
MUKHERJEE, BANERJEE, RAI, NAMBOODIRI: RISSOLE 1

RISSOLE: Parameter-efficient Diffusion
Models via Block-wise Generation and
Retrieval-Guidance
Avideep Mukherjee1

https://www.cse.iitk.ac.in/users/avideep/

Soumya Banerjee1

https://soubanerjee.github.io/

Piyush Rai1

https://www.cse.iitk.ac.in/users/piyush/

Vinay P. Namboodiri2

https://vinaypn.github.io/

1 Department of Computer Science and
Engineering
Indian Institute of Technology Kanpur
Uttar Pradesh, India

2 Department of Computer Science
University of Bath
Claverton Down
Bath BA2 7AY, UK

Abstract
Diffusion-based models demonstrate impressive generation capabilities. However,

they also have a massive number of parameters, resulting in enormous model sizes,
thus making them unsuitable for deployment on resource-constraint devices. Block-wise
generation can be a promising alternative toward designing compact-sized (parameter-
efficient) deep generative models since the model can generate one block at a time, in-
stead of generating the whole image at once. However, block-wise generation is also
considerably challenging because ensuring coherence across the generated blocks can
be a non-trivial task. To this end, we design a retrieval-augmented generation (RAG)
approach and leverage the corresponding blocks of the images retrieved by the RAG
module to condition the training and generation stages of a block-wise denoising dif-
fusion model. Our conditioning schemes ensure coherence across the different blocks
during training and, consequently, during generation. While we showcase our approach
using the latent diffusion model (LDM) as the base model, it can be used with other vari-
ants of denoising diffusion models. We validate the solution of the coherence problem
through the proposed approach by reporting substantive experiments to demonstrate our
approach’s effectiveness in compact model size and excellent generation quality.

1 Introduction
Recent work on deep generative models, particularly diffusion probabilistic models and vari-
ants [10, 18, 20], has produced impressive generation quality for data such as images and
videos. While recent models can now generate images with very high resolutions, these
models also have enormous sizes, which hinders their deployment in resource-constrained
settings. Training a state-of-the-art diffusion model from scratch could, for instance, require
23,835 A100 hours (when optimized). 1 Clearly, these models are beyond the computational

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

This research work was partially supported by the Research-I Foundation of IIT Kanpur.
1An example provided in https://www.databricks.com/blog/stable-diffusion-2

Citation
Citation
{Ho, Jain, and Abbeel} 2020

Citation
Citation
{Sohl-Dickstein, Weiss, Maheswaranathan, and Ganguli} 2015

Citation
Citation
{Song, Sohl-Dickstein, Kingma, Kumar, Ermon, and Poole} 2020{}

2 MUKHERJEE, BANERJEE, RAI, NAMBOODIRI: RISSOLE

capabilities of academia or organizations with modest computing resources, which necessi-
tates a parameter-efficient design. To address the issue of computationally intensive training
and large model sizes, recent work has explored approaches, such as training denoising dif-
fusion models in a lower-dimensional latent space [14], and using semi-parametric retrieval-
augmented diffusion models [2] where a compact-sized diffusion model is conditioned on
an external database. As the training of the diffusion model is done with a fixed latent size,
these models still tend to work with large latent representations, resulting in large parameter
models that are challenging to train. Post hoc attempts at optimization such as adversarial
diffusion distillation [17] are also not applicable as one still needs access to a fully trained
large parameter model and further resources to train a distilled model.

Training deep generative models such that they can generate images in a block-wise
fashion (generating one block at a time), instead of the whole image at once, can potentially
be an alternative to address the aforementioned issues. However, designing such block-wise
generative models is quite challenging, as ensuring that the generated blocks have spatial
and semantic coherence is difficult. Consequently, the generated blocks may not blend well
together, resulting in noticeable discrepancies or artifacts where the blocks meet.

In this work, we show that the retrieval-augmented generation (RAG) approach [2] can
effectively address the consistency problem in block-wise generation. In particular, we
present a block-wise denoising diffusion model where each image block (in the pixel space,
or the latent space if using a latent diffusion model [14]), both during training as well as gen-
eration, is conditioned on the corresponding block of a reference set of images retrieved from
an external database. We show that enforcing correspondence in the block-wise conditioning
suffices to obtain coherence in the independent block-wise generation.

2 Related Work
There is extensive work on deep generative models for data, such as images, videos, text,
and multi-modal data. Here, we mainly focus on generative models based on diffusion prob-
abilistic models [18] and their variants [5, 10, 11, 15, 16, 19, 20], particularly those focusing
on compact model sizes, as they are most relevant to our work. There has been an exten-
sive exploration of variants of diffusion-based models, such as score-based models and their
application on various data sources [24].

Our work mainly focuses on designing diffusion models that are parameter-efficient by
design and can consequently be trained efficiently. There are three main strategies: optimiz-
ing the representation (using probability flow ODEs), training using a latent representation,
and patch-based training. Models such as consistency models [21] obtain an approximation
for the stochastic differential equation based on the diffusion process. However, the main
contribution of this approach is to reduce the number of function evaluations required at
inference time. This approach still requires substantial training time. Methods such as the
latent diffusion model (LDM) [14] model the diffusion process in the latent space instead
of the original image space. One could theoretically use a highly compact latent space to
reduce the computational cost. However, as the efficacy of the encoder-decoder transforma-
tion is limited, typically, one uses a sizeable latent space representation while training these
models, and these LDMs require thousands of hours of large GPU-based training.

Patch-based training of diffusion models is an alternative. For instance, [22] shows that
training on patches could reduce the training time. However, they do not solve the coherence
issue. Their strategy is to train with various patches of various sizes and to train using
a few full-sized images during training, thus not yielding any model-sized improvements.

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022

Citation
Citation
{Blattmann, Rombach, Oktay, M{ü}ller, and Ommer} 2022

Citation
Citation
{Sauer, Lorenz, Blattmann, and Rombach} 2023

Citation
Citation
{Blattmann, Rombach, Oktay, M{ü}ller, and Ommer} 2022

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022

Citation
Citation
{Sohl-Dickstein, Weiss, Maheswaranathan, and Ganguli} 2015

Citation
Citation
{Dhariwal and Nichol} 2021

Citation
Citation
{Ho, Jain, and Abbeel} 2020

Citation
Citation
{Kong and Ping} 2021

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{San-Roman, Nachmani, and Wolf} 2021

Citation
Citation
{Song, Meng, and Ermon} 2020{}

Citation
Citation
{Song, Sohl-Dickstein, Kingma, Kumar, Ermon, and Poole} 2020{}

Citation
Citation
{Yang, Zhang, Song, Hong, Xu, Zhao, Zhang, Cui, and Yang} 2023

Citation
Citation
{Song, Dhariwal, Chen, and Sutskever} 2023

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022

Citation
Citation
{Wang, Jiang, Zheng, Wang, He, Wang, Chen, and Zhou} 2023

MUKHERJEE, BANERJEE, RAI, NAMBOODIRI: RISSOLE 3

Another recent patch-based strategy [7] trains with a patch-based model. However, they
provide the context from the feature collage of patches to appropriately condition the image
generation. We do evaluate a variant of this approach where we condition on adjacent blocks.
We observed that the representation does not train well with our proposed strategy.

Our work is based on more explicitly and directly incorporating coherence by condition-
ing the individual blocks on the corresponding blocks of "relevant" images retrieved from an
external database using the idea of retrieval-based augmentation. Our work in incorporating
coherence also has relevance to the broader area of coherence in generative models [3, 23].
Our proposed approach is to develop block-based retrieval-guided diffusion models. This
is complementary to other approaches of probability flow ODE [21] or latent diffusion [14]
and can be combined with these different approaches.

3 Background

Diffusion Models: Denoising diffusion probabilistic models (DDPM) [10, 18, 20] are deep
generative models that consist of a forward process and a reverse process. The forward
process q(x1:T |x0) = ∏

T
t=1 q(xt |xt−1) takes a clean input x0 and gradually corrupts it by pro-

ducing a sequence x1,x2, . . . ,xT defined by forward diffusion of the form q(xt |xt−1), usually
modeled by a Gaussian q(xt |xt−1) =N (

√
1−βtxt ,βtI). Note that q(xt |x0) =N (

√
ᾱtx0,(1−

ᾱt)I), where αt = 1− βt and ᾱt = ∏t αt . For a sufficiently large value of T and a suit-
ably chosen variance schedule {βt}T

t=1, the distribution q(xT |x0) approximates an isotropic
Gaussian. A learnable reverse process, called reverse denoising, denoted as p(x0:T) =
p(xT)∏

T
t=1 pθ (xt−1|xt), tries to reconstruct the clean data x0 from pure noise xT with p(xT)=

N (0,I) and pθ (xt−1|xt) =N (µθ (xt , t),Σθ (xt , t)), where the parameters µθ (xt , t),Σθ (xt , t) of
the denoising network are defined using a deep neural network. Once learned, the reverse
process can synthesize new inputs from pure noise xT . It can also be shown that estimat-
ing the reverse process parameters is equivalent to predicting the noise in the distribution
q(xt |x0).
Latent Diffusion Models: While the forward and reverse diffusion processes of the standard
DDPM operate in the image space, the latent diffusion model (LDM) [14] takes a different
approach where both of these processes operate in a low-dimensional latent space. The LDM
consists of an encoder E which compresses the input image x into a lower-dimensional la-
tent representation z, a decoder D that reconstructs x from z, and the forward and reverse
diffusion processes operate on the latent z representation. In addition to yielding a semanti-
cally meaningful latent space, LDM has immediate benefits regarding reduced model size,
training cost, and sample generation speed.
Retrieval-Augmented Generation: An orthogonal approach to designing compact-sized
deep generative models is retrieval-augmented generation (RAG) [25] which augments a
compact generative model with an external database D. RAG uses similarity-based retrieval
during training/generation to condition the generative model based on additional data re-
trieved from this external database. Blatmann et al. [2] leveraged the RAG idea for diffusion
models by employing a non-parametric retrieval strategy ξk : D 7→M(k)

D such that M(k)
D ⊆D

and |M(k)
D |= k. During the training phase, for each sample x∼ p(x), their proposed retrieval-

augmented diffusion model (RDM) uses ξk to acquire a set of k nearest neighbors M(k)
D (x)

from the database D. Subsequently, the generative model is conditioned on the represen-
tations of these retrieved instances, eliminating the necessity to synthesize an image region
entirely from its parameter manifold. While RAG is primarily motivated by the need for

Citation
Citation
{Ding, Zhang, Wu, and Tu} 2024

Citation
Citation
{Chu, Xie, Mayer, Leal-Taix{é}, and Thuerey} 2020

Citation
Citation
{Xu, Ren, Zhang, Zeng, Cai, and Sun} 2018

Citation
Citation
{Song, Dhariwal, Chen, and Sutskever} 2023

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022

Citation
Citation
{Ho, Jain, and Abbeel} 2020

Citation
Citation
{Sohl-Dickstein, Weiss, Maheswaranathan, and Ganguli} 2015

Citation
Citation
{Song, Sohl-Dickstein, Kingma, Kumar, Ermon, and Poole} 2020{}

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022

Citation
Citation
{Zhao, Zhang, Yu, Wang, Geng, Fu, Yang, Zhang, and Cui} 2024

Citation
Citation
{Blattmann, Rombach, Oktay, M{ü}ller, and Ommer} 2022

4 MUKHERJEE, BANERJEE, RAI, NAMBOODIRI: RISSOLE

compact models, our work shows how RAG can also be leveraged to solve the challenging
problem of ensuring coherence across blocks when doing block-wise generation.

4 Denoising Diffusion Models with Block-wise Generation
Our block-wise generation approach applies to DDPMs operating in the image space and
those operating in a latent space. This work will illustrate our approach using the latent dif-
fusion model (LDM) [14], an example of the latter class of methods. Our approach (Fig. 1)
assumes that the input to each forward/reverse diffusion step is partitioned into b disjoint
blocks. Omitting the time-step subscript t and denoting the latent representation at any time-
step as z, we assume it to be partitioned into b equal-sized disjoint blocks as z =

⋃b−1
i=0 zi. Op-

erating on smaller-sized blocks zi naturally results in a model with fewer parameters, which
is our primary goal. However, the challenge here is to ensure coherence among the blocks
(e.g., avoiding artifacts at the block boundaries, semantic inconsistency between adjacent
blocks, etc.). To achieve coherence, each block zi is also conditioned on the corresponding
block of a set of k nearest neighbors retrieved from the external database; Sec. 4.1.3 provides
the details. We refer to our approach as RISSOLE (ParameteR-efficIent DiffuSion Models
via Block-wiSe GeneratiOn and RetrievaL-GuidancE).

4.1 RISSOLE Training
The training procedure of RISSOLE consists of the following steps: (1) VQ-GAN encoder-
decoder training because our model operates in a latent space,(2) Building the database from
which retrieval is performed, and (3) DDPM training in the latent space using a block-wise
generation approach and leveraging RAG to ensure coherence across blocks. Next, we de-
scribe each of these steps in more detail.

4.1.1 VQ-GAN Training

As the first stage of RISSOLE training, we train a VQ-GAN on the original training images
to obtain their latent representations using a trainable encoder-decoder setup. For an image
x ∈ X ⊂ Rh×w×c, we introduce an encoder Eθ , where Eθ takes x as input and produces
a hidden representation z ∈ Rh′×w′×c′ . Here, h,w,c represents the dimensions of the input
image, h′,w′,c′ represents the dimensions of the hidden representation, and θ represents the
parameters of the encoder E s.t. z = Eθ (x). Similar to LDM) [14], and to be amenable to our
subsequent block division approach, we maintain z in a two-dimensional layout, departing
from the arbitrary one-dimensional arrangement used in the works of [8] and [13]. This
reduces the image space by a factor of f = w/w′ or h/h′. The factor f determines the size of
each block into which the hidden representations are divided. A decoder Dφ , parameterized
by φ , reconstructs the original image as x̃ = Dφ (Eθ (x)) ∈ Rh×w×c.

4.1.2 Building the Retrieval Database

For constructing the retrieval database, denoted as D, the latent representations z of the
training images are partitioned into b non-overlapping, equal-sized blocks. We denote D as⋃b−1

i=0 Di, where Di comprises a stack of the ith blocks of z = E(x) for all x ∈ X .

4.1.3 Block-wise DDPM Training

Recall that the forward and reverse diffusion of our proposed DDPM formulation operate
on the latent representation z =

⋃b−1
i=0 zi. Before iterating through each block, zi, we use

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022

Citation
Citation
{Esser, Rombach, and Ommer} 2021

Citation
Citation
{Ramesh, Pavlov, Goh, Gray, Voss, Radford, Chen, and Sutskever} 2021

MUKHERJEE, BANERJEE, RAI, NAMBOODIRI: RISSOLE 5

Figure 1: Training and Sampling of RISSOLE: (a) During training, each image x goes through a VQ-
GAN encoder Eθ , resulting in the generation of a latent representation z. (b) This latent representation
z is then utilized by the retriever ξk(.) to fetch its k nearest neighbors M(k)

D from a dataset D. (c) Each

group of blocks M(k)
Di

∈M(k)
D is used as a conditioning signal for the corresponding zi, aiding in the

training procedure. (d) During the sampling (generation) phase, a pseudo-query ẑ0 obtained from the
dataset D is employed by ξk(.) to retrieve M(k)

D . (e) From the retrieved set M(k)
D , each subset M(k)

Di

is used as a conditioning signal for the random noise zi
t at steps t = T,T −1, . . . ,3,2,1 to generate the

final denoised block zi
0 of ẑ0. (f) All denoised representations zi

0 are reshaped to construct z0, which is
then passed through the decoder Dφ to yield the reconstructed sample x′.

the first block2 z0 to retrieve the k nearest neighbors of z0 from D, denoted by M(k)
D =

ξk(z0,D), where ξ (.) is the retrieval function. Note that once M(k)
D is obtained, we do not

need to perform the retrieval operation again to obtain M(k)
Di

for subsequent blocks zi for i ∈
0,1,2, · · · ,b−1, since M(k)

D =
⋃b−1

i=0 M(k)
Di

. Subsequently, each block zi is then conditioned

on M(k)
Di

to facilitate the training process through the DDPM U-Net, parameterized by ψ .
This approach, characterized by its granularity and reliance on semi-parametric generative
modeling [2], can be expressed as

pψ,D,ξk
(z) =

b−1

∏
i=1

pψ(zi|{y|y ∈M(k)
Di
}) (1)

The neighboring information denoted as M(k)
Di

, as retrieved from the database Di, is typi-
cally combined with the input block zi by simply putting them together along the channel
dimension. This combined information is input into a U-Net architecture [15] during the re-
verse denoising stage within a latent diffusion model. However, we take a different approach
where the input and the retrieved neighbors are processed separately through different con-
volutional layers, resulting in distinct standard embeddings. These embeddings are added to
the original input before feeding into the U-Net structure. To maintain consistency and pre-
vent unwanted shifts during training, we apply Layer Normalization [1] to the output. This
modification allows us to forgo the costly Cross Attention Mechanism [14] for conditioning
the input, resulting in fewer parameters and faster training and sampling times.

2Another design choice can be to use the entire z to do the retrieval since we have access to the full image and
its latent representation. We show some results with this choice in the Appendix.

Citation
Citation
{Blattmann, Rombach, Oktay, M{ü}ller, and Ommer} 2022

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Ba, Kiros, and Hinton} 2016

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022

6 MUKHERJEE, BANERJEE, RAI, NAMBOODIRI: RISSOLE

We train RISSOLE using the standard re-weighted likelihood objective, as described in
[10], resulting in the objective similar to the one used in [10, 18]:

min
ψ

L=
b−1

∑
i=0

Ep(x),z∼Eθ (x),ε∼N (0,1),t [||ε − εψ(zi
t , t,{y|y ∈M(k)

Di
})||] (2)

In Eq. 2, εψ denotes the UNet-based denoising autoencoder detailed in [15] and applied
in [5, 14]. In addition to serving as the objective for a typical DDPM model, Eq. 2 also
includes the collection of retrieved neighboring data points as a prerequisite for the noise
predictor U-Net: εψ . Furthermore, the loss is summed across all blocks where it is individu-
ally computed. The notation t ∼ Uniform{1, . . . ,T} indicates the time step, as elaborated in
[14, 18]. A pseudocode outlining the training procedure can be found in the Appendix.

4.2 RISSOLE Sampling
Like RDM [2], RISSOLE begins by picking a random pseudo-query from the database for
generating new samples. However, unlike RDM, which uses a whole image as the query, we
use its first block ẑ0 from the first block of our database D0. We then use the query ẑ0 to
retrieve k nearest neighbors from the database (see Fig. 1 (d)).

Thereafter, we generate a random noise sample from a standard Gaussian. This sample
is divided into b fixed-size blocks, each covering a part of the latent space. Next, we perform
block-wise sampling, where each block zi is sampled iteratively conditioned on its k nearest
neighbors M(k)

Di
from the database, following a process similar to the one used during train-

ing. Once all blocks have been updated, we reconstruct the complete latent representation
by combining the representations from each block. Finally, we decode this combined latent
representation using the VQ-GAN Decoder Dφ with parameters φ to produce a sample x in
the original data space. This enables structured sampling from the latent space, capturing
relationships within blocks while maintaining coherence across generated samples.

A distinguishing aspect of RISSOLE is that both training and sampling can be paral-
lelized across the b blocks (as the conditioning structure we use does not depend on the
blocks on each other), thereby yielding further speed-ups during training and sampling. A
pseudocode for sampling from RISSOLE is presented in the Appendix.

5 Experiments

5.1 Dataset and Baselines
We evaluate RISSOLE on two benchmark datasets: CelebA 64×64 [12] and ImageNet100
[4]. CelebA64 contains 202,599 images showing human faces with 64× 64× 3 resolution,
while ImageNet 100 has 127,878 natural images from 100 categories, each with a resolution
of 224×224×3. We used 80% of the data for training and the remaining 20% for validation,
and the same training/validation split was used for both datasets. We compare RISSOLE
with RDM [2], a recent SOTA method for compact-sized diffusion models. RDM uses an
external database to keep the size of the diffusion model module small. In addition to RDM,
we also compare RISSOLE with two other baselines - a variant of RISSOLE that does not
use retrieval guidance and another variant that does not use retrieval guidance but uses the
different blocks of the image to condition the current block (this is an instance of the recent
work on patch-based diffusion models [7]). Please note that these are the most relevant
baselines for RISSOLE. Although fast to train, recent methods like patch diffusion [6] are

Citation
Citation
{Ho, Jain, and Abbeel} 2020

Citation
Citation
{Ho, Jain, and Abbeel} 2020

Citation
Citation
{Sohl-Dickstein, Weiss, Maheswaranathan, and Ganguli} 2015

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Dhariwal and Nichol} 2021

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022

Citation
Citation
{Sohl-Dickstein, Weiss, Maheswaranathan, and Ganguli} 2015

Citation
Citation
{Blattmann, Rombach, Oktay, M{ü}ller, and Ommer} 2022

Citation
Citation
{Liu, Luo, Wang, and Tang} 2015

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Blattmann, Rombach, Oktay, M{ü}ller, and Ommer} 2022

Citation
Citation
{Ding, Zhang, Wu, and Tu} 2024

Citation
Citation
{Ding, Zhang, Wu, and Tu} 2023

MUKHERJEE, BANERJEE, RAI, NAMBOODIRI: RISSOLE 7

not directly comparable with RISSOLE since such approaches still require a small set of
full-sized images during training. Nevertheless, we compare RISSOLE with Patch Diffusion
when it does not use full-sized images during training to ensure fairness in comparison. Thus,
their model sizes are not small, unlike RISSOLE, and are thus not included in the comparison
here. It is also important to highlight that the roles played by the external database differ in
RDM and RISSOLE. In RDM, it helps keep the diffusion model size small, whereas in
RISSOLE, the primary role of the external database is to achieve coherence across blocks.
In contrast, RISSOLE’s block-wise training/generation ability contributes to its parameter
efficiency.

5.2 Experimental Setup
In training the VQ-GAN encoder-decoder, we have maintained f = 8 (refer to Section 4.1.1)
across both datasets. Specifically, for the CelebA dataset, the VQ-GAN’s latent dimension
is configured to 10. Conversely, due to ImageNet’s higher resolution, the latent dimension
is adjusted to 32. Consequently, the latent resolution for an image from CelebA will be
10×16×16, while for ImageNet, it will be 32×28×28. To retrieve the nearest neighbors
from D, we use ScanNN [9] search algorithm in the latent representation generated by a
VQ-GAN [8].

Figure 2: Each of the three rows above show a pseudo-
query image x̂ (used in generation time) from D, its re-
trieved neighbors, and the generated sample when these
neighbors are conditioned on. Note that the actual train-
ing and sampling occur in the latent space. These im-
ages, decoded from the latent representations, are for
better understanding and visualization.

In alignment with the requirements
of the chosen retrieval mechanism,
each latent representation is flattened.
For instance, considering the Ima-
geNet100 dataset X ⊂R224×224×3 with
|X |= n, and z ∈ R28×28×32 the dimen-
sionality of D is denoted as Rb×n×6272,
with each Di ∈ Rn×6272 where 6272
emerges from the flattening process ap-
plied to z. Our models are trained
for 200 epochs on an NVIDIA 1080Ti
(CelebA64) and an NVIDIA A30 (Im-
ageNet100). The number of nearest
neighbors k can influence the perfor-
mance of retrieval-based approaches.
In our experiments, k = 20 was found
to work best for RDM [2] and k = 10
worked best for RISSOLE. In addi-
tion, we also conduct an ablation ex-
periment in Sec. 5.4.1 to assess RIS-
SOLE’s performance when conditioned with positional information.

5.3 Unconditional Image Synthesis
Upon generating samples from our diffusion model, we observed a notable improvement in
visual quality compared to the RDM baseline when constrained to roughly the same model
size as RISSOLE. Despite its compact model size, the images generated by RISSOLE exhibit
finer details, sharper features, and more realistic textures. This qualitative assessment is
further supported by quantitative metrics, including the Fréchet Inception Distance (FID).

Citation
Citation
{Guo, Sun, Lindgren, Geng, Simcha, Chern, and Kumar} 2020

Citation
Citation
{Esser, Rombach, and Ommer} 2021

Citation
Citation
{Blattmann, Rombach, Oktay, M{ü}ller, and Ommer} 2022

8 MUKHERJEE, BANERJEE, RAI, NAMBOODIRI: RISSOLE

Figure 3: Original Images (top row), and samples generated by the RDM baseline (middle
row) and by RISSOLE (bottom row), trained on CelebA and ImageNet 100 datasets.

Table 1 presents the FID scores obtained by RISSOLE and the other baseline models on
both the CelebA and ImageNet datasets. RISSOLE achieves significantly lower FID scores,
indicating that its generated samples are more likely to be from the original dataset distribu-
tion. These results demonstrate that RISSOLE captures the intricate patterns and structures
in the data and generates more realistic and coherent images than the other baselines with
similar model sizes. To further illustrate the qualitative differences, Fig. 3 compares sam-
ples generated by RISSOLE, original images from both datasets and samples from the RDM
baseline. As depicted in Fig. 3, RISSOLE produces noticeably better samples, closely re-
sembling the characteristics of the original images. For fairness of comparisons, we aimed to
ensure that the model sizes for RDM and RISSOLE are kept similar, as reported in Table 1.
To ensure roughly equal model sizes for RDM and RISSOLE, the U-net architecture used
by RDM was suitably modified. However, note that because RDM still utilizes the entire
image or latent space for training or sampling, it still requires a somewhat higher number of
parameters under this constrained setting. Table 1 shows that RISSOLE outperforms RDM
on both datasets and Patch Diffusion on CelebA 64×64 3. When constrained to small model
size, RDM struggles to model the full-sized images with high fidelity and faces difficulty
producing coherent and interpretable sample outputs, as shown in the middle row of Fig. 3.
In contrast, RISSOLE operates only on small-sized blocks and can, therefore, model these
blocks more effectively despite its small model size.

Table 1: Comparison of RISSOLE with RDM[2], Patch Diffusion[22] and other variants of
RISSOLE for unconditional image generation on ImageNet100 [4].

Model CelebA ImageNet100

RDM 32.36 60.61
Patch Diffusion 14.51 -

RISSOLE - RAG 23.45 29.59
RISSOLE + P 17.01 20.28

RISSOLE + Pos 11.61 14.59
RISSOLE 9.82 12.93

5.4 Ablation
We also conduct ablation studies to gain insights into the behavior and performance of RIS-
SOLE under different configurations and settings. Specifically, we investigate the impact of
varying the number of nearest neighbors retrieved from the database on the model’s perfor-
mance, measured in terms of FID scores. We also vary the number of blocks into which the

3FID values for Patch Diffusion are from the original paper. No FID results for ImageNet100 were reported.

Citation
Citation
{Blattmann, Rombach, Oktay, M{ü}ller, and Ommer} 2022

Citation
Citation
{Wang, Jiang, Zheng, Wang, He, Wang, Chen, and Zhou} 2023

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

MUKHERJEE, BANERJEE, RAI, NAMBOODIRI: RISSOLE 9

Figure 4: Qualitative Samples from RISSOLE models where the input is conditioned with
(top) and without (bottom) the positional information.

latent space should be divided to observe how the sampling quality changes. Furthermore,
we discuss the impact of the retrieval augmented generation to empirically demonstrate how
it helps in the coherence of the generated images.

5.4.1 Impact of Positional Information

In Section 4.1.3, we described how RISSOLE learns a specific segment of the latent space,
zi, by conditioning it with M(k)

Di
, while also integrating positional information, represented

by i. This section delves into the significance of positional information within RISSOLE,
suggesting that such information might already be inherent in pψ(zi|M(k)

Di
). Hence, the

model can represented by a modified version of Equation 1:

pψ,D,ξk
(z) =

b−1

∏
i=1

pψ(zi|{y|y ∈M(k)
Di
}, i) (3)

The experiments are conducted using the CelebA dataset with a block count of b = 4.
Figure 4 demonstrates two sets of samples generated by RISSOLE; the upper row displays
samples with included positional information, while the lower row exhibits samples without
positional information. Observation of the figure visually confirms that samples generated
from RISSOLE without positional conditioning exhibit sharper and more realistic charac-
teristics compared to those with positional encoding. This phenomenon arises from the ad-
ditional complexity introduced by positional encoding, making it more challenging for the
model to estimate the underlying data distribution accurately. While the CelebA samples
generated with positional conditioning yield an FID score of 11.93, as reported in Table 1
RISSOLE without positional encoding surpasses this with an FID of 9.82. This finding sub-
stantiates our conjecture that retrieval-augmented generation and block-wise conditioning
inherently preserve positional information, consequently enabling RISSOLE to be trained
without explicit positional conditioning, thereby enhancing the model’s time efficiency.

5.4.2 Using Previous Block as Additional Context

Figure 5: Samples from RISSOLE
with (top) and without(bottom) us-
ing the previous block as a condi-
tion.

We also explore conditioning on the previously generated
block in addition to the nearest neighbors from the exter-
nal database and compare the model’s performance with
and without this extra conditioning to assess its impact
on image synthesis quality. Figure 5 indicates that also
employing the previous block in conditioning results in a
degradation in image quality compared to when it is not

10 MUKHERJEE, BANERJEE, RAI, NAMBOODIRI: RISSOLE

used. Specifically, samples generated without utilizing
the previous block exhibit finer details, sharper features, and higher fidelity, indicating su-
perior visual quality. FID scores of RISSOLE with the previous block serving as a context
(RISSOLE-P) are presented in Table 1. Incorporating the previous block as a condition may
impose limitations restricting the model’s capacity to comprehend the complete diversity
and intricacy of the underlying data distribution. Conversely, training the model without any
context from the preceding or other blocks enables the parallelization of the training process,
resulting in enhanced speed.

5.4.3 Impact of RAG

Figure 6: RISSOLE samples with
(bottom) and without (top) using
RAG

We examine the role of the retrieval augmented genera-
tion (RAG) mechanism in our diffusion model by com-
paring the generated samples with and without RAG in
Figure 6. When the RAG mechanism is omitted, we ob-
serve a degradation in image quality, resulting in incoher-
ent and less visually appealing samples. Table 1 shows
the FID scores of a RISSOLE model trained without RAG
conditioning, which quantitatively confirms the same.

Incorporating the RAG mechanism is crucial in guid-
ing the block-wise diffusion process and ensuring the coherence and realism of generated
images. The retrieved neighbors offer a comprehensive view of the image, aiding the model
in generating coherent images block-by-block without needing explicit information about
previous blocks. Conditioning the noise on retrieved nearest neighbors through RAG en-
sures consistency and structural integrity, enhancing the overall fidelity of the synthesized
images.

6 Conclusion
In this paper, we presented a block-based retrieval-augmented generation (RAG) as an ef-
fective solution for the growing model size of denoising diffusion models. The inclusion of
RAG addresses any consistency issues in block-wise image generation. We demonstrate im-
proved spatial and semantic coherence in the generated images by leveraging RAG within a
block-wise denoising diffusion model. Our approach, which conditions each image block on
a corresponding block from a reference set retrieved from an external database, effectively
mitigates the challenges associated with block-wise generation. Our experiments and analy-
sis show that RAG can enhance the quality of block-wise generated images while reducing
computational complexity and model size. This approach offers a promising alternative for
resource-constrained settings where deploying large generative models may not be feasi-
ble. Further research can explore extensions and optimizations of RAG-based block-wise
generation methods. Additionally, investigating the applicability of our approach to other
domains beyond image generation could uncover new opportunities for leveraging retrieval-
augmented techniques for enhanced generative modeling.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

MUKHERJEE, BANERJEE, RAI, NAMBOODIRI: RISSOLE 11

[2] Andreas Blattmann, Robin Rombach, Kaan Oktay, Jonas Müller, and Björn Ommer.
Semi-parametric neural image synthesis. arXiv preprint arXiv:2204.11824, 2022.

[3] Mengyu Chu, You Xie, Jonas Mayer, Laura Leal-Taixé, and Nils Thuerey. Learning
temporal coherence via self-supervision for gan-based video generation. ACM Trans-
actions on Graphics (TOG), 39(4):75–1, 2020.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[5] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthe-
sis. Advances in neural information processing systems, 34:8780–8794, 2021.

[6] Zheng Ding, Mengqi Zhang, Jiajun Wu, and Zhuowen Tu. Patched denoising diffusion
models for high-resolution image synthesis, 2023.

[7] Zheng Ding, Mengqi Zhang, Jiajun Wu, and Zhuowen Tu. Patched denoising diffusion
models for high-resolution image synthesis. In The Twelfth International Conference
on Learning Representations, 2024.

[8] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-
resolution image synthesis. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 12873–12883, 2021.

[9] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and
Sanjiv Kumar. Accelerating large-scale inference with anisotropic vector quantization.
In International Conference on Machine Learning, pages 3887–3896. PMLR, 2020.

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in neural information processing systems, 33:6840–6851, 2020.

[11] Zhifeng Kong and Wei Ping. On fast sampling of diffusion probabilistic models. arXiv
preprint arXiv:2106.00132, 2021.

[12] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes
in the wild. In Proceedings of International Conference on Computer Vision (ICCV),
December 2015.

[13] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International
Conference on Machine Learning, pages 8821–8831. PMLR, 2021.

[14] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-
mer. High-resolution image synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 10684–
10695, 2022.

[15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-
works for biomedical image segmentation. In Medical image computing and computer-
assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany,
October 5-9, 2015, proceedings, part III 18, pages 234–241. Springer, 2015.

12 MUKHERJEE, BANERJEE, RAI, NAMBOODIRI: RISSOLE

[16] Robin San-Roman, Eliya Nachmani, and Lior Wolf. Noise estimation for generative
diffusion models. arXiv preprint arXiv:2104.02600, 2021.

[17] Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial
diffusion distillation, 2023.

[18] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermodynamics. In International confer-
ence on machine learning, pages 2256–2265. PMLR, 2015.

[19] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit mod-
els. arXiv preprint arXiv:2010.02502, 2020.

[20] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Er-
mon, and Ben Poole. Score-based generative modeling through stochastic differential
equations. arXiv preprint arXiv:2011.13456, 2020.

[21] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models.
arXiv preprint arXiv:2303.01469, 2023.

[22] Zhendong Wang, Yifan Jiang, Huangjie Zheng, Peihao Wang, Pengcheng He,
Zhangyang Wang, Weizhu Chen, and Mingyuan Zhou. Patch diffusion: Faster and
more data-efficient training of diffusion models, 2023.

[23] Jingjing Xu, Xuancheng Ren, Yi Zhang, Qi Zeng, Xiaoyan Cai, and Xu Sun. A
skeleton-based model for promoting coherence among sentences in narrative story
generation. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsu-
jii, editors, Proceedings of the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 4306–4315, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1462. URL
https://aclanthology.org/D18-1462.

[24] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wen-
tao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive sur-
vey of methods and applications. ACM Comput. Surv., 56(4), nov 2023. ISSN 0360-
0300. doi: 10.1145/3626235. URL https://doi.org/10.1145/3626235.

[25] Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng, Fangcheng
Fu, Ling Yang, Wentao Zhang, and Bin Cui. Retrieval-augmented generation for ai-
generated content: A survey. arXiv preprint arXiv:2402.19473, 2024.

https://aclanthology.org/D18-1462
https://doi.org/10.1145/3626235

MUKHERJEE, BANERJEE, RAI, NAMBOODIRI: RISSOLE 1

RISSOLE: Parameter-efficient Diffusion
Models via Block-wise Generation and
Retrieval-Guidance – Supplementary
Material
Avideep Mukherjee1

https://www.cse.iitk.ac.in/users/avideep/

Soumya Banerjee1

https://soubanerjee.github.io/

Piyush Rai1

https://www.cse.iitk.ac.in/users/piyush/

Vinay P. Namboodiri2

https://vinaypn.github.io/

1 Department of Computer Science and
Engineering
Indian Institute of Technology Kanpur
Uttar Pradesh, India

2 Department of Computer Science
University of Bath
Claverton Down
Bath BA2 7AY, UK

1 Algorithms for Training and Sampling of RISSOLE

Algorithm 1 RISSOLE Training
1: repeat
2: for x ∼ q(x) do
3: z = Eθ (x)
4: Divide z into b fixed-size blocks ∋

⋃b−1
i=0 zi = z

5: z0 ∼N (0,I)
6: M(k)

D = ξk(z0,D) where M(k)
D =

⋃b−1
i=0 M(k)

Di

7: for each zi do
8: ε = q(zi

t |zi) for any t ∼ Uniform(1, · · · ,T)
9: ε ′ψ = pψ(zi

t−1|zi
t ,M

(k)
Di
, i)

10: L+=EE(x),zi−1,E(x̂,ε∼N (0,1))[||ε − ε ′ψ ||22]
11: end for
12: Take a gradient step on: ∇ψ [||ε − ε ′ψ ||22]
13: end for
14: until convergence

2 Searching D with entire z

As mentioned in Section 4.1.3 in the main paper, the nearest neighbors, M(k)
D are retrieved

from the database D based on the first block, denoted by z0 of the latent representation z =
Eθ (x) where x is the image and Eθ is the encoder (in our case, a VQGAN) parameterized by

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

2 MUKHERJEE, BANERJEE, RAI, NAMBOODIRI: RISSOLE

Algorithm 2 RISSOLE Sampling

1: ẑ0 ∼D0

2: M(k)
D = ξk(ẑ0,D) where M(k)

D =
⋃b−1

i=0 M(k)
Di

3: for each zi do
4: zi

T =N (0,I)
5: for t = T to 1 do
6: zi

t−1 =
1√

1−βt
(zi

t −
βt√

1−αt
pψ(zi

t−1|zi
t ,M

(k)
Di
, t, i))+σtε

7: end for
8: end for
9: Reconstruct z as

⋃b−1
i=0 zi

10: x = Dφ (z)

θ . An alternative design strategy involves leveraging the entirety of z for retrieval, given that

Figure 1: Quantitative evaluation of samples generated from two different RISSOLE models
based on z vs. z0.
we can access the complete image. This slight adjustment in the training process enhances
the precision of nearest neighbor searches, resulting in the selection of more pertinent nearest
neighbors compared to when the database was queried solely with z0. Figure 2(a) illustrates
the concept of utilizing the entire z within ξk(·) for nearest neighbor searches, contrasting
with the utilization of only z0 depicted in Figure 2(b). The disparity in FID scores between
RISSOLE models trained and sampled using z and z0 as queries is depicted in Figure 1.
Both models are trained on the CelebA dataset. Evidently, incorporating ξk(z,D) results
in improved sample generation. Nevertheless, since the search space has expanded by b,
where b denotes the number of blocks into which the latent space is divided, the memory
requirements for constructing the search increase substantially, leading to slightly longer
training and sampling times. Depending on the user’s preference regarding this trade-off,
RISSOLE can be tailored to accommodate either search approach.

3 Varying the number of blocks in RISSOLE
The analyses conducted on RISSOLE’s samples and FID scores so far have been based on
dividing the latent space into four equally sized partitions, denoted as b = 4. In this section,

MUKHERJEE, BANERJEE, RAI, NAMBOODIRI: RISSOLE 3

Figure 2: (a) Rather than partitioning z into
⋃

i zi, the entirety of z is fed into ξk(·) to obtain
M(k)

D . (b) The initial algorithm outlined in the main document involves sending the first
segment of z, denoted as z0, as a query to locate the nearest neighbors.

Figure 3: Samples generated by RISSOLE with b = 4 (top), b = 9 (middle) and b = 16
(bottom).

we evaluate the qualitative and quantitative sample quality generated by RISSOLE models
as the value of b varies among {4,9,16}. This entails examining scenarios where the latent
space is divided into grids of dimensions 2× 2, 3× 3, and 4× 4. Since the images These
variations are experimented with using the CelebA dataset. As depicted in Figure 3, it is
evident that RISSOLE performs acceptably with b = 4 (FID 11.93) and b = 9 (FID = 12.19).
However, noticeable artifacts emerge when b increases to 16 (FID = 97.15). Opting for b = 9
over 4 reduces GPU usage per training epoch, albeit at the expense of increased training and
sampling time, which can be mitigated by training and sampling each block in parallel. These
findings are presented based on the RISSOLE variant proposed in the preceding section,
which employs a search for nearest neighbors across the entire latent space.

