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Abstract
Modern deep neural networks achieve excellent predictive perfor-

mance due to their massive scale, flexible architecture design and

availability of large training datasets. However, several applications

additionally demand reliable estimates of model and predictive

uncertainty that help in making robust predictions with limited

training data, enabling out-of-distribution generalization, etc. Neu-

ral networks do not offer such uncertainly estimates out-of-the-box.
Although Bayesian approaches to deep learning do provide a natu-

ral way to quantify model and predictive uncertainty by inferring

the posterior distribution of the model weights and averaging the

model’s predictions over the entire posterior distribution, standard

Bayesian inference methods such as MCMC and variational in-

ference are difficult to design and scale to massive networks. An

appealing and popular alternative is to learn an ensemble of model

weights (popularly known as deep ensembles) and averaging the

model’s predictions over the ensemble. However, due to the need for

multiple training runs, this approach also tends to be computation-

ally expensive. In this work, we present PEG (Perturbed Ensemble

via Gradient updates), a simple and efficient approach to construct-

ing deep ensembles using gradients computed over validation data.

Experiments show that PEG can not only create an ensemble pro-

vided a pre-trained model, but it can also further enrich pre-trained

models that are deep ensembles themselves. On several benchmark

datasets and architectures, PEG was found to perform favorably

in comparison to state-of-the-art baselines in terms of predictive

performance as well as other uncertainty quantification metrics.
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1 Introduction

Deep neural networks (DNNs) have achieved breakthrough ad-

vances in a number of application domains including computer

vision [20], natural language processing [35], speech processing [1],

and robotics [27]. Recent advances have also shown how to train

massive DNNs on large datasets achieving unprecedented perfor-

mance on tasks such as conditional generation [31, 33]. Despite their

strong predictive performance, these models usually lack the ability

to systematically account for model uncertainty and predictive un-

certainty. A key reason behind this is that these models are typically

learned by optimizing a loss function on a large training set which

yields a single solution (typically some form of approximate MAP

or MLE) and ignores the uncertainty in the model weight estimates

in the process. As a result, these models may yield predictions that

are simultaneously over-confident and wrong [13]. Obtaining well-

calibrated uncertainty estimates can be as important as having high

predictive performance in specific domains such as autonomous

vehicles [3] and healthcare [4] as over-confident, wrong predictions

can have hazardous consequences in these applications.

A number of approaches have been proposed to estimate model

and predictive uncertainty for DNNs. Taking a Bayesian approach [18]

to learningDNNweights is a natural way to accomplish this wherein

a posterior distribution is learnt over the DNN weights and pre-

dictions are made by averaging over the entire model posterior

rather than relying on a single weight estimate. However, despite

some promising efforts [9, 17], classic Bayesian inference methods

such as MCMC [2] and variational inference [5, 38] are still con-

sidered difficult to design and scale for massive DNNs, hindering

their widespread adoption. More recently, computationally cheaper

approximations such as Monte-Carlo dropout [11], Laplace approx-

imation [9, 32], or variants thereof [24, 26] have been explored.

Monte-Carlo dropout takes a pre-trained model and creates an im-

plicit ensemble out of it by randomly applying different dropouts

at inference time, with each dropout pattern essentially giving a

different version of the DNN model. On the other hand, Laplace

approximation methods vary around a common idea of fitting a

Gaussian centered around a local mode of the posterior, which usu-

ally corresponds to a stationary point of the loss function used to

train the DNN. These techniques can perform approximate Bayesian

inference and are more efficient. At inference time, averaging model

predictions over the entire model posterior is intractable in general

even if using Laplace approximations. Thus, it is common to further

resort to Monte-Carlo averaging wherein a number of samples of

model weights are sampled from the (Gaussian) posterior, predic-

tions are computed using each sample, and then averaged. It is

notable that Monte-Carlo methods of the kind discussed above are

akin to using an ensemble [10] at inference time.

https://doi.org/10.1145/3570991.3571063
https://doi.org/10.1145/3570991.3571063
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However, these approaches are often unable to capture multiple

modes of the posterior since their ensembles are essentially pertur-

bations around a single pre-trained model. This fact has motivated

approaches that train an ensemble by exploring diverse initializa-

tion or hyper-parameter settings, and computing the ensemble-

averaged predictions at inference time. Deep ensembles [21] is one

such popular approach for constructing ensembles for DNNs by

training the DNN with diverse initializations. An appealing aspect

about ensembles constructed this way is that ensemble members

can potentially capture multiple modes unlike methods such as

Laplace approximation or Monte-Carlo dropout. However, deep

ensembles are expensive to train since training must take place

afresh for each member of the ensemble which is usually much

more expensive than perturbation.

Our Contributions. In this work, we present PEG, an efficient

approach to construct ensembles by applying gradient-based per-

turbations. PEG offers multiple benefits over existing methods:

(1) PEG is lightweight yet offers competitive or better perfor-

mance than state-of-the-art methods both in terms of predic-

tive performance as well as other uncertainty quantification

metrics, at times outperforming expensive ensemble meth-

ods such as SWAG [24].

(2) Experiments suggest that PEG can not only create ensembles

with better predictive performance out of a single pre-trained

model, but it could enhance the performance of pre-trained

ensembles such as a pre-trained deep ensemble [21] too.

(3) Being a gradient-based method naturally offers PEG benefits

such as batch-normalization whereas Gaussian perturbation

techniques have to carry out such steps separately at addi-

tional cost.

(4) Being gradient-based also allows PEG to explore variants

such as those that perform unbiased updates. Experiments

show that these variants can outperform the vanilla PEG

method and are promising directions of future investigation.

2 Notation

Let 𝑆 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 denote the labeled training data – we will

assume a multi-class classification task with 𝐶 classes for sake of

simplicity i.e. 𝑦𝑖 ∈ [𝐶] for each data point 𝑖 ∈ [𝑁 ]. 𝑓 will denote a
neural architecture such as VGG-16, PreResNet-164, etc and \ will

denote its parameters. We will use the shorthand 𝑓\ (𝑥) to denote

the output of the neural architecture with model parameter \ on

the data point 𝑥 . For a multi-class tasks over 𝐶 classes for which a

penultimate softmax layer is used before the loss function, 𝑓\ (𝑥)
will typically be a 𝐶-dimensional probability vector. 1 shall denote

the indicator function so that 1(𝐴) = 1 if event𝐴 happens or clause

𝐴 is true else 1(𝐴) = 0. The notation 𝑝\ (𝑦𝑖 ;𝑥𝑖 ) will denote the label
likelihood with model parameters \ . We will abuse notation to let

log 𝑝\ (𝐵) denote the average log-likelihood of the model parameter

\ on the set of data points 𝐵

log𝑝\ (𝐵) ≜
1

|𝐵 |
∑︁
𝑖∈𝐵

log𝑝\ (𝑦𝑖 ;𝑥𝑖 )

Algorithm 1 PEG: Ensemble Creation and Inference

Require: Pre-trained base model weights \ , validation set 𝑉 , en-

semble size 𝑆 , mini-batch size 𝐾 , step-length [, Test point 𝑥𝑡
𝑦𝑡 ← 0 //Initialize the output vector
for 𝑖 = 1, . . . , 𝑆 do
Draw a mini-batch 𝐵𝑖 of 𝐾 data points uniformly from 𝑉

\𝑖 ← \ − [ · ∇\𝑝\ (𝐵𝑖 )
𝑦𝑡 ← 𝑦𝑡 + 1

𝑆
· 𝑓\𝑖 (𝑥𝑡 ) //Average ensemble predictions

end for
return 𝑦𝑡

3 PEG: Perturbed Ensemble via Gradient
Updates

In this section we outline the PEG method. Algorithm 1 presents

the base PEG algorithm. PEG takes a pre-trained “base” model and

applies gradient-based perturbations to create an ensemble. It is

notable that if creating an ensemble of 𝑆 models, PEG applies 𝑆

perturbations but with restart. More specifically, the perturbations

are not applied in succession but rather, all perturbations are applied

to the same base model. This is a subtle yet crucial point – since

the base model is expected to be a stationary point for the training

loss function, applying perturbations successively rather than with

restart was experimentally found to cause too much drift and poor

performance.

Algorithm 1 considers a single test point. However, the procedure

is readily modified to handle an entire batch of test points. PEG

ensemble can even be archived to enable inference on a stream of

test points. It is notable that PEG involves scarce hyper-parameters

i.e., the step length [, tuned using a grid search.

PEG over Ensembles: PEG was found to be good at enriching

ensemble models themselves. Algorithm 2 gives the pseudo code

for this setting. Given an input ensemble with say 𝑅 models, PEG

can expand it to an ensemble of say𝑄 ·𝑅 models by perturbing each

member of the ensemble. This technique was found to consistently

give improvements in performance and indicates that techniques

such as Deep Ensembles [21], although able to explore multiple

modes efficiently, do not adequately explore the neighborhoods

around those modes and stand to benefit from application of a

second stage of ensemble creation. This two-stage ensemble cre-

ation can effectively be seen as achieving a multi-modal/multi-basin

marginalization [37].

Unbiased Perturbations with PEG: Given its gradient-based

perturbation method, on expectation, PEG makes the following

perturbation to the base model (here 𝑉 is the validation set)

\𝑖 ← \ − [ · ∇\𝑝\ (𝑉 )
Given that the base model \ is a stationary point with respect to the

training data, it is expected that ∇\𝑝\ (𝑉 ) → 0. However, this may

not be the case if the number of classes is large or if the validation

set is not large enough. This is concerning since in these cases, PEG

would induce a certain amount of drift to fit the validation set which

may be undesirable. To investigate this further, we experimented

with a variant of PEG that performs provably unbiased updates.

To do so requires us to obtain gradients on two mini-batches

𝐵1
𝑖
, 𝐵2

𝑖
instead of one (per ensemble member) as well as obtain
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Algorithm 2 PEG-Ensemble

Require: An ensemble model \1, . . . , \𝑅 with 𝑅 pretrained models,

validation set 𝑉 , ensemble expansion factor 𝑄 , mini-batch size

𝐾 , step-length [, Test point 𝑥𝑡
𝑦𝑡 ← 0 //Initialize the output vector
for 𝑗 = 1, . . . , 𝑅 do //Apply PEG to each member of the input
ensemble
{\1

𝑗
, . . . , \

𝑄

𝑗
} ← PEG(\ 𝑗 ,𝑉 ,𝑄, 𝐾, [)

for 𝑘 = 1, . . . , 𝑄 do
𝑦𝑡 ← 𝑦𝑡 + 1

𝑄 ·𝑅 · 𝑓\𝑘
𝑖
(𝑥𝑡 )

end for
end for
return 𝑦𝑡

∇\𝑝\ (𝑉 ). Obtaining the latter may be a bit expensive but we can

estimate ∇\𝑝\ (𝑉 ) reasonably well using an average over several

mini-batches. Given these, the unbiased version of PEG makes the

following update

\𝑖 ← \ − [
√
2

· (∇\𝑝\ (𝐵1𝑖 ) − ∇\𝑝\ (𝐵
2

𝑖 )) − 𝑎 · (𝛽 · 𝑣 + [ · ∇\𝑝\ (𝑉 )),

where 𝑎 ∼ 𝑁 (0, 1) is a Gaussian scalar variable, 𝑣 is the momentum

term, [ is the step length as before and 𝛽 is the momentum weight

(typically set to 0.9). Straightforward calculations establish the

following claim.

Claim 1. For the unbiased update described above, we have
(1) E[\𝑖 − \ ] = 0

(2) E[(\𝑖 − \ ) (\𝑖 − \ )⊤] =
[2 · 𝐷 + 𝛽2 · 𝑣𝑣⊤ + [ · 𝛽 · (∇\𝑝\ (𝑉 ) · 𝑣⊤ + 𝑣 · ∇\𝑝\ (𝑉 )⊤)

Proof (Sketch). The first part of the proof follows from linear-

ity of expectation and the fact that E[∇\𝑝\ (𝐵1𝑖 )] = E[∇\𝑝\ (𝐵
2

𝑖
)]

and E[𝑎 |\,𝑉 , 𝑣] = 0 since 𝑎 ∼ 𝑁 (0, 1) independently. for the
second part of the proof, the cross terms vanish similarly by us-

ing E[𝑎 |\,𝑉 , 𝑣] = 0 and E[𝑎2 |\,𝑉 , 𝑣] = 1 as 𝑎 ∼ 𝑁 (0, 1) inde-
pendently. To simplify the homogeneous quadratic terms, we use

E[∇\𝑝\ (𝐵1𝑖 )∇\𝑝\ (𝐵
1

𝑖
)⊤] = E[∇\𝑝\ (𝐵2𝑖 )∇\𝑝\ (𝐵

2

𝑖
)⊤] def

= 𝐷 and

E[∇\𝑝\ (𝐵1𝑖 )∇\𝑝\ (𝐵
2

𝑖
)⊤] = ∇\𝑝\ (𝑉 )∇\𝑝\ (𝑉 )⊤ for 𝑖 = 1, 2. □

Using a standard argument establishing SGD as a discrete-time

approximation of a continuous-time Ornstein-Uhlenbeck (see [25]

for example), PEG can also be seen as effecting a discretized OU-

process to create its ensemble.

4 Related Work
A number of approaches have been proposed to improve the ro-

bustness of predictions of DNNs and to improve their uncertainty

estimates. Broadly, these methods include (1) the classical Bayesian

inference methods such as MCMC and variational inference which

are usually intractable for DNNs but some recent works have ex-

plored their usage for DNNs as we discuss below; (2) Efficient Gauss-

ian approximations of the DNN posterior which are either based

on Laplace approximation [9, 32] or use SGD iterates to construct

a Gaussian approximation of the posterior [24]; (3) deep ensem-

bles [21] which are based on training multiple models, usually with

different initialization, and have been shown to be equivalent to

performing Bayesian model averaging; and (4) single forward-pass

uncertainty estimation methods [28].

Bayesian inference for DNNs: Classical MCMC and variational

inference methods are intractable for DNNs. Recent works have

tried to adapt both MCMC and variational inference for DNNs.

Among commonly used MCMC methods for DNNs, stochastic gra-

dient based MCMC [39] have been used which are akin to SGD

based optimization of DNNs with a Gaussian noise injected to each

update. Recently, Hamiltonian Monte Carlo (HMC) based methods

have also been applied for DNNs with some success [17]; how-

ever, they require significant computation budget. Among com-

monly used variational inference methods for DNNs, methods such

as Bayes-by-backprop [6] and probabilistic backpropagation [14],

methods that are based on introducing weight perturbation in nat-

ural gradient descent to yield a variational posterior [19]. However,

both MCMC and variational inference methods are still considered

difficult to design and tune for DNNs.

Gaussian approximations of the DNN posterior: Recent work
on Bayesian inference for DNNs has also focused on obtaining

cheaper approximations of the DNN weight posterior. One such

commonly used approximation is a Gaussian centered around the

maximum-a-posteriori (MAP) solution \𝑀𝐴𝑃 of the DNN weights.

The classical Laplace approximation which approximates the pos-

terior by a Gaussian N(\ |\𝑀𝐴𝑃 ,A) where A is the inverse Hes-

sian of the negative log-posterior, and more recently its efficient

versions [9, 32] too, has been employed for DNNs with some suc-

cess. Another recent approach along the same lines is SWAG [24]

which approximates the DNN weight posterior by a Gaussian

N(\ |\𝑆𝑊𝐴,A), where \𝑆𝑊𝐴 is the solution obtained by running

the Stochastic Weight Averaging (SWA) algorithm [16], and A is a

covariance matrix (full/diagonal) constructed using SWA iterates.

Deep Ensembles and its variants: Deep ensembles [21] are based

on training a DNN with multiple times with each run using a dif-

ferent initialization or different hyperparameters, and have been

shown to be a promising way to improve the robustness of DNN

predictions, and to obtain reliable uncertainty estimates. Although

deep ensembles may appear non-Bayesian at first blush, they have

been shown to perform Bayesian model averaging [37]. Another

appealing aspect of deep ensembles is that they can capture the mul-

tiple basins of attraction [37] more easily than classical Bayesian

inferencemethods applied to DNNs (and note that, simpler Bayesian

inference methods such as Gaussian approximation of the posterior

can only capture one basin of attraction). Deep ensembles however

can be expensive since they require training the model multiple

times. Monte-Carlo dropout [11] is a faster way to construct a

deep ensemble from a pre-trained model by applying multiple ran-

dom dropouts, with each dropout giving a different model. Other

methods to generate deep ensembles faster include M-heads [22],

Snapshot Ensembles [15], Fast Geometric Ensemble [12], and Batch

Ensemble [36]. These approaches, usually considered implicit en-
sembles, do not need a separate training for each ensemble members

but require a single run to sequentially generate all the ensemble

members, or share parameters across the ensemble members with

each member having a separate head. Another method PEP (Param-

eter Ensembling by Perturbation) provides a fast way to construct

a deep ensemble by sampling multiple models from a Gaussian
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centered at a solution \∗ obtained by training the DNN using a

standard optimizer [26]. PEP is somewhat similar in spirit to our

approach of using gradient perturbation to generate an ensemble.

However, PEP uses a spherical Gaussian to generate the ensemble

members and the spherical variance parameter needs to be tuned

carefully to achieve the best performance.

Single forward-pass uncertainty estimation: Recent works
such as DUQ [34] and SNGP [23] take a fundamentally different

approach and try to estimate model/predictive uncertainty via a

single forward pass [28] by using distance-aware output layers.

However, these methods require changes to the training procedure

as well as additional hyperparameters to be introduced.

Our approach PEG provides a simple and efficient way to con-

struct ensembles from a single pre-trained model (e.g., SWA) or can

also be used to enrich an already learned deep ensemble [21] by

capturing local diversity around each mode captured by the original

deep ensemble. Thus it complements methods such as SWA and

deep ensembles by offering a simple, plug-in mechanism to further

improve their performance without incurring much additional cost

since PEG does not require any re-training.

5 Experiments
We report empirical evaluation of PEG by leveraging it as a wrapper

around 3 methods, SWA [16], deep ensembles [21] and a version

of SWAG [24], all of which also serve as baselines, in addition to

PEP [26] which is another parameter perturbation based ensemble

method like PEG. We take the model offered by each of these 3

methods as a pre-trained model and use PEG to generate an ensem-

ble. In case of Deep ensemble, the solution is already an ensemble,

using Algorithm 2 we make a fixed number of perturbations to each

member and get an enriched and expanded ensemble.

We compare various methods on following metrics: Negative

Log Likelihood (NLL), Classification Error (CE), Brier Score (BS) and

Expected Calibration Error (ECE). NLL and CE are measures of the

model’s predictive performance whereas BS and ECE are measures

of the model’s calibration performance which is an indicative of

how reliable the model’s predictive uncertainties are. For all these

metrics, a method with lower value is considered better. BS and

ECE are briefly described below. Our code is available here.

Brier Score: [7] It measures the accuracy of predictive proba-

bilities in classification tasks and is a proper scoring rule – recall

that 𝐶 is the number of classes in the multi-class task. The Brier

score is computed as the average mean squared distance between

predicted class probabilities and one-hot class labels:

BS =
1

𝑁

𝑁∑︁
𝑖=1

1

𝐶

𝐶∑︁
𝑐=1

(𝑝\ (y𝑖 = 𝑐 |x𝑖 ) − 1[y𝑖 = 𝑐])2

ExpectedCalibrationError (ECE): [29] It measures the difference

between predictive confidence and empirical accuracy in classifi-

cation. ECE divides model’s predictions into bins depending on

their predictive probability. After dividing the [0,1] range into a set

of bins {𝐻𝑠 }𝑆𝑠=1, it weights the miscalibration in each bin by the

number of points that fall into it |𝐻𝑠 |:

ECE =

𝑆∑︁
𝑠=1

|𝐻𝑠 |
𝑁

acc(𝐻𝑠 ) − conf (𝐻𝑠 ))

where

acc(𝐻𝑠 ) =
1

|𝐻𝑠 |
∑︁

x𝑖 ∈𝐻𝑠

1[y𝑖 = argmax

𝑐
𝑝\ (y𝑖 = 𝑐 |x𝑖 )] and

conf (𝐻𝑠 ) =
1

|𝐻𝑠 |
∑︁

x𝑖 ∈𝐻𝑠

max

𝑐
𝑝\ (y𝑖 = 𝑐 |x𝑖 ) .

Note that in the definition of BS and ECE, when using a Bayesian

approach or ensemble, the quantity 𝑝\ (y𝑖 |x𝑖 ) is replaced by the

posterior-averaged or ensembled-averaged probabilities.

Hyperparameters: In our experiments, we consider three net-

work architectures, VGG-16, PreResNet-164 andWideResNet-28x10,

on CIFAR-10 and CIFAR-100 datasets. We use PyTorch code and

parameter settings provided with the SWAG [24] implementation

for training these networks to get the baseline models like deep en-

sembles, SWA, SWAG-Diag and SWAG. We split the CIFAR training

set randomly in a ratio of 80:20 to create the final train and vali-

dation set. We then train the various models on the final training

set. We use the validation set to choose the perturbation parame-

ter values of PEP and the perturbation learning rate for PEG, i.e.,

𝜎 and [, respectively. PEG does a grid search among the values

(0.001, 0.01, 0.1, 1) for optimal [ value. PEP [26] uses golden section
search method [30] to find optimal 𝜎 in the range (5𝑒 − 4, 5𝑒 − 3).
We use their code to compute 𝜎 in our experiments.

In Sec. 5.4 we also apply PEG in a transfer learning setting where

the models are trained on CIFAR-10 and tested on STL-10.

5.1 PEG with SWA pre-training
In our first experiment, we apply PEG to generate an ensemble

using a pre-trained model obtained by SWA [16]. We compare

the performance of this ensemble with SWA and PEP as baselines.

For all the architectures considered, SWA is trained using SGD.

The results are shown in Table 1 for CIFAR-10 and in Table 2 for

CIFAR-100. In these tables, PEG-15 and PEP-15 indicate that an

ensemble of 15 perturbed models is created from the SWA solution.

To create an ensemble of PEG with 15 perturbed models, we first

estimate the optimal [ using grid search on the SWA solution with

𝑆 = 15. This gives us 15 perturbed models whose predictions are

then averaged and [ with best metrics is chosen. For inference

(test-time), Algorithm 1 is used with the optimal [ and 𝑆 = 15 on

the SWA solution. 𝐾 = 128 is chosen as the mini-batch size for

all the experiments. PEP-15 ensembles are created similarly. For

PEG-30 and PEP-30, 𝑆 = 30 is chosen. As shows in Table 1 and

Table 2, PEG performs better than SWA and is competitive with or

better than PEP, both in terms of predictive performance as well as

calibration metrics. Figure 1 shows ECE plots for SWA, ,PEP and

PEG. Bin-width is 0.1 and each bin should have at-least 10 elements.

5.2 PEG with Deep Ensembles pre-training
In this experiment, we apply PEG to a pre-trained deep ensem-

ble and perturb each of them to generate a richer ensemble. We

compare the performance of this ensemble with the original pre-

trained ensemble and PEP as the baselines. To generate the original

pre-trained ensemble, for each network architecture, 3 models are

trained with different random seeds using SGD. These 3 solutions

form the baseline DeepEns-3. For inference (test-time), their predic-

tions are averaged to compute required metrics. As before, PEG-15

and PEP-15 indicate that an ensemble of 15 perturbed models is

https://github.com/amitchandak/peg-ensemble
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Table 1: CIFAR-10 - SWA as the base solution

CIFAR-10

Model PEG-15 PEP-15 PEG-30 PEP-30 SWA

NLL

VGG-16 0.251 0.257 0.244 0.255 0.266

PreResNet-164 0.157 0.153 0.155 0.151 0.16

WideResNet28x10 0.111 0.112 0.111 0.112 0.113

Classification Error %

VGG-16 6.78 6.87 6.8 6.85 6.9

PreResNet-164 4.33 4.33 4.33 4.32 4.34

WideResNet28x10 3.74 3.76 3.73 3.78 3.81

Brier

VGG-16 0.107 0.108 0.107 0.107 0.11

PreResNet-164 0.068 0.067 0.068 0.067 0.069

WideResNet28x10 0.055 0.055 0.055 0.056 0.056

ECE %

VGG-16 3.508 3.966 3.573 3.878 4.275

PreResNet-164 2.248 2.149 2.198 2.042 2.347

WideResNet28x10 0.885 1.016 0.895 1.058 1.128

Table 2: CIFAR-100 - SWA as the base solution

CIFAR-100

Model PEG-15 PEP-15 PEG-30 PEP-30 SWA

NLL

VGG-16 1.228 1.336 1.163 1.33 1.389

PreResNet-164 0.77 0.77 0.771 0.771 0.773

WideResNet28x10 0.691 0.689 0.69 0.684 0.715

Classification Error %

VGG-16 26.88 26.81 26.97 26.82 26.9

PreResNet-164 20.72 20.91 20.72 20.83 20.8

WideResNet28x10 18.36 18.37 18.43 18.41 18.43

Brier

VGG-16 0.398 0.416 0.391 0.415 0.424

PreResNet-164 0.3 0.301 0.3 0.301 0.301

WideResNet28x10 0.266 0.265 0.265 0.264 0.27

ECE %

VGG-16 12.616 15.363 11.441 15.26 16.373

PreResNet-164 7.78 8.014 7.838 8.043 8.07

WideResNet28x10 6.266 6.264 6.435 6.134 7.597

created from DeepEns-3. To create an ensemble of PEG with 15

perturbed models, as described in Sec. 5.1, we first estimate the

optimal [ using grid search on each member of DeepEns-3 with

𝑆 = 5. This gives us 15 perturbed models whose predictions are

then averaged and [ with best metrics is chosen. For inference (test-

time), Algorithm 1 is used with optimal [ and 𝑆 = 5 on each member

of DeepEns-3. 𝐾 = 128 is chosen as the mini-batch size for all the

experiments. PEP-15 ensembles are created similarly. For PEG-30

and PEP-30, 𝑆 = 10 is chosen for each member of DeepEns-3. As

shown in Table 3 and Table 4, PEG performs better than DeepEns

and is competitive or better than PEP, both in terms of predictive

performance and calibration metrics. In Table 5 and Table 6, we

also compare Deep Ensembles with PEG on a single base model

whose solution was obtained by running SGD.

5.3 PEG with SWAG-Diag pre-training
We apply PEG to each member of an ensemble generated by sam-

pling from the Gaussian (with diagonal covariance) posterior ap-

proximation of SWAG-Diag [24]. SWAG-Diag is less expressive

Figure 1: ECE plots of SWA, PEP & PEG for VGG16 on CIFAR-
10 , PreResNet-164 & WideResNet28x10 on CIFAR100

Table 3: CIFAR-10 - DeepEns as the base solution

CIFAR-10

Model PEG-15 PEP-15 PEG-30 PEP-30 DeepEns-3

NLL

VGG-16 0.225 0.229 0.219 0.221 0.232

PreResNet-164 0.139 0.135 0.135 0.132 0.14

WideResNet28x10 0.11 0.11 0.11 0.11 0.11

Classification Error %

VGG-16 6.31 6.01 6.3 6.07 6.09

PreResNet-164 4.11 4.21 4.11 4.14 4.13

WideResNet28x10 3.42 3.42 3.41 3.45 3.36

Brier

VGG-16 0.095 0.095 0.094 0.094 0.095

PreResNet-164 0.063 0.063 0.063 0.062 0.063

WideResNet28x10 0.051 0.051 0.051 0.051 0.051

ECE %

VGG-16 1.836 1.963 1.469 1.818 2.16

PreResNet-164 0.999 0.745 0.63 0.581 1.06

WideResNet28x10 0.684 0.604 0.704 0.601 0.636

approximation than SWAG which uses a full-rank covariance ma-

trix. The purpose of this experiment is to show that perturbing each

member of the SWAG-Diag with PEG improves the performance

of generated ensemble and whether it performs comparably/better

than SWAG.

SWAG-Diag model is trained as described in [24]. For infer-

ence (test-time prediction) with SWAG and SWAG-Diag, the model

weights are sampled from Gaussian with full-rank and diagonal

covariance matrix, respectively. Using the sampled weights, Monte-

Carlo averaging is performed for predictions. In our experiments,
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Table 4: CIFAR-100 - DeepEns as the base solution

CIFAR-100

Model PEG-15 PEP-15 PEG-30 PEP-30 DeepEns-3

NLL

VGG-16 1.156 1.174 1.059 1.139 1.233

PreResNet-164 0.726 0.708 0.712 0.703 0.737

WideResNet28x10 0.714 0.716 0.709 0.714 0.712

Classification Error %

VGG-16 25.34 25.07 24.81 24.98 25.19

PreResNet-164 19.24 19.13 19.18 19.22 19.36

WideResNet28x10 17.71 17.92 17.67 17.9 17.86

Brier

0.356 0.358 0.347 0.354 0.362

PreResNet-164 0.274 0.271 0.272 0.270 0.274

WideResNet28x10 0.259 0.259 0.258 0.259 0.259

ECE %

VGG-16 6.653 7.644 2.1 7.088 8.53

PreResNet-164 1.836 1.824 1.548 1.606 2.854

WideResNet28x10 5.047 4.77 5.005 4.07 4.466

Table 5: CIFAR-10: DeepEns Vs (PEG on SGD). Starting from
a single SGD model (DeepEns-1), PEG outperforms it com-
fortably and given enough ensemble members, approaches
the performance of DeepEns-3 too, indicating PEG’s ability
to offer some mode-exploration benefits.

CIFAR-10

Model PEG-10 PEG-30 PEG-50 DeepEns-1 DeepEns-3

NLL

VGG-16 0.314 0.279 0.256 0.333 0.232

PreResNet-164 0.179 0.177 0.171 0.192 0.14

WideResNet28x10 0.135 0.133 0.133 0.136 0.11

Classification Error %

VGG-16 7.28 7.32 7.26 7.18 6.09

PreResNet-164 4.8 4.76 4.78 4.73 4.13

WideResNet28x10 3.78 3.81 3.79 3.77 3.36

Brier

VGG-16 0.118 0.113 0.112 0.12 0.095

PreResNet-164 0.075 0.075 0.075 0.077 0.063

WideResNet28x10 0.06 0.06 0.059 0.06 0.051

ECE %

VGG-16 4.569 2.072 2.476 4.907 2.16

PreResNet-164 2.117 1.923 1.642 2.55 1.06

WideResNet28x10 1.683 1.638 1.6 1.651 0.636

we generate 15 samples of the weights for computing SWAG and

SWAG-Diag predictions and these serve as our baselines for this

experiment. As described in Sec. 5.1 and 5.2, to create an ensemble

of PEG with 15 perturbed models, we first estimate the optimal [

using grid search on each sample of SWAG-Diag with 𝑆 = 1 (i.e.,

a single perturbation). This gives us 15 perturbed models whose

predictions are then averaged and [ with best metrics is chosen.

During inference (test-time), for each sample of model weights

from SWAG-Diag, Algorithm 1 is used with optimal [ and 𝑆 = 1

to perturb them. 𝐾 = 128 is chosen as mini-batch size for all the

experiments. PEP-15 ensembles are created similarly. As shown in

Table 7 and Table 8, applying PEG on SWAG-Diag generated ensem-

ble indeed yields better results than the original SWAG-Diag based

ensemble in most cases. PEG is also competitive or better than PEP

and performs comparably or better than SWAG (which uses a full

Table 6: CIFAR-100: DeepEns Vs (PEG on SGD) - similar to
Tab 5

CIFAR-100

Model PEG-10 PEG-30 PEG-50 DeepEns-1 DeepEns-3

NLL

VGG-16 1.465 1.347 1.321 1.833 1.233

PreResNet-164 0.905 0.868 0.861 0.983 0.737

WideResNet28x10 0.797 0.793 0.792 0.833 0.712

Classification Error %

VGG-16 28.67 28.3 28.37 28.57 25.19

PreResNet-164 22.46 22.34 22.39 22.43 19.36

WideResNet28x10 19.69 19.66 19.56 20.27 17.86

Brier

VGG-16 0.415 0.405 0.409 0.469 0.362

PreResNet-164 0.322 0.315 0.315 0.335 0.063

WideResNet28x10 0.283 0.282 0.282 0.293 0.051

ECE %

VGG-16 7.1 8.387 10.765 20.165 8.53

PreResNet-164 7.725 5.828 6.272 10.691 2.854

WideResNet28x10 4.255 4.186 4.133 4.656 4.466

covariance) in most cases. Note that our main comparison here is

not meant to be with SWAG but to show that PEG can improve the

base solution given by SWAG-Diag. Also note that, PEG and PEP

are lightweight as compared to SWAG since they only require the

diagonal elements of covariance matrix.

Table 7: CIFAR-10 - SWAG-Diag as base solution

CIFAR-10

Model PEG-15 PEP-15 SWAG-Diag SWAG

NLL

VGG-16 0.224 0.231 0.225 0.212

PreResNet-164 0.134 0.136 0.214 0.137

WideResNet28x10 0.113 0.112 0.146 0.119

Classification Error %

VGG-16 6.66 6.63 6.69 6.81

PreResNet-164 4.37 4.25 6.85 4.55

WideResNet28x10 3.84 3.72 4.66 3.9

Brier

VGG-16 0.101 0.102 0.101 0.1

PreResNet-164 0.064 0.065 0.101 0.066

WideResNet28x10 0.056 0.056 0.071 0.059

ECE %

VGG-16 2.523 2.782 2.501 1.156

PreResNet-164 0.698 1.016 0.765 0.667

WideResNet28x10 0.417 0.403 0.597 0.998

5.4 Transfer Learning
We also evaluate PEG for the task of transfer learning to investigate

its efficacy against dataset shifts at test time. For this experiment,

we consider the problem of transferring a model trained on CIFAR-

10 for testing it on the STL-10 dataset [8, 24]. For this we use PEG

based ensemble constructed via the three approaches considered

earlier, i.e., (1) SWA as base solution, (2) deep ensembles as base

solution, and (3) SWAG-Diag as base solution. Table 9, Table 10, and

Table 11 show the results for these 3 cases. PEG performs better

than PEP when SWA or DeepEns-3 is base solution.
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Table 8: CIFAR-100 - SWAG-Diag as base solution

CIFAR-100

Model PEG-15 PEP-15 SWAG-Diag SWAG

NLL

VGG-16 1.094 1.059 1.076 1.037

PreResNet-164 0.723 0.722 0.953 0.731

WideResNet28x10 0.658 0.656 0.776 0.655

Classification Error %

VGG-16 26.58 26.62 26.58 26.5

PreResNet-164 21.2 21.06 26.75 21.07

WideResNet28x10 18.3 18.34 21.25 18.6

Brier

VGG-16 0.377 0.369 0.367 0.374

PreResNet-164 0.292 0.292 0.365 0.295

WideResNet28x10 0.259 0.258 0.301 0.261

ECE %

VGG-16 8.886 5.121 7.546 4.893

PreResNet-164 1.235 0.979 3.474 3.88

WideResNet28x10 3.677 3.257 2.612 1.844

Table 9: Transfer Learning CIFAR to STL:
SWA as the base solution

CIFAR-10

Model PEG-15 PEP-15 PEG-30 PEP-30 SWA

NLL

VGG-16 1.346 1.384 1.324 1.331 1.403

PreResNet-164 1.378 1.371 1.38 1.366 1.41

WideResNet28x10 1.012 1.01 1.002 1.012 1.022

Classification Error %

VGG-16 28.412 28.55 28.425 28.463 28.562

PreResNet-164 24.2 24.3 24.2 24.175 24.187

WideResNet28x10 22.962 22.888 22.85 22.862 22.912

Brier

VGG-16 0.459 0.472 0.46 0.462 0.476

PreResNet-164 0.399 0.397 0.398 0.397 0.403

WideResNet28x10 0.354 0.353 0.353 0.354 0.355

ECE %

VGG-16 19.171 20.504 19.401 19.518 20.881

PreResNet-164 16.697 16.628 16.67 16.484 17.135

WideResNet28x10 12.706 12.741 12.53 12.811 13.073

Table 10: Transfer Learning CIFAR-10 to STL :
DeepEns as base solution

CIFAR-10

Model PEG-15 PEP-15 PEG-30 PEP-30 DeepEns-3

NLL

VGG-16 1.316 1.324 1.267 1.287 1.343

PreResNet-164 1.199 1.154 1.142 1.136 1.226

WideResNet28x10 1.013 0.977 1.013 0.958 1.01

Classification Error %

VGG-16 27.375 27.438 27.25 27.412 27.463

PreResNet-164 24.1 24.062 24.187 24.087 24.125

WideResNet28x10 22.962 23.038 22.938 23.162 22.9

Brier

VGG-16 0.419 0.424 0.414 0.42 0.425

PreResNet-164 0.374 0.369 0.368 0.367 0.375

WideResNet28x10 0.357 0.351 0.356 0.349 0.355

ECE %

VGG-16 14.959 15.598 14.38 15.241 15.905

PreResNet-164 13.081 12.431 12.295 12.231 13.382

WideResNet28x10 12.434 11.753 12.389 11.47 12.276

Table 11: Transfer Learning CIFAR-10 to STL :
SWAG-Diag as base solution

CIFAR-10

Model PEG-15 PEP-15 SWAG-Diag SWAG

NLL

VGG-16 1.245 1.226 1.196 1.104

PreResNet-164 1.21 1.169 1.108 1.047

WideResNet28x10 0.983 0.944 0.925 0.862

Classification Error %

VGG-16 28.638 28.425 28.588 28.038

PreResNet-164 24.425 24.487 26.013 25.113

WideResNet28x10 23.462 23.738 24.187 23.562

Brier

VGG-16 0.444 0.44 0.439 0.414

PreResNet-164 0.379 0.373 0.395 0.371

WideResNet28x10 0.351 0.349 0.359 0.342

ECE %

VGG-16 17.512 16.894 16.802 13.302

PreResNet-164 13.841 12.765 13.159 12.46

WideResNet28x10 11.542 10.545 11.818 9.793

5.5 Unbiased Update
Results of the unbiased update approach is shown in Table 12.

This approach gives significant improvement over the vanilla PEG

method but requires us to compute the gradient over the entire

validation set (or an estimate thereof using multiple mini-batches).

Table 12: Unbiased update with SWA as the base solution

CIFAR-10 CIFAR-100

Model PEG-Unbiased PEG-30 SWA PEG-Unbiased PEG-30 SWA

NLL NLL

VGG-16 0.243 0.244 0.266 1.108 1.163 1.389

PreResNet-164 0.152 0.155 0.16 0.708 0.771 0.763

WideResNet28x10 0.111 0.111 0.113 0.682 0.69 0.715

5.6 Additional Experiments on PEG vs PEP
PEG and PEP enrich an existing model by generating an ensem-

ble using perturbations. PEP generates ensemble of model-weights

by sampling from a Gaussian with spherical covariance-matrix.

This assumption is quiet restrictive and PEG overcomes it by us-

ing gradient information, thus ensuring model-weights belongs

to the sub-space with low objective value and high accuracy. We

demonstrate this by comparing PEP and PEG on two-dimensional

synthetic datasets:

5.6.1 Linearly Separable Dataset
Assume model weights𝑊 ∈ R2 follow a Gaussian distribution.

If data of two classes are distributed as in Fig. 4 then ensembles

of𝑊 using PEP will have lower accuracy since PEP generates the

model weights from a spherical Gaussian whereas PEG generates

the model weights using gradient information.

5.6.2 Nonlinearly Separable Dataset: 3Moons We generate

3-Moons data and train a Multi-Layer Perceptron (MLP) (1-hidden

layer with 20 neurons) which yields an accuracy of 88.6% and a

negative log-likelihood (NLL) of 0.0093. This MLP is now enriched
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(a) Base Model, Acc: 98.18, NLL: 0.0017 (b) PEP, Acc: 98.18, NLL: 0.0017 (c) PEG, Acc: 98.79, NLL: 0.0011

Figure 2: PEG offers visually better classifiers than PEP with higher accuracy and lower NLL

(a) Base Model, Acc: 88.6, NLL: 0.0093 (b) PEP, Acc: 88.6, NLL: 0.0093 (c) PEG, Acc: 89.72, NLL: 0.0089

Figure 3: PEG offers visually superior classifiers than PEP with higher accuracy and lower NLL

Figure 4: Models generated by PEG (left) vs PEP (right). PEP
samples from spherical Gaussian, violates the margin and
intrude into data territory whereas PEG models remain re-
stricted within the margin.

by generating 5 ensemble members using PEG and PEP. Single per-

turbation in both the algorithm doesn’t improve predictive perfor-

mance but PEG with multiple perturbations improves the accuracy

whereas doing the same for PEP does not improve the accuracy as

ensemble members hardly move away from the base model due to

a small optimal value of the variance (given by the golden search

procedure) of the Gaussian. Results are shown in Fig. 3a to 3c

5.6.3 Nonlinearly Separable Dataset: 2Moons We generate

2 Moons data and train a MLP (1-hidden layer with 20 neurons ,

accuracy: 98.18 and negative log-likelihood (NLL): 0.0017). This

base-model is now enriched by generating 5 ensembles using PEG

or PEP. We observe a similar behavior for PEG vs PEP as for the 3

Moons dataset. The results are shown in Fig. 2a to 2c

6 Conclusion
We presented PEG, a simple and lightweight approach to generate

an ensemble by applying gradient-based perturbations around a

given pre-trained model. PEG can also be used to enrich a pre-

trained ensemble of models by applying a gradient-based pertur-

bation around each member of the ensemble. In either case, PEG

offers improvements in predictive and uncertainty metrics, over

the base pre-trained model or model ensemble.
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