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Abstract

We present a probabilistic framework for community discov-
ery and link prediction for graph-structured data, based on a
novel, gamma ladder variational autoencoder (VAE) architec-
ture. We model each node in the graph via a deep hierarchy of
gamma-distributed embeddings, and define each link proba-
bility via a nonlinear function of the bottom-most layer’s em-
beddings of its associated nodes. In addition to leveraging the
representational power of multiple layers of stochastic vari-
ables via the ladder VAE architecture, our framework offers
the following benefits: (1) Unlike existing ladder VAE archi-
tectures based on real-valued latent variables, the gamma-
distributed latent variables naturally result in non-negativity
and sparsity of the learned embeddings, and facilitate their
direct interpretation as membership of nodes into (possibly
multiple) communities/topics; (2) A novel recognition model
for our gamma ladder VAE architecture allows fast inference
of node embeddings; and (3) The framework also extends nat-
urally to incorporate node side information (features and/or
labels). Our framework is also fairly modular and can lever-
age a wide variety of graph neural networks as the VAE en-
coder. We report both quantitative and qualitative results on
several benchmark datasets and compare our model with sev-
eral state-of-the-art methods.

Introduction
Representation learning for the nodes in a graph is an im-
portant problem in a wide range of applications involving
graph-structured data, such as community discovery, link-
prediction, node classification, etc (Hamilton, Ying, and
Leskovec 2017b). Some of the prominent prior works in this
direction include stochastic blockmodels and variants (Now-
icki and Snijders 2001; Miller, Jordan, and Griffiths 2009;
Airoldi et al. 2008; Latouche, Birmelé, and Ambroise 2011)
and, more recently, graph neural networks (Perozzi, Al-
Rfou, and Skiena 2014; Kipf and Welling 2016a; Hamilton,
Ying, and Leskovec 2017a). While stochastic blockmodels
and their variants are effective at learning the underlying la-
tent structure (e.g., community structure) of the graph using
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latent variables that denote node membership to communi-
ties, the graph neural network based methods, such as graph
convolutional networks (GCN) (Kipf and Welling 2016a)
and its variants (Hamilton, Ying, and Leskovec 2017a) are
appealing since they enable learning multilayer representa-
tion for the nodes in the graph, which has been shown to
achieve impressive results on link-prediction and node clas-
sification.

However, both stochastic blockmodels as well as graph
neural networks have their own shortcomings. In particular,
despite providing nice interpretability for the node embed-
dings, the powerful variants of stochastic blockmodels such
as mixed-membership blockmodels (Airoldi et al. 2008)
and overlapping stochastic blockmodels (Miller, Jordan, and
Griffiths 2009; Zhou 2015) are especially difficult to do in-
ference on (relying on expensive MCMC or variational in-
ference), and are difficult to scale. On the other hand, the
recently proposed graph neural networks lack a proper gen-
erative story, do not have a mechanism to do model selection
(e.g., inferring the size of node embeddings), and the learned
embeddings do not have a direct interpretability (required
for tasks such as community discovery).

In this work, we develop a deep generative framework for
graph-structured data that enjoys the natural advantages of
stochastic blockmodels and graph neural networks, while
also addressing their limitations/shortcomings in a princi-
pled manner. Our framework is based on a novel, gamma
ladder variational autoencoder (VAE) architecture, which al-
lows each node in the graph to be modeled by multiple layers
of gamma-distributed latent variables (which represent mul-
tiple layers of embeddings for each node). The probability
of each link in the graph is a nonlinear function (modeled
by a deep neural network) of the node embeddings of the
associated nodes.

While existing ladder VAE architectures (Sønderby et al.
2016) typically assume dense, Gaussian distributed latent
variables in each layer, the gamma-distributed embeddings
in our ladder VAE architecture naturally provide sparsity and
interpretability as desired for the node embeddings. These
sparse, non-negative, and multilayed embeddings can be
readily used for discovering overlapping community struc-
ture that allows each node to belong to potentially more



than one community (Zhou 2015). Moreover, the multilayer
embeddings learned by our gamma ladder VAE model en-
able us to discover community structures at multiple levels
of granularity (bottom layers denoting fine-grained, special-
ized communities, and top layers denoting coarse-grained,
generic communities). Another appealing aspect is that the
shrinkage property of the gamma distribution (Zhou 2015)
enables learning the node embedding size (i.e., number of
communities) in each layer of the hierarchy.

Besides learning interpretable node embeddings with
strong predictive power for the link-prediction task, our
framework allows incorporating side-information (if avail-
able) associated with each node in a principled manner. The
side-information may be given in form of node features or
node labels, and we model it via a nonlinear generative
model that maps the node embeddings to the side informa-
tion. In the case when the side-information is in form of the
labels for a subset of the nodes, our framework can also
be used for semi-supervised node classification (Kipf and
Welling 2016a).

Finally, our framework is also accompanied by a fast in-
ference algorithm to infer the node embeddings in each layer
of the deep hierarchy. This is accomplished via a fast recog-
nition model which is part of our gamma ladder VAE ar-
chitecture. The recognition model is essentially based on
a graph encoder such as a graph convolutional network
(GCN) (Kipf and Welling 2016a) or its more recent exten-
sions such as GraphSAGE (Hamilton, Ying, and Leskovec
2017a). In contrast, inference in other latent variable mod-
els for graphs, such as stochastic blockmodels and its ex-
tensions (Nowicki and Snijders 2001; Miller, Jordan, and
Griffiths 2009; Airoldi et al. 2008; Latouche, Birmelé, and
Ambroise 2011; Zhou 2015), relies on expensive MCMC or
variational inference, which do not scale easily.

The key contributions of this work can be summarized as
follows: (1) We proposed a gamma ladder VAE based deep
generative model for graphs where each node is modeled
by multiple layers of stochastic latent variables that repre-
sent a deep hierarchy of embeddings for each node; (2) The
node embeddings learned by our model have direct inter-
pretability and can be readily used for task such as infer-
ring node memberships to (potentially multiple) communi-
ties; (3) Node side-information, if available, can be incor-
porated in a principled manner; (4) A novel, fast recognition
model for our proposed gamma ladder VAE enables efficient
inference of node embeddings.

Background
Ladder VAEs: Our model is inspired by (but has several
key differences as we discuss later) the ladder variational
autoencoder (ladder VAE) (Sønderby et al. 2016). The lad-
der VAE is a improvement over the standard VAE (Kingma
and Welling 2014) to allow having multiple stochastic lay-
ers of latent variables in VAE based deep generative mod-
els (note that the standard VAE has only a single layer of
stochastic latent variables and multiple layers of determin-
istic variables). Ladder VAE accomplishes this via an in-
formation sharing scheme between the upward determinis-
tic pass and the downward stochastic pass during inference

of latent variables. However, our proposed ladder VAE has
some key differences from existing ladder VAE: (1) While
existing ladder VAE are designed to model data such as
images and consists of Gaussian latent variables, our lad-
der VAE architecture is designed to model graphs and con-
sists of gamma latent variables, which result in non-negative,
sparse node embeddings with direct interpretability; (2) As
we show in Inference section, a ladder VAE with gamma
latent variables is not straightforward to do inference on,
since gamma random variables do not allow easy reparam-
eterization for training (Knowles 2015); we overcome this
by reparametrizing the gamma via the generalized gamma
distribution (Stacy 1962).

Graph Encoders: Our inference network (recognition
model) has a deterministic upward pass and a stochastic
downward pass. For the deterministic upward pass, any non-
linear encoder for graph-structured data can be used. Graph
convolutional networks (GCN) (Kipf and Welling 2016a)
have recently emerged as a flexible encoder for graphs (sim-
ilar in spirit to CNNs for images) which makes them an
ideal choice for the upward pass in our generative frame-
work. GCN uses a series of convolution operators to find
a nonlinear deterministic embedding for each node. Our
model is also fairly modular, and although we have used
vanilla GCN in our architecture, any other state-of-the-art
non-probabilistic graph encoders can also be used as build-
ing block for the upward pass like GraphSAGE (Hamilton,
Ying, and Leskovec 2017a).

Gamma Ladder VAE for Graphs
The generative process for our gamma ladder VAE for mod-
eling graph-structured data is shown in Fig. 1 (Left). We
assume that an observed edge Aij between nodes i and
j is associated with a deep hierarchy of latent variables
{z(l)i }L`=1 and {z(l)j }L`=1. Here, the set of latent variables

{z(1)i ..., z
(L)
i } denote the latent embeddings of the node i,

where z(l)i ∈ RKl
+ and Kl is the embedding size in layer

`. The deep hierarchy of gamma-distributed embeddings is
generated as follows

z
(L)
i ∼ Gam(ŝi, r̂

(L)), z
(l)
i ∼ Gam(Φ(l+1)z

(l+1)
i , r̂(l)), (1)

..., z
(1)
i ∼ Gam(Φ(2)z

(2)
i , r̂(1))

Here, for compactness of notation, we have used a vec-
torized notation for the gamma distribution, so in the no-
tation z ∼ Gamma(ŝ, r̂) used above, z, ŝ, r̂ are all vec-
tors of same size. Note that, for ` = 1, 2, ..., L − 1, the
shape parameter of the gamma prior depends on the em-
bedding z(`+1)

i . Here Φ(l) = [φ
(l)
1 ,φ

(l)
2 , ...φ

(l)
Kl

] denotes a
non-negative Kl−1 ×Kl transformation matrix, with each
column φ(l)

kl
∈ RKl−1

+ summing to one.
Interpretable node embeddings: An especially appeal-

ing aspect of the above hierarchical construction is that the
non-negativity and sparsity of the gamma latent variables al-
lows direct interpretability of the node embeddings as com-
munities (Zhou 2015). In particular, each component of the
node embedding vector z(l)i ∈ RKl

+ denotes the strength of
membership of node i into one of the K` communities. Also



Figure 1: (Left) The decoder/generator network depicting link (Aij) generation using the node embeddings. (Right) The infer-
ence/recognition network which takes the adjacency matrix A and the side information S as input. For the upward deterministic pass (blue),
a graph encoder (GCN) is used. The downward pass (orange) is the deep hierarchy of latent variables. The model uses information sharing
scheme between the inference and generator network (left to right). While doing inference, the intermediate layers in the upward pass are
conditioned on the complete adjacency matrix A. Here H(l) =

[
h

(l)
1 , ...,h

(l)
N

]T and Z(l) =
[
z
(l)
1 , ..., z

(l)
N

]T .

note that, with such a representation, each node can poten-
tially belong to multiple communities. Moreover, since our
model learns a multilayer embedding for each node, it can
infer communities at multiple layers of granularities (Hu,
Rai, and Carin 2017), with bottom layers representing fine-
grained communities and top layers representing coarse-
grained (generic) communities.

We assume that each link Aij is generated as

Aij ∼ Bern(pij); where pij = f(z
(1)
i ,z

(1)
j ) (2)

Here f(., .) can be any differentiable function which
takes input two vectors to give a probability score. In
our implementation, we used the cosine similarity be-
tween the community memberships of the two nodes.
However, other choices are possible as well, e.g., pij =

1 − exp(−z(1)i

>
Mz

(1)
j ), which can incorporate an inter-

community interaction matrix M ∈ RK1×K1
+ (Zhou 2015).

We would like to contrast our gamma ladder VAE
framework with some recently proposed deep generative
models for graphs, such as the variational graph autoen-
coder (VGAE) (Kipf and Welling 2016b), Graphite (Grover,
Zweig, and Ermon 2018) and deep generative latent feature
relational model (DGLFRM) (Mehta, Carin, and Rai 2019).
Both VGAE and Graphite are built using a VAE customized
for graph-structured data which assumes a single layer of
Gaussian latent variable for each node. The DGLFRM ex-
tends the VGAE framework by assuming a stick-breaking
prior for the stochastic layer to infer the latent communi-
ties of the nodes. These latent variables undergo a nonlinear
transformation via a deep neural net to generate links. In

contrast, our gamma ladder VAE architecture assumes mul-
tiple layers of latent variables for each node, which are di-
rectly interpretable due to the non-negativity and sparsity
of gamma-distributed latent variables. Moreover, while the
VGAE requires a careful tuning of the embedding size, the
shrinkage property of the gamma (Zhou 2015) helps us infer
the size of embedding in each layer by specifying a large-
enough truncation level. In our experiments, we compare our
model with VGAE and DGLFRM.

Inference
Exact inference in our model is intractable, partly because
of the multiple layers of embeddings and partly because
of the choice of Gamma distribution as prior. Thus we use
stochastic gradient variational Bayes (SGVB) (Kingma and
Welling 2013; 2014) to perform inference for our model.
Similar to the standard VAE and ladder VAE, our infer-
ence procedure consists of a fast recognition model that
enables inferring the latent variables of the model (in our
case, these are the node embeddings in each layer of the
deep hierarchy). Note that, in contrast to our deep generative
model for graphs that uses a recognition model for fast in-
ference of latent variables, other existing single-layer (Now-
icki and Snijders 2001; Miller, Jordan, and Griffiths 2009;
Airoldi et al. 2008; Latouche, Birmelé, and Ambroise 2011)
as well as deep (Hu, Rai, and Carin 2017) stochastic block-
models rely on iterative procedures, such as MCMC or vari-
ational inference. Another recently proposed latent variable
model for graph, the Edge Partition Model (EPM) (Zhou
2015), assumes a single layer of gamma-distributed embed-



dings for each node and relies on MCMC inference. Fig. 1
(Right) shows the inference network used for our recogni-
tion model.

We approximate the model’s true posterior p(Z|A,S)
with a variational posterior q(Z). We assume mean-field ap-
proximation for the variational posterior and factorize it as

N∏
i=1

q(z
(L)
i |h

(L)
i )

L−1∏
`=1

q(z
(`)
i |h

(`)
i ,z

(`+1)
i ) (3)

The SGVB algorithm for standard VAE as well as ladder
VAE leverges the reparametrization trick, which is easy for
Gaussian latent variables. However, unlike traditional lad-
der VAE, our framework uses gamma latent variables in-
stead of Gaussian latent variables. While gamma distribution
would have been a more suitable variational distribution in
our case, gamma random variables do not have an easy repa-
rameterization, which makes it difficult to apply SGVB. To
address this issue, we approximate the variational posterior
of the node embeddings using Weibull distributions. Weibull
and gamma distribution, both being special cases of the gen-
eralized gamma distribution (Stacy 1962), are closely related
and have similar PDFs. Weibull can easily be reparameter-
ized (Zhang et al. 2018) as follows

q(z
(l)
i ) = Weibull(α(l),β(l)), U ∼ Uniform(0, 1)

z
(l)
i = β(l)(−ln(1− U))

1

α(l) (4)

Our inference network consists of a nonlinear graph encoder
to learn the parameters of the variational posterior as defined
in Eq. 4. The encoder model is based on the recognition net-
work used in ladder VAE (Sønderby et al. 2016) (but with
Weibull approximate latent variables) that first uses a deter-
ministic upward pass to compute the approximate likelihood
contributions from the data

H(1) = Graph-ENC
(1)(A,S), H(l) = Graph-ENC

(l)(H(l−1)), (5)

Ŝ(1) = Softplus(H(1)W(1)
s ), ..., Ŝ(l) = Softplus(H(l)W(l)

s ), (6)

R̂(1) = Softplus(H(1)W(1)
r ), ..., R̂(l) = Softplus(H(l)W(l)

r ), (7)

The upward pass takes as input {A,S} to generate deter-
ministic layers {H(l)}Ll=1 via series of nonlinear transfor-
mations defined by Graph-ENC as shown in Eq. 7, where
H(l) ∈ RN×Dl , N is the total number of nodes and Dl

is the size of lth deterministic layer. We have used a graph
convolution network (GCN) (Kipf and Welling 2016a) with
L layers for these nonlinear transformations. The informa-
tion sharing contributions {Ŝ(l), R̂(l)}Ll=1 are computed us-
ing Eq. 7, where W

(l)
s ∈ RDl×Kl , W

(l)
r ∈ RDl×Kl , Ŝ(l) ∈

RN×Kl
+ and R̂(l) ∈ RN×Kl

+ with Kl being the size of the lth
stochastic layer. The upward pass is followed by a stochastic
downward pass to compute the generative distributions and
their variational parameters. The variational distributional is
defined as

∏N
i=1 q(z

(L)
i |h

(L)
i )

∏L−1
l=1 q(z
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i , z
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The downward pass can be performed recursively as
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i ,β
L
i ),

q(z
(`)
i |h

(l)
i ,z

(l+1)
i ) = Weibull(αl

i,β
`
i),

q(z
(1)
i |h

(1)
i ,z

(2)
i ) = Weibull(α1

i ,β
1
i ) (8)

where αl
i = ŝi

(L), βl
i = r̂i

(L) if l = L, otherwise
αl

i = ŝi
(l) + Φl+1zl+1

i , βl
i = r̂

(l)
i . Following the

SGVB training scheme (Kingma and Welling 2013), we
train our gamma ladder VAE by maximizing the evidence
lower bound (ELBO) where all q(z(`)n ), except for the top-
layer q(z(L)

n ), are conditioned on z(`+1)
n .

L =

N∑
i=1

N∑
j=1

E
[
ln p(Aij |z(1)

i ,z
(1)
j )
]
−

N∑
n=1

L∑
l=1

E
[
ln q(z(l)

n )− ln p(z(l)
n )
]

(9)

where all expectations are taken w.r.t the variational distribu-
tion q. The second term in the ELBO is the KL-Divergence
between the posterior Weibull distribution and the prior
Gamma distribution which has an analytic form (Bauckhage
2014) given by:

KL(Weibull(α, β)||Gamma(ŝ, r̂)) =
γr̂

k
+ lnα+ (10)

r̂βΓ(1 +
1

α
) + ln Γ(ŝ)− ŝlnβ − β − 1− ŝ ln r̂

Related Work
A prominent class of methods for modeling graphs is based
on associating a latent variable with each node of the graph.
Stochastic blockmodels (Nowicki and Snijders 2001; Kemp
et al. 2006) and their variants such as mixed-membership
stochastic blockmodels (Airoldi et al. 2008) and overlapping
stochastic blockmodels (Miller, Griffiths, and Jordan 2009;
Latouche, Birmelé, and Ambroise 2011) belong to this class
of models. These models have proven to be highly effective
in discovering the latent structure in the graph, e.g., com-
munities, and also yield strong link prediction performance.
However, these models only assume a single layer latent rep-
resentation for each node and simple link generation models
(e.g., a bilinear function of the embeddings of the associ-
ated nodes). Moreover, inference in these models is based
on iterative methods such as MCMC and variational infer-
ence, and therefore tends to be slow. Another recent work
in this direction is the Edge Partition Model (EPM) (Zhou
2015) which is another overlapping stochastic blockmodel
with gamma-distributed embeddings for each node. The use
of gamma-distributed embeddings in EPM is similar in spirit
to our approach. However, EPM is a single layer model and
relies on expensive MCMC procedure to infer the node em-
beddings. In contrast, our model is a deep generative model
with gamma-distributed sembeddings in each layer, and has
an efficient recognition model to infer the node embeddings.

Deep generative models for graphs using graph neural
networks (Scarselli et al. 2009) as their building blocks have
recently been proposed. However, the existing models, such
as graph variational autoencoder (Kipf and Welling 2016b)
and Graphite (Grover, Zweig, and Ermon 2018) are based



on vanilla VAE architectures, consisting of a single layer of
stochastic latent variables which undergo multiple layers of
deterministic transforms (e.g., via GCN). Moreover, these
deep generative models assume Gaussian embeddings, that
do not have the nice interpretability as offered by our gamma
ladder VAE architecture. Another recent development is the
deep generative model for graphs (Hu, Rai, and Carin 2017),
with multiple layers of binary-valued stochastic variables
based on a sigmoid belief network. However, inference in
this model is expensive and relies on an MCMC procedure.

Other recently proposed prominent methods for learn-
ing representations (embeddings) for the nodes in the graph
include methods that are based on the idea of random
walks and neighborhood preservation, e.g., DeepWalk (Per-
ozzi, Al-Rfou, and Skiena 2014) and node2vec (Grover and
Leskovec 2016). However, these methods do not learn a
deep hierarchical representations unlike our model and the
learned embedding are not interpretable. Some other related
methods are FastGCN (Chen, Ma, and Xiao 2018) which
speeds up GCN by proposing a batched training scheme, and
Graph Attention Networks (Veličković et al. 2017) which
leverages an attention based architecture for node classifica-
tion on graph-structured data.

Our work is inspired by the success of deep generative
models, in particular models like ladder VAE (Sønderby
et al. 2016) that effectively allow for multiple layers of
stochastic variables (unlike vanilla VAEs which only assume
a single layer of latent variables) to leverage the power of hi-
erarchical latent representation. Although ladder VAEs have
been successful for modeling data such as images (Sønderby
et al. 2016) and text (Zhang et al. 2018), our work pro-
vides the first such construction of such models for graph-
structured data. As we will show, Gaussian VAEs/Ladder
VAEs are not ideal for learning interpretable graph embed-
dings, which is a major motivation for our work.

Experiments
We evaluate our model on several synthetic and real datasets
and compare with various state-of-the-art baselines. We re-
fer to our model as LGVG (Ladder Gamma Variational Au-
toencoder for Graphs) and its version with side-information
as LGVG-X. We report both qualitative results (e.g., in-
ferred node embeddings/communities) and quantitative re-
sults on link-prediction. Our baselines consist of Spectral
Clustering (SC) (Tang and Liu 2011), DeepWalk (DW) (Per-
ozzi, Al-Rfou, and Skiena 2014), the Variational Graph Au-
toencoder (VGAE) (Kipf and Welling 2016b), the Deep
Generative Latent Feature Relational model (DGLFRM)
(Mehta, Carin, and Rai 2019), and single-layer/deep prob-
abilistic models, namely the Edge Partition Model (EPM)
(Zhou 2015). Unless explicitly stated, for link prediction
and community discovery tasks, we use 85% adjacency ma-
trix used for training, 5% for validation and 10% for testing.
Additional results are included in a longer version of the pa-
per available in arXiv 1. For the node-community visualiza-
tions, we follow node-community reordering scheme used
in (Zhou 2015).

1https://arxiv.org/

Qualitative Results on Synthetic Datasets
To assess our model’s capability for inferring the community
structure within a graph and the nature of node embeddings
learned, we apply our model on two synthetic datasets, each
of which consists of 150 nodes. The first dataset consists
of 10 non-overlapping communities and the second dataset
consists of 10 overlapping communities. The results are
shown in Fig. 2. As these plots show, our model learns node
embeddings that are readily interpretable whereas VGAE
learns dense embeddings that do not have an easy inter-
pretability. Moreover, our model is also able to infer the
number of communities (we specified a large truncation
level of 16 and the model correctly inferred around 10 active
communities), whereas in case of VGAE with dense embed-
dings, this parameter needs to be tuned.

Quantitative Results on Real Datasets
Link-Prediction: We next evaluate our model and the base-
lines for link-prediction on 4 real-world benchmark graph
datasets - NIPS12 (2037 nodes) 2, Cora (2361 nodes), Cite-
seer (3312 nodes), and Pubmed (19717 nodes) (Kipf and
Welling 2016a). For our model, we set the gamma shape hy-
perparameter of top-layer as 10−5 and for subsequent layers,
shape parameter is drawn as per 1. The gamma rate param-
eter was set as 10−3 for top layer, and 10−2 for subsequent
layers (the model was mostly insensitive to the choice of the
rate parameter). We used two layers in both encoder and de-
coder network with layers sizes (bottom and top) being 128
and 64 for Cora, Citeseer and Pubmed, and 64 and 32 for
NIPS12. All datasets were trained for 500 epochs. The rea-
son of slightly different settings for evaluation of NIPS12
is extremely sparse connectivity compared to other datasets.
Our evaluation scheme is similar to that of (Kipf and Welling
2016b), and the reported scores are averaged over 10 ran-
dom splits of the data. The results for link-prediction task
are shown in Table 1 in which we have used the Average Pre-
cision (AP). In addition to the models in (Kipf and Welling
2016b), we compare our results with a fast SGVB-based im-
plementation of Edge Partition Model (which is roughly a
single layered version of our model) (Zhou 2015).

Benefit of Deep Hierarchy of Latent Variables: Our
gamma ladder VAE based model uses multiple layers of
stochastic latent variables, in addition to multiple graph-
convolution units from GCN-architecture. While multi-
layered graph convolutions aid in capturing n-hop neighbor-
hoods, multiple stochastic layers allows the model to cap-
ture hierarchical structure present in data. Moreover, we ob-
served that the performance of our model improved steadily
as we increased the number of latent variables in the model.
We plot the ROC and AP scores with different number of
layers for the NIPS12 dataset in Fig.3(b). In this experiment,
the number of hidden layers ranged from 1-5 and the number
of nodes in each layer ranged from 4-64.

Performance with Varying Fraction of Training Data:
We also compare our model with VGAE in a setting where
we vary the percentage of missing data in the graph. As

2http://www.cs.nyu.edu/ roweis/data.html



Table 1: Average Precision (AP).
Method NIPS12 Cora Citeseer Pubmed

SC (Tang and Liu 2011) 0.9022± 0.0003 0.8850± 0.0000 0.8500± 0.0001 0.8780± 0.0001
DW (Perozzi, Al-Rfou, and Skiena 2014) 0.8634± 0.0000 0.8500± 0.0000 0.8360± 0.0001 0.8410± 0.0000
VGAE (Kipf and Welling 2016b) 0.9111± 0.0025 0.9260± 0.0001 0.9200± 0.0002 0.9470± 0.0002
DGLFRM (Mehta, Carin, and Rai 2019) 0.9005± 0.0027 0.9376± 0.0022 0.9438± 0.0073 0.9497± 0.0035
EPM-SGVB (Zhou 2015) 0.9086± 0.0129 0.8666± 0.0109 0.8259± 0.0172 0.8600± 0.0047

LGVG (Ours) 0.9260± 0.0068 0.9254± 0.0068 0.9130± 0.0112 0.9545± 0.0024
LGVG-X (Ours) 0.9260± 0.0068 0.9502± 0.0061 0.9624± 0.0067 0.9559± 0.0017

(a) Overlapping (b) LGVG (c) Reconstructed (d) VGAE

(e) Non-overlapping (f) LGVG (g) Reconstructed (h) VGAE

Figure 2: (a-d) Experiment on the overlapping synthetic dataset. (a) The training adjacency matrix (Black, white and Gray denote no-link,
link and the 15% masked respectively). (b) The node embeddings learned at the last layer by the LGVG. (c) The reconstructed graph using the
LGVG model indicating probability of link between nodes (white (black) suggest high probability of link (no-link)). (d) The node embeddings
learned by the VGAE model. (e-h) A similar experiment on the non-overlapping synthetic dataset. (e) The training adjacency matrix. (f) The
node embeddings learned by the LGVG. (g) The graph reconstruction using LGVG model. (h) The node embedding learned by the VGAE
model.

Figure 3: From left. (a) Plot of Z(1) showing the inferred communities for NIPS12 data. (b) Plot shows test ROC and AP scores of our
model on NIPS12 data with varying number of stochastic layers. (c-d) Comparison of our model with VGAE on Cora dataset, with varying
percentage of adjacency matrix available at training. (c) With node side-information. (d) Without node side-information.



Table 2: Example of topics inferred by our model on NIPS data. For each community, authors are ranked by their strengths in respective
communities. Authors belonging to multiple communities are highlighted.

Inferred topic(s) Authors

Learning Th. & Optimization Zhao J, Platt J, Bartlett P, Shawe-Taylor J, Helmke U, Hancock T, Mason L, Spence C, Campbell C, Scholkopf B

Reinforcement Learning Singh S, Barto A, Horn D, Connolly C, Sutton R, Berthier N, Koller D, Ginpen R, Precup D, Rodriguez A

Computer Vision Rosenfeld R, Bengio Y, LeCun Y, Singer Y, Isabelle J, Mato G, Turiel A, Nadal J, Boser B, Bengio S

Probabilistic Learning Williams C, Jordan M, Goldberg P, Vivarelli F, Bishop C, Ghahramani Z, Lawrence N, Ueda N, Teh Y, Hinton G, Ng A

Neuroscience Goldstein M, Burnod Y, Osterholtz L, Touretzky D, Burger M, de-Oliveira P, Russell S, Sumida R, Martignon L, Goldberg
P, Principe J

Character recognition Janow R, Lee R, Vapnik V, LeCun Y, Cortes C, Denker J, Sackinger E, Nohl C, Solla S, Jackel L, Boser B

shown in Fig. 3 (c-d), our model performs significantly bet-
ter than VGAE when the percentage of missing data is high.
The better performance of our model is attributed to (1) The
gamma ladder VAE construction which can learn more pow-
erful representations with higher predictive performance,
and (2) The model’s ability to incorporate the node side-
information more effectively.

Model complexity: In this work, we use a batch imple-
mentation of Encoder and Decoder, which scales quadrati-
cally in the number of nodes, however, it can be extended to
use mini-batch optimization in the SGVB algorithm, as well
as in the encoder (e.g., by replacing GCN by GraphSAGE).

Qualitative Results on NIPS12 Data
We also conduct a qualitative analysis experiment on
NIPS12 co-authorship data to examine the community struc-
ture discovered by our model. We train both our model and
VGAE with same last layer size (128). The inferred last
layer embeddings are shown in Fig 3. It can be seen that the
model learns sparse embeddings for each authors (reflecting
each author’s memberships in a small number of commu-
nities). Note that VGAE learns dense embeddings that are
not directly interpretable and require an additional cluster-
ing step.

Table 2 shows communities learned by LGVG. It can be
seen that some of the members appear in multiple communi-
ties (Yann LeCun, Paul Goldberg for instance appear in two
different communities). In addition, our model can learn a
hierarchical community structure, and we show an illustra-
tion for the same in Fig. 4. For the tree structured visual-
ization, we first pick a few communities inferred from last
layer embeddings (Z(1)). Then, for each community i, we
find out the communities j in upper layer (Z(2)) having maxi-
mum connection weight as per Φ (φ(2)

ij
) (top-5). We connect

each community at a higher layer, to one in lower layer by
edges with weights proportional to the connection strength
between them. It can be seen that communities at a higher
level are mixture of communities at a lower level.

Conclusion
We have presented a novel, gamma ladder VAE model for
graph-structured data, that enables us to infer multilayered

Figure 4: Above plot shows hierarchical communities discovered
by a 2-layer LGVG model. Top layer shows latent communities
inferred from Z(2)) and bottom layer shows inferred communities
from Z(1). Communities from lower layer are mapped to upper
layer by inspecting top-5 corresponding entries in Φ(2).

embeddings (in form of multiple layers of stochastic vari-
ables) for the nodes in a graph. Besides having strong predic-
tive power, the embeddings learned by our model are sparse
and directly interpretable. Our model outperforms recently
proposed deep generative models that are based on a vanilla
VAE architecture, both on quantitative metrics as well as on
qualitative analysis tasks using the learned deep representa-
tions of the nodes. We believe our model to be an important
first step in bringing together the interpretability of hierar-
chical, multilayer latent variable models such as ladder vari-
ational autoencoders and the strong representational power
of graph encoders, such as graph convolutional networks, for
modeling graph-structured data.

Acknowledgements
Piyush Rai acknowledges support from Google AI/ML Fac-
ulty Award and Visvesvaraya Young Faculty Fellowship by
MeiTY, India.



References
Airoldi, E. M.; Blei, D. M.; Fienberg, S. E.; and Xing, E. P.
2008. Mixed membership stochastic blockmodels. JMLR.
Bauckhage, C. 2014. Computing the kullback-leibler diver-
gence between two generalized gamma distributions. CoRR
abs/1401.6853.
Chen, J.; Ma, T.; and Xiao, C. 2018. Fastgcn: Fast learning
with graph convolutional networks via importance sampling.
CoRR abs/1801.10247.
Grover, A., and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In KDD.
Grover, A.; Zweig, A.; and Ermon, S. 2018. Graphite:
Iterative generative modeling of graphs. arXiv preprint
arXiv:1803.10459.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017a. Inductive
representation learning on large graphs. In NIPS.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017b. Rep-
resentation learning on graphs: Methods and applications.
arXiv preprint arXiv:1709.05584.
Hu, C.; Rai, P.; and Carin, L. 2017. Deep generative models
for relational data with side information. In International
Conference on Machine Learning, 1578–1586.
Kemp, C.; Tenenbaum, J. B.; Griffiths, T. L.; Yamada, T.;
and Ueda, N. 2006. Learning systems of concepts with
an infinite relational model. In Proceedings of the national
conference on artificial intelligence.
Kingma, D. P., and Welling, M. 2013. Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
Kingma, D. P., and Welling, M. 2014. Efficient gradient-
based inference through transformations between bayes nets
and neural nets. arXiv preprint arXiv:1402.0480.
Kipf, T. N., and Welling, M. 2016a. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Kipf, T. N., and Welling, M. 2016b. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308.
Knowles, D. A. 2015. Stochastic gradient variational Bayes
for gamma approximating distributions. ArXiv e-prints.
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Quantitative experiment: AUC-ROC and AP
We evaluated our model and the baselines for link-prediction
on 4 real-world benchmark graph datasets - NIPS12, Cora,
Citeseer, and Pubmed . For our model, we set the gamma
shape hyperparameters as 10−5 for the topmost layer and
for subsequent layers, shape parameter is drawn as per Eq.
1. The gamma rate parameter was set as 10−3 for top layer,
and 10−2 for subsequent layers (the model was mostly in-
sensitive to the choice of the rate parameter). We used two
layers in both encoder and decoder network with layers
sizes (bottom and top) being 128 and 64 for Cora, Citeseer
and Pubmed, and 64 and 32 for NIPS12. All datasets were
trained for 500 epochs. The reason of slightly different set-
tings for evaluation of NIPS12 is extremely sparse connec-
tivity compared to other datasets. Our evaluation scheme is
similar to that of (Kipf and Welling 2016b), and the reported
scores are averaged over 10 random splits of the data. The
results for link-prediction task are shown in Table 2 and Ta-
ble 3, in which we have used the Average Precision (AP) and
AUC-ROC scores as the metric. In addition to the models
in (Kipf and Welling 2016b), we compare our results with a
fast SGVB-based implementation of EPM (which is roughly
a single layered version of our model). (Zhou 2015).

Qualitative: Visualizations on NIPS12
Fig 1 shows final layer embeddings from LGVG (left) and
VGAE (right). Here we have followed node-community re-
ordering scheme used in (Zhou 2015).

Semi-supervised Node classification
We also experiment with end-to-end semisupervised node
classification, with same train, validation and test splits as
GCN (Kipf and Welling 2016a). Note that even though we
focus on link prediction and community discovery, we per-
form favorably against GCN on the task of semi-supervised
node-classification. We have used regularization on linear
layers used for information sharing between recognition and
generative network. Weight decay parameter has been set to
to 10−4 for Citeseer and 10−5 for Cora and Pubmed.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: (Left) shows inferred communities by our model.
(Right) shows last layer embeddings of VGAE on NIPS12 dataset.

Table 1: Summary of semi-supervised node classification ac-
curacy (in percent). Baseline numbers are from (Kipf and
Welling 2016a)

Method Cora Citeseer Pubmed
ManiReg 59.5 60.1 70.7
SemiEmb 59.0 59.6 71.1
LP 68.0 45.3 63.0
DeepWalk 67.2 43.2 65.3
ICA 75.1 69.1 73.9
Planetoid 75.7 64.7 77.2
GCN 81.5 70.3 79.0

LGVG (this paper) 80.5 70.3 79.9

Dataset details
We consider several real world datasets, with three datasets
also consisting of side information (in form of node features
and node labels for a fraction of nodes), and other datasets
only having node connectivity information. For the datasets
with node labels, we use training label fraction as mentioned
in (Kipf and Welling 2016a). Details of each dataset are as
follows:

• NIPS12: The NIPS12 coauthor network 1 includes coau-
thorship data for all 2037 authors in NIPS vols 0-12, with
3134 edges. It has no side information.

• Cora: Cora network is a citation network consisting of

1http://www.cs.nyu.edu/ roweis/data.html



Table 2: Average Precision (AP).
Method NIPS12 Cora Citeseer Pubmed
SC (Tang and Liu 2011) 0.9022 ± 0.0003 0.8850 ± 0.0000 0.8500 ± 0.0001 0.8780 ± 0.0001
DW (Perozzi, Al-Rfou, and Skiena 2014) 0.8634 ± 0.0000 0.8500 ± 0.0000 0.8360 ± 0.0001 0.8410 ± 0.0000
VGAE (Kipf and Welling 2016b) 0.9111 ± 0.0025 0.9260 ± 0.0001 0.9200 ± 0.0002 0.9470 ± 0.0002
DGLFRM (Mehta, Carin, and Rai 2019) 0.9005 ± 0.0027 0.9376 ± 0.0022 0.9438 ± 0.0073 0.9497 ± 0.0035
EPM-SGVB (Zhou 2015) 0.9086 ± 0.0129 0.8666 ± 0.0109 0.8259 ± 0.0172 0.8600 ± 0.0047

LGVG (this paper) 0.9260 ± 0.0068 0.9254 ± 0.0068 0.9130 ± 0.0112 0.9545 ± 0.0024
LGVG-X (this paper) 0.9260 ± 0.0068 0.9502 ± 0.0061 0.9624 ± 0.0067 0.9559 ± 0.0017

Table 3: ROC (AUC).

Method NIPS12 Cora Citeseer Pubmed
SC (Tang and Liu 2011) 0.8792 ± 0.0003 0.8460 ± 0.0001 0.8050 ± 0.0001 0.8420 ± 0.0002
DW (Perozzi, Al-Rfou, and Skiena 2014) 0.8058 ± 0.0000 0.8310 ± 0.0001 0.8050 ± 0.0002 0.8440 ± 0.0000
VGAE (Kipf and Welling 2016b) 0.9029 ± 0.0031 0.9140 ± 0.0001 0.9080 ± 0.0002 0.9440 ± 0.0002
DGLFRM (Mehta, Carin, and Rai 2019) 0.8734 ± 0.0043 0.9343 ± 0.0023 0.9379 ± 0.0032 0.9395 ± 0.0008
EPM-SGVB (Zhou 2015) 0.8736 ± 0.0155 0.8489 ± 0.0114 0.7714 ± 0.0181 0.8339 ± 0.0079

LGVG (this paper) 0.9100 ± 0.0084 0.9320 ± 0.0051 0.9128 ± 0.0116 0.9601 ± 0.0017
LGVG-X (this paper) 0.9100 ± 0.0084 0.9524 ± 0.0049 0.9615 ± 0.0071 0.9590 ± 0.0012

2708 documents. It contains sparse bag-of-words feature
vectors of length 1433 for each document. These are used
as node features. Cora dataset also has node labels for 140
nodes.

• Citeseer: Citeseer is a citation network consisting of 3312
scientific publications from six categories - agents, AI,
databases, human computer interaction, machine learn-
ing and information retrieval. The side information for the
dataset is the category label for each paper which is con-
verted into a one-hot representation. This dataset also has
node labels for 120 nodes. The network has total 4552
links.

• Pubmed: It is a citation network consisting of 19717
nodes. The dataset contains sparse bag-of-word features
of length 500 for each document. Additionally, this
dataset has node labels for 60 nodes. The network has to-
tal 44324 links.

Community discovery with VGAE
Our model being able to produce sparse, positive representa-
tions, does implicit community discovery as part of learning
the representation for a given task like link prediction.

We perform the following experiment in an attempt to
demonstrate the effectiveness of our model vs. a model like
VGAE which uses real embeddings.

We use k-means to find clusters for NIPS12 (3134 au-
thors) co-authorship data on the node embeddings learned
using VGAE. We show results by using two different com-
munity sizes (K). We try to interpret the k-means results us-
ing inferred communities by our model (which we also show
for quick reference as table 5). Table 4 shows the position of
selected the members of communities inferred by our model
in the k-means clusters. While k-means manages to group

some relevant authors together, it breaks some groups which
were coherent in the communities inferred by our model.
Note that k-means has no strength indicator for community
membership, and also can’t have overlapping communities
unlike our model. Only meaningful clusters from k-means
are shown, further filtered to have same authors as in com-
munities inferred by our model for comparison.
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Table 4: Example of NIPS12 communities inferred by k-means clustering (post-processing step) on the embeddings learned
using VGAE. Authors have hard-assignments (memberships) in these communities.

Cluster (K=5) Authors

Cluster 1 Burger M, Burnod Y, Martignon L, Osterholtz L, Precup D, Zhao J

Cluster 2 Bengio Y, Boser B, Cortes C, Denker J, Jackel L, Janow R, LeCun Y, Lee R,
Nohl C, Sackinger E, Scholkopf B, Shawe-Taylor J, Solla S, Vapnik V

Cluster 3 Principe J

Cluster 4 Barto S, Bengio S, Berthier N, Conolly C, Ginpen R, Isabella J, Mato G, Nadal
J, Singer Y, Sumida R, Sutton R, Turiel A

Cluster 5 Barlett P, Campbell C, Helmke U, Hancock T, Horn D, Mason L, Rosenfeld R,
Spence C, Touretzky D, de-Oliveira P

Cluster 6 Bishop C, Ghahramani Z, Goldberg P, Goldstein M, Koller D, Ng A, Rodriguez
A, Platt J, Russel S, Teh Y, Vivarelli F, Williams C, Ueda N

Cluster (K=24) Authors

Cluster 1 Campbell C, Helmke U, Scholkopf B, Platt J, Shawe-Taylor J, Spence C, Zhao
J

Cluster 2 Barto A, Berthier N, Burnod Y, Connolly C, Ginpen R, Martignon L, Sutton R,
Singh S

Cluster 3 Boser B, Cortes C, Denker J, Jackel L, Janow R, LeCun Y, Lee R, Nohl C,
Sackinger E, Solla S, Vapnik V

Cluster 4 Bengio S, Bengio Y, Isabelle J, Koller D, Ng A, Rodriguez A, Russell S, Singer
Y

Cluster 5 Ghahramani Z, Hinton G, Jordan M, Lawrence N, Teh Y, Ueda N,

Cluster 7 Bishop C, Goldberg P, Williams C, Vivarelli F

Table 5: Example of topic(s) inferred by our model on NIPS data. For each community, authors are ranked by their strengths in respective
communities. Authors belong to multiple communities are highlighted.

Inferred topic(s) Authors

Learning Th. & Optimization Zhao J, Platt J, Bartlett P, Shawe-Taylor J, Helmke U, Hancock T, Mason L, Spence C,
Campbell C, Scholkopf B

Reinforcement Learning Singh S, Barto A, Horn D, Connolly C, Sutton R, Berthier N, Koller D, Ginpen R, Precup
D, Rodriguez A

Computer Vision Rosenfeld R, Bengio Y, LeCun Y, Singer Y, Isabelle J, Mato G, Turiel A, Nadal J, Boser B,
Bengio S

Probabilistic Learning Williams C, Jordan M, Goldberg P, Vivarelli F, Bishop C, Ghahramani Z, Lawrence N,
Ueda N, Teh Y, Hinton G, Ng A

Neuroscience Goldstein M, Burnod Y, Osterholtz L, Touretzky D, Burger M, de-Oliveira P, Russell S,
Sumida R, Martignon L, Goldberg P, Principe J

Character recognition Janow R, Lee R, Vapnik V, LeCun Y, Cortes C, Denker J, Sackinger E, Nohl C, Solla S,
Jackel L, Boser B


