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Abstract

We present a probabilistic framework for
efficient non-negative matrix factorization
of discrete (count/binary) data with side-
information. The side-information is given
as a multi-level structure, taxonomy, or
ontology, with nodes at each level being
categorical-valued observations. For exam-
ple, when modeling documents with a two-
level side-information (documents being at
level-zero), level-one may represent (one or
more) authors associated with each doc-
ument and level-two may represent affili-
ations of each author. The model eas-
ily generalizes to more than two levels
(or taxonomy/ontology of arbitrary depth).
Our model can learn embeddings of enti-
ties present at each level in the data/side-
information hierarchy (e.g., documents, au-
thors, affiliations, in the previous exam-
ple), with appropriate sharing of informa-
tion across levels. The model also enjoys full
local conjugacy, facilitating efficient Gibbs
sampling for model inference. Inference cost
scales in the number of non-zero entries in the
data matrix, which is especially appealing for
real-world massive but sparse matrices. We
demonstrate the effectiveness of the model on
several real-world data sets.

1 INTRODUCTION

Non-negative matrix factorization for discrete data is
a fundamental problem in many applications, such as
text modeling (Zhou et al., 2012), social network mod-
eling (Yang and Leskovec, 2013), recommender sys-
tems (Gopalan et al., 2015), and so on. Often, in
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addition to the matrix being factorized, there is side-
information available along the rows and/or columns,
that can be leveraged to handle issues such as data
sparsity, the cold-start problem, etc. Several at-
tempts have been made in the recent past (Agarwal
and Chen, 2009; Kim et al., 2012; Gopalan et al.,
2014; Chaney et al., 2015) to incorporate such side-
information when it is given in form flat-structured
feature vectors/covariates along the rows and/or the
columns of the data matrix. In many problems, how-
ever, the side-information can more naturally be spec-
ified in form of a hierarchy, with each node in the hi-
erarchy being a categorical-valued observation. See
Fig. 1 for some examples where the side-information
is in form of a hierarchy or ontology of categorical-
valued observations. Although data exhibiting such
structure are prevalent in many applications, exist-
ing matrix factorization models cannot properly lever-
age such forms of side-information arranged in form of
multiple layers.

We present a generative Bayesian framework that al-
lows us to leverage such structural (e.g., specified hier-
archically or via a taxonomy) side-information in the
context of non-negative matrix factorization of discrete
data. Moreover, the proposed framework can handle
count as well as binary matrices in a unified man-
ner. In addition to being useful for standard tasks
such as matrix completion for count/binary data, our
framework can also be used for topic modeling, while
leveraging the available side-information. Another ap-
pealing aspect of our framework is that, in addition
to learning the embeddings for the rows and columns
of the data matrix, it can also learn embeddings of
the nodes present in the structure that forms the side-
information; e.g., for the two examples shown in Fig. 1,
our model can learn the embeddings of documents and
words, as well as can learn the embeddings for the
entities that constitute the side-information - authors
and affiliations in Fig 1 (left) and each of the nodes
in the label taxonomy in Fig 1 (right). These inter-
pretable embeddings can be useful in other tasks, such
as clustering and classification, or for topic modeling at
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Figure 1: Two examples of the type of side-information that our proposed framework can leverage, Left: Side-
information specified in form of a multi-layer hierarchy with bipartite connections between nodes in adjacent
layers. Right: Side-information specified in form of an ontology over known labels. In this case, each document
is associated with a single categorical label and these labels are the leaf nodes of a label ontology.

multiple resolutions, which significantly emhances the
versatility and usefulness of our framework for appli-
cations beyond matrix factorization and completion.

Our framework also enjoys full local conjugacy which
facilitates closed-form Gibbs sampling for all the model
parameters. Moreover, inference in our model (for
both count as well as binary matrix case) scales in the
number of nonzeros in the data matrix, which makes
it scale easily to massive but sparse matrices.

2 THE MODEL

Here, we will present the model description assuming
that the side-information is given with a hierarchy or
ontology with two levels; the model can be easily mod-
ified to work with arbitrary number of levels.

We assume that we are given a data matrix X of size
M × N , where each column of X represents an ob-
ject (e.g., a document). Fig. 1 shows two examples
where the observations in X are count-valued (e.g.,
word counts for documents). The case when the obser-
vations in X are binary will be discussed subsequently
in Sec. 2.4. The side-information for the objects is
provided in form of a multi-level structures, such as a
hierarchy (Fig. 1-left) or an ontology (Fig. 1-right).

2.1 Background

In the absence of any side-information, the counts ma-
trix X ∈ ZM×N can be modeled via a Poisson factor
analysis (PFA) model as X ∼ Pois(UV>) where U
and V are positive-valued matrices of size M ×R and
N ×R, respectively, and R denotes the number of la-
tent factors. This construction is also equivalent to
assuming that each entry xmn in X can be written as
a sum of R latent counts (Dunson and Herring, 2005):

xmn =

R∑
r=1

xmnr, xmnr ∼ Pois(umrvnr) (1)

u:r ∼ Dir(α, . . . , α) (2)

vnr ∼ Ga

(
gr,

qr
1− qr

)
(3)

gr ∼ Ga(c0g0, 1/h0) (4)

qr ∼ Beta(cε, c(1− ε)) (5)

Note that each Dirichlet drawn column u:r of U repre-
sents a distribution (i.e., a “topic”) over the M objects
(e.g., words) along the rows of X. Also note that the
Poisson-gamma construction (Eq. 1–3) is equivalent to
a gamma-negative binomial model (Zhou et al., 2012)
for each entry xmn of X.

2.2 Leveraging Multi-Level Side-Information

We would like to leverage the multi-level side-
information available for the columns of X (as shown
in Fig. 1). To accomplish this, we augment the
PFA generative model using a multi-level conditioning
structure imposed on the N×R factor score matrix V,
whose each row vn = [vn1, . . . , vnR] denotes the factor
scores (or embedding) of a level-zero object n.

In particular, to leverage the side-information (i.e.,
from level-one and above), we first model the rth fac-
tor score of object n as a sum of contributions from
each of the level-one nodes associated with this object

vnr =
∑
l∈L(1)

n

vnrl (6)

vnrl ∼ Ga(glr, qr/(1− qr)) (7)

where L(1) denotes the set of all nodes in level-one
in the hierarchy and L(1)

n denotes the subset of these
nodes associated with object n from level-zero.

Using gamma-additivity, Eq. 6-7 can be combined as

vnr ∼ Ga

( ∑
l∈L(1)

n

glr,
qr

1− qr

)
(8)
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In Eq. 8, glr denotes the rth factor score of node l at
level-one (first level of side-information).

To leverage the level-two side-information, we likewise
assume that the factor scores of this level-one node l
can, in turn, be written as a sum of contributions from
each of the level-two nodes it is associated with:

glr =
∑
p∈L(2)

l

glrp (9)

glrp ∼ Ga(hpr, 1/β0) (10)

hpr ∼ Ga(s, 1/β1) (11)

where L(2) denotes the set of all nodes in level-two
of the side-information hierarchy and L(2)

l denotes the
subset of these nodes associated with node l in level-
one. Note that Eq. 9-10 can also be combined as

glr ∼ Ga(
∑
p∈L(2)

l

hpr, 1/β0) (12)

In Eq. 12, hpr denotes the rth factor score of node p
at level-two (second level of side-information). Sub-
sequently, we will refer to our model as PFA-SSI,
as an abbreviation for Poisson Factor Analysis with
Structural Side-Information.

2.3 Learning Multi-Level Embeddings

Our generative model provides a natural and effec-
tive way of learning embeddings of the objects being
modeled (e.g., the documents) as well as the embed-
dings of the nodes that together constitute the multi-
level side-information (e.g., the authors and afflilia-
tions or the label ontology as shown in Fig. 1). To see
this, note that vn = [vn1, . . . , vnR], gl = [gl1, . . . , glR],
and hp = [hp1, . . . , hpR] can be interpreted as embed-
dings of the nth level-zero object, and the lth level-one
node and the pth level-two node in the multi-level side-
information, respectively. Note that all these embed-
dings are in the same R-dimensional space and hence
are “comparable”. Since in our model the embeddings
correspond to topics, the embeddings allow us to dis-
cover the topics associated with each object as well as
the topics associated with each constituent node of the
side-information. For example, if the side-information
is given in form of a label ontology then our model can
infer the embedding of each label in the ontology and
the topics associated with each label. Such a prop-
erty makes our framework readily applicable for tasks
such as: (1) supervised topic modeling (Ramage et al.,
2009; Rabinovich and Blei, 2014) with multi-level su-
pervision, which most of existing methods are unable
to leverage in a proper way (also see Sec. 4 on Re-
lated Work); and (2) assigning labels to unlabeled (i.e.,
test) objects by inferring the embeddings of these ob-
jects, using the dictionary U learned from the labeled

training data, applying a standard PFA with dictio-
nary fixed as U, and finding the most similar labels
by comparing these inferred embeddings with the em-
beddings of the set of labels in the training data. Note
that, if the side-information is given as a tree/ontology
over labels, such an approach would even allow label-
ing a test object with a non-leaf label, even though
the training set objects may only have leaf node labels
(somewhat mimicking a zero-shot learning setting).

2.4 Modeling Binary X

If the matrix X is binary, we can replace the Pois-
son likelihood for the counts with a Bernoulli-Poisson
likelihood for binary data. The Bernoulli-Poisson
model Zhou (2015) is based on first drawing a count-
valued latent variable from a Poisson and thresholding
it at one to generate the binary observation. In our
model, this amounts to the following generative model
for each binary entry xmn in X

xmn = 1(zmn ≥ 1), zmn ∼ Pois(

R∑
r=1

umrvnr) (13)

The rest of the generative model is the same as when
X is count-valued (as described in earlier sections).
Marginalizing out zmn leads to the following

xmn ∼ Ber

(
1− exp(−

R∑
r=1

umrvnr)

)
(14)

In contrast to the logistic/probit likelihood for binary
data, the Bernoulli-Poisson construction used here is
appealing due for two reasons. The first is that the
computations scale in the number of nonzeros in X
rather than the number of observations in X. This is
possible because, in the conditional posterior of zmn

zmn|xmn,um,vn ∼ xmn · Pois+(

R∑
r=1

umrvnr) (15)

which means zmn = 0 with probability one if xmn = 0,
and therefore need not be sampled if xmn = 0. The
second reason is that this link function is skewed (to-
wards having very few nonzeros), resembling the com-
plementary loglog function (Piegorsch, 1992; Collett,
2002), unlike the logistic/probit link, and therefore can
better model highly sparse binary matrices.

3 Inference via Gibbs Sampling

Exact inference in our model is intractable and there-
fore we resort to approximate inference. Leveraging
the Poisson-multinomial equivalence, which allows re-
expressing a Poisson random draw as a draw from a
multinomial (Dunson and Herring, 2005; Zhou et al.,
2012), we obtain a model with full local conjugacy.
This allows closed-form Gibbs sampling for all the
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model parameters. A key aspect of our model is that
inference based on Gibbs sampling scales in the num-
ber of nonzero entries in X (for both count as well as
binary data which we model as thresholded counts as
discussed in Sec. 2.4), which makes is especially at-
tractive for massive but sparse matrices. Although,
here we only consider batch Gibbs sampling, our infer-
ence method can be easily extended to perform online
Gibbs sampling (Guhaniyogi et al., 2014; Hu et al.,
2015), which will allow scaling up to even more mas-
sive data sets. We leave this extension to future work.

Sampling the latent counts xmnr and xmnrl: Us-
ing the Poisson-multinomial equivalence, if the matrix
X is count-valued, then the latent counts xmnr and
xmnrl can be sampled as

{xmnr} ∼ Mult(xmn;
umrvnr∑R
r=1 umrvnr

) (16)

{xmnrl} ∼ Mult(xmnr; vnrl/vnr) (17)

If X is binary-valued, we need to first sample the la-
tent count zmn for each nonzero xmn from a truncated
Poisson. Then xmnr can be sampled as

{xmnr} ∼ Mult(zmn;
{umrvnr}∑R
r=1 umrvnr

) (18)

and xmnrl is sampled the same way as in equation 17.

Sampling u:r: Using the multinomial-Dirichlet con-
jugacy, u:r is sampled as

u:r ∼ Dir(α+ x1··, . . . , α+ xM ··) (19)

Sampling vnr: vnr can be updated by vnr =∑
l∈L(1)

n
vnrl, where vnrl is sampled as

vnrl ∼ Ga(glr + x.nrl, qr) (20)

Sampling qr: Using the additive property of Poisson
distribution, we have x·nr ∼ Pois(vnr). Integrating
out vnr, x·nr can be expressed as a draw from the
following negative-binomial distribution

x·nr ∼ NB(
∑
l∈L(1)

n

glr, qr) (21)

Then qr can be sampled by using negative-binomial-
beta conjugacy as

qr ∼ Beta(cε+ x··r, c(1− ε) +

N∑
n=1

∑
l∈L(1)

n

glr) (22)

Sampling glr: Using the additive property of Poisson
distribution, x·nrl ∼ Pois(u·rvnrl), which can be fur-
ther rewritten as x·nrl ∼ Pois(vnrl) since u·r = 1. Let
Dl be the set of all objects (i.e. documents) associ-
ated with node l (i.e. an author) on the first layer, we

further obtain the following equation by applying the
additive property of Poisson distribution once more∑

n∈Dl

x·nrl ∼ Pois(
∑
n∈Dl

vnrl) (23)

Since the gamma distribution is infinitely divisible,∑
n∈Dl

vnrl can be expressed as∑
n∈Dl

vnrl ∼ Ga(|Dl|glr, qr/(1− qr)) (24)

Integrating out
∑
n∈Dl

vnrl in equation 23 and 24,∑
n∈Dl

x·nrl can be expressed as a negative-binomial
distribution by∑

n∈Dl

x·nrl ∼ NB(|Dl|glr, qr) (25)

Using scaling property of the gamma distribution,

|Dl|glr ∼ Ga(
∑
p∈Al

hpr,
|Dl|glr
β0

) (26)

Using the data augmentation method for negative-
binomial distribution (Zhou and Carin, 2015), glr can
be sampled as

flr ∼ CRT(
∑
n∈Dl

x·nrl, |Dl|glr) (27)

glr ∼ Ga(
∑
p∈Al

hpr + flr,
1

β0 − |Dl| ln(1− qr)
)(28)

where CRT denotes the Chinese restaurant ta-
ble (Zhou and Carin, 2015) distribution.

Sampling hpr: According to corollary 2 in (Zhou and
Carin, 2015), flr ∼ Pois(−|Dl|glr ln(1− qr)). As glr =∑
p∈Al

glrp, flr can be augmented as flr =
∑
p∈Al

flrp,
where

flrp ∼ Pois(−|Dl|glrp ln(1− qr)) (29)

LetMp be the set containing all level-one nodes asso-
ciated with a level-two node p. We then have∑
f∈Mp

`fra ∼ Pois(− ln(1− qr)
∑
f∈Mp

(|Df |glrp)) (30)

∑
l∈Mp

flrp can be expressed as a negative-binomial

distribution by integrating out
∑
l∈Mp

glrp,

∑
l∈Mp

flrp ∼ NB(|Mp|hpr,
− ln(1− qr)
β0 − ln(1− qr)

) (31)

Using scaling property of the gamma distribution,

|Mp|hpr ∼ Ga(s, |Mp|/β1) (32)
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Applying the data augmentation method for negative-
binomial distribution once more, hpr is sampled as

f ′pr ∼ CRT(
∑
l∈Mp

flrp, s) (33)

hpr ∼ Ga(s+ f ′pr,
1

β1 − |Mp| ln(1−Qr)
) (34)

where Qr = − ln(1−qr)
β0−ln(1−qr) .

4 RELATED WORK

Our work has interesting parallels with some existing
methods that attempt to leveraging side-information
when modeling discrete data; for example, methods
that can incorporate supervision in Latent Dirich-
let Allocation (LDA) based topic models (Rosen-Zvi
et al., 2004; Mcauliffe and Blei, 2008; Lacoste-Julien
et al., 2009; Wang and Blei, 2011; Zhu et al., 2012),
and recent work on utilizing side-information in matrix
factorization models for count/binary data (Gopalan
et al., 2014; Acharya et al., 2015). These class of
methods are, however, limited in the type of side-
information that can be leveraged, as they usually do
not assume any structure within the associated side-
information (which is usually given in form of a flat
feature vector or a single binary/multi-class label as-
sociated with each object).

Among other related work, our framework is some-
what similar in spirit to hierarchically supervised LDA
model (Perotte et al., 2011) and the topic model for
taxonomies (Bakalov et al., 2012). However, these
methods are designed strictly for leveraging very spe-
cific, taxonomy-based side-information, whereas our
framework can handle more general forms of struc-
tural side-information, and a taxonomy is just one of
the examples of such side-information.

Structural side-information can also be utilized for
specific cases using specialized hierarchical generative
models such as the hierarchical Dirichlet Process (Teh
et al., 2006). However, in order to properly utilize the
type of multi-level side-information our framework can
easily utilize, such models would require significant
modeling sophistication. Moreover, inference can be
considerably more challenging in such models.

In addition to being richer in terms of the types of
structural side-information that can be leveraged, our
fully Bayesian framework is also conceptually simpler
in construction as compared to the aforementioned
class of methods. At the same time, our model is
easily amenable to efficient inference, and has several
interesting propeties that the existing methods lack
(e.g., learning embeddings the objects being modeled
as well as embeddings of the nodes at all levels in the
side-information), and is applicable in a wide variety

of applications, such as topic modeling, recommender
systems, network modeling, while leverging structural
side-information in a principled way.

5 EXPERIMENTS

We evaluate our model, both quantitatively (in its abil-
ity to predict missing data in the matrix X) and quati-
tatively (interpretability of the topics and embeddings
learned by the model), by performing experiments on
six real-world data sets. For four of the data sets, the
matrix X has count-valued observations, whereas for
the remaining two (Cora and CiteSeer 1), the observa-
tions in X are binary. The description of each data set
and the associated side-information is given below:

• 20 Newsgroup: This data 2 consists of 18,774
documents (vocabulary size 5638) organized into
20 groups where each of the groups can be further
classified into a super-group (there are a total of
seven super-groups). Thus the side-information
can be thought of as a two-level taxonomy. For
this data, X is 5638× 18774 word-count matrix.
• State of the Union: This dataset includes

225 state of the union messages (vocabulary size
7518) delivered annually by 41 presidents of the
US from 1790 to 2014 (Wang and McCallum,
2006). Party affiliation for each president is also
available (Independent, Federalist, Democratic-
Republican, Democrat, Whig, Republican). Thus
the side-information is a two-level taxonomy. For
this data, X is 7518× 225 word-count matrix.

• Scholars: This dataset includes abstracts of
20,149 papers (vocabulary size 8663 words) writ-
ten by 2,425 researchers associated with 200 affil-
iations at a US university‘(Hu et al., 2015). The
side-information is a two-level hierarchy. For this
data, X is 8663× 20149 word-count matrix.
• NIPS: 2484 articles (vocabulary size 14036) of

the NIPS conferences from 1988 to 2003. The
corpus consists of 2865 authors. For this data 3,
the side-information only consists of a single level
(author identities). For this data, X is 14036 ×
2484 word-count matrix.
• Cora: The data contains 2708 research papers

from 7 sub-areas of machine learning: case-based
reasoning, genetic algorithms, neural networks,
probabilistic methods, reinforcement learning,
rule learning, and theory. There are overall 5429
citations (links) between the papers.
• CiteSeer: The Citeseer data set contains 3312

papers which can be classified into 6 categories:
Agents, AI, DB, IR, ML, and HCI. There are over-
all 4591 citations (links) between the papers.

1http://preview.tinyurl.com/jq4sag6
2http://qwone.com/~jason/20Newsgroups/
3http://ai.stanford.edu/~gal/Data/NIPS/

http://preview.tinyurl.com/jq4sag6
http://qwone.com/~jason/20Newsgroups/
http://ai.stanford.edu/~gal/Data/NIPS/
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Table 1: Loglikelihood comparison between PFA and PFA-SSI for State of the Union (STOU), 20 newsgroup (20 News),
Scholar, and NIPS data sets. 10% data was held out as testing data, and 90% used as training. Results are averaged over
10 random splits of training and test.

Methods STOU 20 Newsgroup Scholar NIPS
PFA Zhou et al. (2012) -23232 -522876 -506905 -345853
PFA-SSI -22168 -397969 -389060 -293404

Table 2: Loglikelihood, AUC and AUC-PR comparison between PFA and PFA-SSI for Cora and CiteSeer datasets. 10%
data was held out as testing data, and 90% used as training. Results are averaged over 10 random splits of training and
test.

Methods
Cora CiteSeer

Loglike AUC AUC-PR Loglike AUC AUC-PR
PFA Zhou et al. (2012) -9057 0.699 0.740 -9973 0.545 0.670
PFA-SSI -3682 0.808 0.841 -4042 0.788 0.814

All of our experiments were performed on a standard
desktop with 12 GB RAM. For each data set, we set
the number of topics (R) to be 200, which serves as an
upper bound on the number of topics and the model
can prune away the unnecessary topics due to the beta-
negative binomial construction (Zhou et al., 2012) of
our model. In all our experiments, we fix the hyper-
parameters β0 and β1 to 1, ε = 1/R, and the Dirichlet
hyperparameter α was fixed at 0.1. These hyperpa-
rameter settings worked well for all the data sets.

5.1 Predicting Held-out Data

We evaluate our model on predicting missing data in
the matrix X by holding out 10% of the observations
and predicting them via our non-negative matrix fac-
torization approach, using the remaining 90% data as
training data. Each experiment was repeated 10 times
and the average accuracies are reported.

Baseline: We compare our model with Poisson Factor
Analysis (PFA) Zhou et al. (2012), which is a state-of-
the-art non-negative matrix factorization method and
also subsumes many other discrete matrix factoriza-
tion methods (including gamma-Poisson count matrix
factorization, LDA, etc.) as special cases. Also note
that the PFA model of Zhou et al. (2012) can only
handle count data. Therefore, to apply this baseline
for the two binary data sets, we modified the PFA im-
plementation ourselves by replacing the Poisson likeli-
hood model by the Bernoulli-Poisson model. Also, we
are unable to provide here comparison with other base-
lines because, to the best of our knowledge, none of the
existing methods can incorporate the type of multi-
level side-information available for the count/binary
matrices we use in our experiments.

Table 1 shows the results for the cases when X is
count-valued and Table 2 shows the results for the
cases when X is binary-valued. For the count-valued
data sets, we report the heldout log-likelihood. For
the binary-valued data sets, we report the heldout log-

likelihood as well as area under the ROC curve (AUC)
and area under the precision-recall curve (AUC-PR).
As shown in Table 1 and Table 2, our model signif-
icantly outperforms PFA on all the data sets, which
shows our model’s ability in leveraging structural side-
information in an effective way.

5.2 Qualitative Analyses

We perform qualitative analyses of our results on var-
ious data sets using the topics and the embeddings
learned by our model.

20 Newsgroup Data: For this data, Table 3 shows
the most prominent topic associated with each of the
20 groups of the level-one side-information. Note that
our model learns embeddings of each of these groups
and the non-negative embeddings of each group can be
used to identify the most active topic associated with
that group. Likewise, Table 4 shows the most promi-
nent topic associated with each of the 7 super-groups
of the level-two side-information. As Table 3 and Ta-
ble 4 show, the topics inferred are closely related to
the corresponding groups/super-groups. Using the in-
ferred group/super-group embeddings, we also com-
pute cosine similarities between groups and between
groups and supergroups. Fig. 2 shows the plots of the
estimated similarities. As the plots show, similarities
between groups that belong to the same super-group
are high, as reflected by the block-diagonal pattern
in Fig. 2 (left). Likewise, each group has a higher in-
ferred similarity with its own super-group as compared
to other super-groups, as shown in in Fig. 2 (right).
These results show that the embeddings learned by
our model are meaningful and are consistent with the
ground-truth.

State of the Union Data: For the State of the
Union data, we use the inferred embeddings of presi-
dents and parties to compute president-president sim-
ilarity and president-party similarity. The resulting
plots are shown in Fig. 3. It is interesting to note that
the president-president inferred similarity plot shows a
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Table 3: Most prominent topic for each group in 20 newsgroup data

atheism graphics win.misc pc.hardware mac.hardware win.x forsale autos motorcycles baseball
religion image windows dos windows file sale car car game
real graphics file windows drive window offer bike bike year
god bit pc system mac program st cars work baseball
book data mail drive card output shipping oil dod team
true computer ac scsi mb server condition dod phone hit
question software os card system entry price ca problem players
liar processing dos mb scsi mit email engine engine cs
hockey crypt electronics med space christian guns mideas politics.misc religion.misc
game db data doctor space mary fire israel government god
ca key circuit patients nasa entry fbi jews cramer bible
hockey encryption signal msg billion church indiana israeli optilink jesus
espn chip input disease cost win compound arab clayton christian
team government output day extra rules uiuc jewish state christians
nhl clipper pin chronic based sin tanks land clinton christ
year keys loop medical station scripture news read white word

Table 4: Most prominent topic for each supergroup in 20 newsgroup data
religion comp auto sport sci politics forsale
god image bike game space gun sale
bible graphics dod hockey launch government offer
jesus bit ca period satellite crime st
christian data back april satellites control shipping
christians computer car espn technology firearms condition
christ software bmw play commercial news price
word processing front team system criminal email

Figure 2: 20 newsgroups data. Left Figure: Inferred similarities between the level-one nodes (i.e., between the 20 groups) in
the side-information. Right Figure: Inferred similarities between the level-one and the level-two nodes (i.e., 20 groups and 7 super-
groups) in the side-information. The numbers are indices for groups, and numbers with same color indicate that the corresponding
groups are associated with the same supergroup. The indices for groups are as follows. 1: alt.atheism; 2: comp.graphics; 3: comp.os.ms-
windows.misc; 4: comp.sys.ibm.pc.hardware; 5: comp.sys.mac.hardware; 6: comp.windows.x; 7: misc.forsale; 8: rec.autos; 9: rec.motorcycles;
10: rec.sport.baseball; 11: rec.sport.hockey; 12: sci.crypt; 13: sci.electronics; 14: sci.med; 15: sci.space; 16: soc.religion.christian; 17:
talk.politics.guns; 18: talk.politics.mideast; 19: talk.politics.misc; 20: talk.religion.misc.

Figure 3: State of the union data. Left Figure: Inferred similarities between the presidents in the embedding space. The numbers
before each president are labels for parties. 1: Independent; 2: Federalist; 3: Democratic-Republican; 4: Democrat; 5: Whig; 6: Republican.
In the legend, the names of all presidents from the same party are shown in the same color. Right Figure: Inferred similarities between
presidents (level-one nodes) and parties (level-two nodes).
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Table 5: Two of the most prominent topics (for considered time-period of 1988-2003) for five of the authors in NIPS data

Alex Smola Zoubin Ghahramani Geoff Hinton Michael Jordan Peter Bartlett
functions data variables gaussian units objects probability space theorem tree

linear basis em mixture hidden experts parameters local bound data
kernel set models components weights view likelihood dimensional case training

support functions field data hinton hierarchical bayesian cluster proof decision
set radial monte carlo independentinformation recognition prior structure dimension test

vector gaussian networks density inputs parts distribution nearest upper trees
space training inference covariance net gating estimation points class machine

regression test belief matrix set level density dimensionality set sets
svm supervised markov variance internal multiple maximum high theory boosting

quadratic techniques sampling ica bias information posterior manifold lemma margin

Table 6: Five most similar authors (for considered time-period of 1988-2003) for five of the authors in NIPS data

Alex Smola Zoubin Ghahramani Geoff Hinton Michael Jordan Peter Bartlett
Chris Burges D Titterington DE Rumelhart Nir Friedman Robert Williamson
Pavel Laskov Lawrence Saul J McClelland Sathiya Keerthi D Helmbold
Ayhan Demiriz Brendan Frey J Elman Miguel Carreira-Perpinan John Shawe-Taylor
Vladimir Vapnik David Barber Antony Bloesch Tony Jebara E Sontag
Charles Micchelli Tommy Jaakkola Ryotaro Kamimura David MacKay V Maiorov

block-diagonal structure (for better visualization, the
president indices are ordered based on the party in-
dices), with presidents from the same party inferred to
be highly similar with each-other. This suggests that
the side-information from level-two nodes (parties) is
effectively transferred to level-one nodes (presidents).

NIPS Data: We next look at the topics inferred from
the NIPS data. Using the inferred embeddings for each
author, we rank the most prominent topics for each au-
thor (based on the embedding scores). Table 5 shows
two most active topics for each of five of the authors
in NIPS data. As Table 5 shows, the inferred most
prominent topics for each of these authors are consis-
tent with what these authors were best known for the
time-period (1988-2003) covered by this data collec-
tion. We also perform an experiment to find the most
similar authors for a given author. For this, we use the
author embeddings to compute author-author similar-
ity and, in Table 6, show the five most similar authors
for each authors from a set of five authors. The results
in Table 5 and Table 6 show that the inferred embed-
dings can provide a good explanation of the data.

5.3 Classification via inferred embeddings

The embeddings learned by our model can also be use-
ful for classication tasks. To demonstrate this, we per-
form an experiment on multiclass classification. For
this experiment, we use the 20 newsgroup data, which
is divided into a training set consisting of 11269 doc-
uments and a test set consisting of 7507 documents.
We use the training set to train our PFA-SSI model
and use the word-topic matrix U and the label em-
bedding matrix G learned from the training data to
predict the labels for test set documents as follows:
we infer the document embedding Vtest of each test
document by sampling from the posterior condition-
ing on U and then find the most similar label for each
test document by comparing the inferred test docu-
ment’s embedding with embedding of each label. As
a baseline, we fit an LDA model on training and test

documents, train a multiclass SVM on the topic pro-
portions and labels of the training data, and use the
learned classifer to predict the labels for test docu-
ments. Our model gave a classification accuracy of
63.7% whereas the LDA+SVM baseline gave a clas-
sification accuracy of 61.5%. This experiment shows
that our model, although not originally designed for
classification tasks, can nevertheless achieve reason-
able classification accuracies because the supervision
enhances the discriminative power of the embeddings
learned by our model.

6 CONCLUSION

We have presented a probabilistic framework for incor-
porating structural side-information in non-negative
matrix factorization for count and binary data. Our
fully Bayesian framework is conceptually simple, com-
putationally scalable, and leads to improved perfor-
mance on predicting held-out data. The topics and
the embeddings learned by our model can be useful for
various other downstream tasks (e.g., classification) or
for qualitative analyses.

The flexibility of our generative model, which can
model both count as well as binary data under a uni-
fied framework, and the ease of inference, makes our
framework particularly attractive for applications in-
volving discrete data with structural side-information.
Our framework can also be extended to handle bi-
nary/count tensor data (Hu et al., 2015; Schein et al.,
2015) with structural side-information given along one
more more of the tensor modes. For our model, it is
also easy to perform online variational inference or on-
line Gibbs sampling, which will allow analyzing even
more massive data sets using our model. We leave such
developments to future work.
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