experimental results on CIFAR-100 using LeNet.

Figure 4: Experimental results on split CIFAR-10/100 using
ResNet-32 to check for catastrophic forgetting. We report
the achieved accuracy for each task when the network is
trained on that task (marked as during) and after the network
has been trained on all the tasks (marked as after).

calibrate the feature maps to correctly estimate the feature
maps of the new task. For example, on taking MNIST im-
ages in the initial task and taking 10 tasks of CIFAR-100
as the subsequent tasks, the performance gap between RKR
and CCLL increases from 5.1% to 16% absolute margin.

We also perform experiments on the CIFAR-100 tasks
using the LeNet architecture (20-50-800-500) as used in
[38]. All the methods compared in Table 1 use task labels
during testing. The results in Table 1 indicate that RKR out-
performs existing state-of-the-art methods. Specifically, our
approach RKR outperforms CCLL by an absolute margin of
5.87%. We also report the results for RKR-Lite, which uses
only weight rectifications for the convolutional layers and
only scaling factors for the fully connected layers. RKR-
Lite introduces the same number of parameters as CCLL
but outperforms it by an absolute margin of 2.61%.

Split CIFAR-10/100: For the split CIFAR-10/100 tasks
we use the ResNet-32 architecture and compare our method
RKR with CCLL and HNET [31], which are the state-of-
the-art methods for this setup and use task labels during test-

Figure 5: Experimental results for 5 runs of task incre-
mental learning experiments using RKR on the CIFAR-100
dataset with ResNet-18.

K % Params. ↑ % FLOPS ↑ Accuracy
1 0.3355% 8.6× 1e-4% 85.55%
2 0.5426% 8.6× 1e-4% 87.60%
4 0.9569% 8.6× 1e-4% 87.90%
8 1.7854% 8.6× 1e-4% 88.49%

Table 2: Experimental results on CIFAR-100 with ResNet-
18 using RKR for different values of K. We report the aver-
age accuracy of the 10 tasks.

Arch. Wt. Rect. Scaling % Params. ↑ % FLOPS ↑ Acc.
LeNet 7 3 0.0497% 6.4× 1e-4% 62.3%

3 7 0.3795% 0.0% 69.1%
3 3 0.4292% 6.4× 1e-4% 69.6%

Res-18 7 3 0.1283% 8.6× 1e-4% 79.2%
3 7 0.4143% 0.0% 87.5%
3 3 0.5426% 8.6× 1e-4% 87.6%

Table 3: Experimental results on CIFAR-100 with LeNet
and ResNet-18 using RKR (K = 2) with different compo-
nents. 3 and 7 refer to presence and absence respectively.

ing. We observe in Fig. 4 that RKR prevents catastrophic
forgetting just like CCLL and HNET. Therefore, RKR helps
in avoiding catastrophic forgetting without significantly af-
fecting the network’s ability to learn each task properly.

Different First Task: As mentioned in Sec. 4.1, Θl is
trained only on the first task. Therefore, we perform exper-
iments with different first tasks. From Fig. 5, we observe
that the performance of RKR is stable for different first tasks
with different task orders.

Value of K: We perform experiments on the CIFAR-100
with ResNet-18 using different values of K. The results in
Table 2 indicates that forK = 2 is a good choice while con-
sidering extra-parameters/accuracy trade-off. Therefore, we
useK = 2 for all our experiments. We also observe that the
FLOPS increase due to RKR is insignificant.

Significance of Components: In Table 3, we observe
that without weight corrections, the model performs lower
by absolute margins of 7.3% and 8.4% for CIFAR-100 us-
ing LeNet and ResNet-18, respectively. Without scaling,
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Method 1 2 3 4 5 6 7 8 9 Final Acc.
iCaRL∗ [24] CVPR’17 90.1 82.8 76.1 69.8 63.3 57.2 53.5 49.8 46.7 44.1
RPS-Net∗ [23] NIPS’19 90.2 88.4 82.4 75.9 66.9 62.5 57.2 54.2 51.9 48.8
EEIL∗ [2] ECCV’18 95.0 95.5 86.0 77.5 71.0 68.0 62.0 59.8 55.0 52.0
CCLL [29] NIPS’20 91.4 88.3 86.5 86.6 84.6 83.5 82.7 81.7 81.2 81.3
RKR(Ours) 90.2 88.7 88.1 88.2 86.6 85.7 85.0 84.2 83.8 84.4+3.1

Table 4: Task incremental learning experiments on the ImageNet-1K dataset with 10 tasks. The reported accuracy for each
task is the average of all accuracies up to that task. ‘∗’ denotes replay-based approach.

Method Total aPY AWA1 CUB SUN
Mem. U S H U S H U S H U S H

Base 100% 6.69 0.59 1.09 5.14 0.92 1.56 0.87 0.67 0.76 43.40 33.95 38.10
SFT 100% 24.24 23.21 23.71 47.27 55.18 50.92 35.46 34.74 35.10 38.47 36.10 37.20
L1 200% 26.42 29.79 28.01 49.64 58.23 53.59 35.11 32.31 33.65 40.14 34.11 36.88
L2 200% 24.08 23.61 23.84 46.71 59.07 52.17 35.53 33.24 34.35 42.08 32.33 36.56
LZSL 200% 29.11 43.29 34.81 51.17 63.66 56.73 38.82 45.81 42.03 42.43 31.78 36.34
RKR(Ours) 113% 33.39 51.34 40.46 58.79 69.36 63.64 47.52 49.22 48.36 42.22 36.01 38.87
Original 400% 30.36 59.36 40.18 57.30 72.80 64.10 53.50 51.60 52.40 35.70 47.20 42.60

Table 5: Classification accuracy (%) of incremental generalized zero-shot learning on the sequence of datasets aPY, AWA1,
CUB, and SUN for our method RKR and other methods. LZSL [33] is the state-of-the-art method in this setting.

the model performance suffers slightly. However, we ob-
serve in task incremental generalized zero-shot learning that
scaling helps to improve the RKR performance (Sec. 6.3).

Forward Knowledge Transfer: In RKR, when we train
the model on a new task, we initialize the parameters of RG
and SFG from the previous task. If we train these parame-
ters from scratch for every new task, the model performance
falls by an absolute margin of 1.45% for CIFAR-100 using
the ResNet-18. Therefore, forward transfer of knowledge
occurs in RKR.

5.4. ImageNet-1K Results

From Table 4, we observe that RKR significantly outper-
forms the state-of-the-art CCLL method. Specifically, our
method outperforms CCLL by an absolute margin of 3.1%
(top-5 accuracy) even though both RKR and CCLL intro-
duce around 0.5% extra parameters per task. It should also
be noted that CCLL introduces 0.98% extra FLOPS in the
model, whereas RKR introduces only 2.8 × 1e-4% extra
FLOPS, which is very insignificant.

6. Task Incremental Learning Experiments
(Generalized Zero-Shot Setting)

6.1. Datasets

We experiment with four datasets for the task incre-
mental generalized zero-shot learning (GZSL) problem i.e.
Attribute Pascal and Yahoo (aPY) [6], Animals with At-
tributes 1 (AWA1) [34], Caltech-UCSD-Birds 200-2011
(CUB) [32], and SUN Attribute dataset (SUN) [22]. We
extract the image features of 2048 dimensions from the fi-

nal pooling layer of an ImageNet pre-trained ResNet-101.
We follow the training split proposed in [34] so that the test
classes do not overlap with the training classes.

6.2. Implementation Details

For the task incremental generalized zero-shot learning
problem, we use the setting described in [33]. The authors
in [33] propose a task incremental generalized zero-shot
learning problem where each task is a separate dataset and
show how a popular zero-shot learning approach, CADA-
VAE [27] suffers from catastrophic forgetting in the im-
age/visual feature encoder in this setting. We apply our
approach to this setting and show that RKR achieves state-
of-the-art results in this setting. In our approach, we apply
the weight corrections and scaling transformations to the vi-
sual features encoder. We use K = 16 to generate weight

aPY AWA1 CUB SUN
U S H U S H U S H U S H

33.39 51.34 40.46 58.79 69.36 63.64 47.52 49.22 48.36 42.22 36.01 38.87

AWA1 aPY CUB SUN
U S H U S H U S H U S H

61.93 66.49 64.13 30.96 55.25 39.68 48.06 50.36 49.18 47.08 31.78 37.95

CUB AWA1 aPY SUN
U S H U S H U S H U S H

51.11 53.88 52.46 56.02 70.01 62.24 30.82 53.39 39.08 46.25 32.05 37.87

SUN AWA1 CUB aPY
U S H U S H U S H U S H

45.28 36.67 40.52 57.81 67.91 62.46 47.51 49.48 48.47 31.21 57.87 40.55

Table 6: Experimental results for RKR with different first
dataset in the task incremental GZSL problem.
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Wt. Scaling aPY AWA1 CUB SUN
Rec. U S H U S H U S H U S H
3 7 32.34 52.78 40.10 52.50 69.80 59.93 45.12 42.54 43.79 40.97 30.97 35.28
7 3 29.97 52.08 38.05 52.82 61.53 56.84 39.17 39.00 39.08 36.81 29.30 32.63
3 3 33.39 51.34 40.46 58.79 69.36 63.64 47.52 49.22 48.36 42.22 36.01 38.87

Table 7: Classification accuracy (%) of task incremental generalized zero-shot learning on the aPY, AWA1, CUB and SUN
datasets using RKR with different combinations of its components. Wt. Rec. refers to weight rectifications.

K Train aPY AWA1 CUB SUN
Mem. U S H U S H U S H U S H

1 101% 30.33 58.78 40.01 55.66 69.49 61.81 40.11 40.68 40.39 40.56 30.50 34.82
4 104% 31.10 56.55 40.13 55.44 69.16 61.55 39.37 47.95 43.24 42.71 30.78 35.77
16 113% 33.39 51.34 40.46 58.79 69.36 63.64 47.52 49.22 48.36 42.22 36.01 38.87
32 126% 33.60 51.67 40.72 59.50 69.61 64.16 49.04 51.08 50.04 45.00 34.92 39.33

Table 8: Classification accuracy (%) of task incremental generalized zero-shot learning using RKR with different K values.

rectifications in this setting and report the average results of
5 runs for our method. Please refer to the supplementary
materials for further details.

We apply RKR to the CADA-VAE framework, which
contains only fully connected layers. SCM in CCLL
only calibrates convolutional layer outputs (feature maps).
Therefore, CCLL cannot be applied to CADA-VAE. We
compare our method RKR with LZSL [33] and with the
baseline methods proposed in [33] i.e., a) Sequential Fine-
tuning (SFT): model is fine-tuned on new tasks sequentially,
and the model parameters are initialized from the model
trained on the previous task, b) L1 regularization (L1):
model weights are initialized with the weights of the model
trained on the previous task, and the model is trained with
an L1-regularization loss between the previous and current
network weights, c) L2 regularization (L2): same as (b) but
with L2-regularization loss, d) “Base": model trained se-
quentially on all tasks without using any incremental learn-
ing methods or fine-tuning, e) “Original": trains separate
networks for each task.

6.3. Results

Table 5 compares the performance of our method with
the baselines, and LZSL [33] using the three evaluation met-
rics: unseen average class accuracy (U), seen average class
accuracy (S), and harmonic mean of the two (H). The se-
quence of tasks/datasets is aPY, AWA1, CUB, and SUN, for
a fair comparison with the other methods.

Table 5 also reports the total memory required by each
method for the four tasks. LZSL requires 200% memory
for the image feature encoder as it stores the image fea-
tures encoder trained on the previous task to calculate the
knowledge distillation loss. The L1 and L2 baselines also
require 200% memory as they store the image features en-
coder trained on the previous task to calculate the L1/L2

loss between the weights of the two encoders. The “Origi-
nal" model trains four separate networks for the four tasks
and requires 400% total memory. Our method RKR re-
quires around 3.28% additional parameters for each task.
Therefore, on four tasks, RKR requires a total of about
113% memory for the image features encoder.

The “Base" model performs extremely badly on the first
three tasks and manifests a clear case of catastrophic for-
getting. SFT performs better than the “Base" model since
it fine-tunes the model on the new task. However, its per-
formance starts dropping for the older tasks as it learns new
tasks. The forgetting is lower in SFT but is still substan-
tial. We observe similar forgetting for the L1 and L2 base-
lines. Our method RKR significantly outperforms LZSL
[33] as well as all the baseline methods. Specifically, RKR
outperforms the state-of-the-art method LZSL by absolute
margins of 5.65%, 6.91%, 6.33%, and 2.53% for the aPY,
AWA1, CUB, and SUN datasets, respectively. We also com-
pare the average H values across the four datasets. The av-
erage H values are 10.2%, 36.73%, 38.03%, 36.73% and
42.48% for base, SFT, L1, L2 and LZSL [33] respectively.
The average H value for RKR is 47.83%, and that of the
“Original" model is 49.82%. Therefore, RKR is signifi-
cantly closer to the “Original" model as compared to LZSL.

Different First Task: Table 6 contains the results for
different sequences of tasks/datasets having different first
dataset. The H values for the AWA1 dataset with the first
dataset as aPY, CUB, and SUN are 63.64%, 62.24%, and
62.46%. Considering the fact that aPY, CUB, and SUN have
a large variation in the number of classes (aPY = 32, CUB
= 200, SUN = 717), this variation in the result is minor.
We observe the same pattern for the other three tasks with
different first tasks.

Significance of Components: From Table 7 we observe
that without weight rectifications, RKR performs lower by
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Initialization aPY AWA1 CUB SUN
U S H U S H U S H U S H

Random 33.39 51.34 40.46 54.11 67.13 59.92 37.84 44.25 40.79 36.11 28.29 31.73
Previous 33.39 51.34 40.46 58.79 69.36 63.64 47.52 49.22 48.36 42.22 36.01 38.87

Table 9: Classification accuracy (%) of task incremental generalized zero-shot learning using our proposed RKR with differ-
ent types of initialization: 1) random 2) from previous task.

absolute margins of 6.8%, 9.28%, and 6.24% for the AWA1,
CUB, and SUN datasets, respectively. Similarly, with-
out scaling, RKR performs lower by absolute margins of
3.71%, 4.57%, and 3.59% for the AWA1, CUB, and SUN
datasets, respectively. Therefore, both weight rectifications
and scaling factors are vital in this setting.

Value of K: Table 8 reports performances of RKR with
different values of K. K = 16 performs close to K = 32
for most of the datasets but requires significantly less total
memory, i.e., 113% vs. 126%. Therefore, we choose K =
16 for all our experiments in this setting, which significantly
outperforms the state-of-the-art method.

Forward Knowledge Transfer In RKR, when a new
task becomes available for training, we initialize the RG
and SFG parameters from the previous task. We also exper-
iment with training these parameters from scratch for each
task. Table 9 reports the performance of our method RKR
with the two types of initialization for the RG and SFG pa-
rameters. When we initialize these parameters from scratch,
the model performs lower by absolute margins of 3.72%,
7.57%, and 7.14% from the other case, for AWA1, CUB,
and SUN datasets, respectively. Therefore, forward transfer
of knowledge takes place in RKR.

7. Conclusion
We propose a novel approach called Rectification-

based Knowledge Retention (RKR) for the task incre-
mental learning problem. RKR learns rectifications
to adapt the network weights and intermediate out-
puts for every new task. We empirically show that
our approach significantly outperforms the state-of-
the-art methods for task incremental learning prob-
lem in both the zero-shot and non zero-shot settings.
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8. Supplementary Material

8.1. Task Incremental Learning (Generalized Zero-
Shot Setting)

We use our approach RKR to work for the task incre-
mental generalized zero-shot learning problem setting de-
scribed in [33]. The authors in [33] experimentally show
that CADA-VAE [27] suffers from catastrophic forgetting
in the image/visual features encoder when trained in the task
incremental generalized zero-shot learning setting. They
propose LZSL to solve this problem. For a fair compari-
son with LZSL, we use the same setting, setup, and base
architecture (CADA-VAE) as used in LZSL [33].

8.1.1 CADA-VAE

In this section, we provide a brief overview of the CADA-
VAE framework. For complete details, please refer to [27].
In the generalized zero-shot learning setting, there are S
seen classes and U unseen classes, and we have labeled
training examples for the seen classes only. The test im-
ages can be from both the seen and unseen classes. For each
seen and unseen class, we have access to their class/attribute
embeddings, which are generally vectors of hand-annotated
continuous attributes or Word2Vec [19] features. Zero-shot
learning methods leverage the class/attribute embeddings to
transfer information from seen classes to the unseen classes.
Similar to most zero-shot learning methods, CADA-VAE
operates on image features extracted by a pre-trained net-
work (ResNet-101).

The CADA-VAE framework consists of a variational au-
toencoder (VAE) for image/visual features (Ev, Dv) and
a VAE for the class/attribute embeddings (Ea, Da), each
having an encoder and decoder (see Fig. 6). The two en-
coders project the image features and class embeddings to
the common latent embedding space, respectively, and the
decoders reconstruct the image features and class embed-
dings from their latent embeddings. Specifically, the image
features encoder (Ev) maps the image features to µv and Σv

in the latent embedding space. Similarly, the class embed-
dings encoder (Ea) maps the class embeddings to µa and
Σa. CADA-VAE learns a common latent embedding space
for both the image/visual features and the class/attribute
embeddings and brings the latent embeddings of the im-
age features and class embeddings closer in the latent em-
bedding space. It utilizes cross-alignment loss (CA) and
distribution-alignment loss (DA) apart from the VAE loss
to achieve this objective. Cross-alignment involves train-
ing the class embeddings decoder to generate correspond-
ing class embedding from the latent features of the im-
ages of that class and vice-versa. Distribution-alignment in-
volves training the encoders of the image features and class
embeddings to minimize the Wasserstein distance between
the Gaussian distributions of their latent embeddings. Af-
ter training the VAEs, CADA-VAE uses the µa and Σa of
all the seen and unseen class embeddings to sample em-
beddings (using the reparametrization trick) for both the
seen and unseen classes from the learned latent embedding
space. It trains a classifier using these latent embeddings
in order to classify the test images. At test time, the pre-
trained network extracts image features from the test im-
ages. The image/visual features encoder (Ev) maps the test
image features to the latent embedding space. The classifier
then predicts the class for the test image latent embeddings.

Task Incremental Generalized Zero-shot Learning:
The authors in [33] apply CADA-VAE to a task incremen-
tal generalized zero-shot learning setting where each task
is a separate dataset and each task contain seen and unseen
classes. After training the VAEs on a task t, embeddings
can be sampled from the latent embedding space using the
µt
a and Σt

a of all the seen and unseen classes. These la-
tent embeddings are used to train a classifier. The classifier
will be able to predict the classes of the test image embed-
dings of that task produced by the visual features encoder
(Et

v). However, when the network is trained on a new task
t+1, the image/visual features encoder (Et+1

v ) weights will
change. As a result, the test image features (input to Et+1

v )
for the test images from a previous task will get mapped to a
different latent space (output ofEt+1

v ) than the one obtained
just after training the network on that task. Since the classi-
fier will classify on the basis of the output of Et+1

v , the pre-
dictions for the test images from the previous tasks will be
incorrect. Therefore, the CADA-VAE performance suffers

11



Figure 6: Illustration of CADA-framework.

Figure 7: Illustration of CADA-framework with our proposed RKR image/visual features encoder (Et
v-rkr). The framework

consists of a pre-trained network for extracting image features and two variational autoencoders, one for the image/visual
features and the other for the class/attribute embeddings. Et

v-rkr is our proposed RKR image/visual features encoder for task
t (shown with a dashed border), that adapts the network for task incremental learning. Image feature xt, extracted by the
pre-trained network from an image, is fed toEv-rkr, which maps it to µt

v and Σt
v in the latent space. The attribute encoderEt

a

maps the attribute/class embedding ct of that image to µt
a and Σt

a in the latent space. The network is trained on the standard
VAE loss, cross-alignment loss LCA and distribution-alignment loss LDA.

in the task incremental generalized zero-shot learning set-
ting due to the catastrophic forgetting in the visual features
encoder. The authors in [33] propose LZSL to tackle this
problem by using selective parameter retraining and knowl-
edge distillation to preserve previous task knowledge.

Applying RKR: In order to prevent catastrophic forget-
ting, we apply RKR to the image/visual features encoder
Et

v , that only contains fully connected layers, to obtain
Et

v-rkr (Fig. 7). Specifically, we use weight rectifications
and scaling factors for each layer in the image/visual en-
coder to quickly adapt it to any task. We train the full net-
work on the first task (base network). For every new task,
we only learn weight rectifications and scaling factors for
all network layers to adapt them to the new task. In the gen-
eralized zero-shot learning setting, we learn the weight rec-
tifications and the scaling factors based on the seen classes
of the given task and use them during testing for classify-

ing both seen and unseen classes of that task. Therefore,
during testing, the image features encoder will map the test
image features for each task to the same embedding space
as expected by the classifier.

8.1.2 Datasets

Table 10: Datasets used in the task incremental generalized
zero-shot learning problem.

Dataset Class Embedding Images Classes
Dimensions Seen Unseen

aPY 64 15339 20 12
AWA1 85 30475 40 10
CUB 312 11788 150 50
SUN 102 14340 645 72
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For the task incremental generalized zero-shot learning
problem, we experiment with the Attribute Pascal and Ya-
hoo (aPY) [6], Animals with Attributes 1 (AWA1) [34],
Caltech-UCSD-Birds 200-2011 (CUB) [32], and SUN At-
tribute dataset (SUN) [22] datasets. Other details regarding
the datasets are provided in Table 10. For a fair compari-
son, we use the same sequence of training datasets given in
[33], which is aPY, AWA1, CUB, and SUN. However, we
also report the results for three other cases with a different
first dataset. We report the average per-class top-1 accu-
racy for the unseen classes (U), seen classes (S), and the
harmonic mean of the two accuracies (H) for each dataset
(H = 2×U×S

U+S ). Our objective is to achieve high H accu-
racy as it is not skewed towards either the seen or unseen
classes. The results are obtained after the training has been
completed on all the datasets.

8.1.3 Implementation Details

For our experiments, we extract the image features of 2048
dimensions from the final pooling layer of an ImageNet pre-
trained ResNet-101. In the case of image features, the en-
coder and decoder of CADA-VAE have 1560 and 1660 hid-
den layer nodes, respectively. In the case of class embed-
dings, the encoder and decoder have 1450 and 660 hidden
layer nodes, respectively. The latent embeddings are of size
64. For all the datasets, the model is trained for 100 epochs
with batch size 50 using the Adam optimizer [12]. CADA-
VAE also uses a few hyper-parameters, i.e., δ, γ, β. δ is
increased from epoch 6 to epoch 22 by a rate of 0.54 per
epoch, while γ is increased from epoch 21 to 75 by 0.044
per epoch. The β weight of the KL-divergence term is in-
creased by a rate of 0.0026 per epoch up to epoch 90. A
learning rate of 0.00015 is used for the VAEs, and a learn-
ing rate of 0.001 is used for the classifiers. L1 distance is
used for the reconstruction error. These settings have been
proposed in [27] and were also used in [33]. We report the
average results of five runs for our method.

8.2. Performance

For task incremental learning, we perform five runs of
every experiment for both the zero-shot and non zero-shot
settings and report the average accuracy. The variations in
our results are very low, e.g., for CIFAR-100 with ResNet18
and LeNet, the 95% confidence interval for the final aver-
age session accuracy is 87.6 ± 0.467% and 69.58 ± 0.55%
respectively.

8.3. Hardware and Software Specifications

We have performed all our experiments in PyTorch ver-
sion 0.4.1 [21] and Python 3.0. For running our experi-
ments, we have used a GeForce GTX 1080 Ti graphics pro-
cessing unit.
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