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Abstract
Paraphrase generation is an important problem in NLP, espe-
cially in question answering, information retrieval, informa-
tion extraction, conversation systems, to name a few. In this
paper, we address the problem of generating paraphrases au-
tomatically. Our proposed method is based on a combination
of deep generative models (VAE) with sequence-to-sequence
models (LSTM) to generate paraphrases, given an input sen-
tence. Traditional VAEs when combined with recurrent neu-
ral networks can generate free text but they are not suitable for
paraphrase generation for a given sentence. We address this
problem by conditioning the both, encoder and decoder sides
of VAE, on the original sentence, so that it can generate the
given sentence’s paraphrases. Unlike most existing models,
our model is simple, modular and can generate multiple para-
phrases, for a given sentence. Quantitative evaluation of the
proposed method on a benchmark paraphrase dataset demon-
strates its efficacy, and its performance improvement over
the state-of-the-art methods by a significant margin, whereas
qualitative human evaluation indicate that the generated para-
phrases are well-formed, grammatically correct, and are rel-
evant to the input sentence. Furthermore, we evaluate our
method on a newly released question paraphrase dataset, and
establish a new baseline for future research.

Introduction
Paraphrase generation is an important problem in many NLP
applications such as question answering, information re-
trieval, information extraction, and summarization. QA sys-
tems are often susceptible to the way questions are asked;
in fact, for knowledge-based (KB) QA systems, question
paraphrasing is crucial for bridging the gap between ques-
tions asked by users and knowledge based assertions (Fader,
Zettlemoyer, and Etzioni 2014; Yin et al. 2015). Similarly
paraphrasing finds applications in information retrieval by
generating query variants, and in machine translation or
summarization by generating variants for automatic evalu-
ation. In addition to being directly useful in QA systems,
paraphrase generation is also important for generating train-
ing data for various learning tasks, such as question type
classification, paraphrase detection, etc., that are useful in
other applications. Question type classification has applica-
tion in conversation systems, while paraphrase detection is
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an important problem for translation, summarization, social
QA (finding closest question to FAQs/already asked ques-
tion) (Figueroa and Neumann 2013). Due to the nature and
complexity of the task, all of these problems suffer from lack
of training data, a problem that can readily benefit from the
paraphrase generation task.

Despite the importance of the paraphrase generation prob-
lem, there has been relatively little prior work in the liter-
ature, though much larger amount of work exists on para-
phrase detection problem. Traditionally, paraphrase genera-
tion has been addressed using rule-based approaches (McK-
eown 1983a; Zhao et al. 2009), primarily due to the in-
herent difficulty of the underlying natural language gen-
eration problem. However, recent advances in deep learn-
ing, in particular generative models (Bowman et al. 2015;
Chung et al. 2015), have led to powerful, data-driven ap-
proaches to text generation.

In this paper, we present a deep generative frame-
work for automatically generating paraphrases, given a sen-
tence. Our framework combines the power of sequence-
to-sequence models, specifically the long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber 1997), and deep
generative models, specifically the variational autoencoder
(VAE) (Kingma and Welling 2013; Rezende, Mohamed, and
Wierstra 2014), to develop a novel, end-to-end deep learning
architecture for the task of paraphrase generation.

In contrast to the recent usage of VAE for sentence gen-
eration (Bowman et al. 2015), a key differentiating aspect of
our proposed VAE based architecture is that it needs to gen-
erate paraphrases, given an original sentence as input. That
is, the generated paraphrased version of the sentence should
capture the essence of the original sentence. Therefore, un-
conditional sentence generation models, such as (Bowman
et al. 2015), are not suited for this task. To address this
limitation, we present a mechanism to condition our VAE
model on the original sentence for which we wish to gener-
ate the paraphrases. In the past, conditional generative mod-
els (Sohn, Lee, and Yan 2015; Kingma et al. 2014) have been
applied in computer vision to generate images conditioned
on the given class label. Unlike these methods where num-
ber of classes are finite, and do not require any intermedi-
ate representation, our method conditions both the sides (i.e.
encoder and decoder) of VAE on the intermediate represen-
tation of the input question obtained through LSTM.



One potential approach to solve the paraphrase genera-
tion problem could be to use existing sequence-to-sequence
models (Sutskever, Vinyals, and Le 2014), in fact, one vari-
ation of sequence-to-sequence model using stacked residual
LSTM (Prakash et al. 2016) is the current state of the art
for this task. However, most of the existing models for this
task including stacked residual LSTM, despite having so-
phisticated model architectures, lack a principled generative
framework. In contrast, our deep generative model enjoys a
simple, modular architecture, and can generate not just a sin-
gle but multiple, semantically sensible, paraphrases for any
given sentence.

It is worth noting that existing models such as sequence-
to-sequence models, when applied using beam search, are
not able to produce multiple paraphrases in a principled way.
Although one can choose top k variations from the ranked
results returned by beam-search, kth variation will be qual-
itatively worse (by the nature of beam-search) than the first
variation. This is in contrast to the proposed method where
all variations will be of relatively better quality since they
are the top beam-search result, generated based on different
z sampled from a latent space. We compare our framework
with various sophisticated sequence-to-sequence models in-
cluding the state-of-the-art stacked residual model (Prakash
et al. 2016) for paraphrase generation, and show its efficacy
on benchmark datasets, on which it outperforms the state-
of-the-art by significant margins. Due to the importance of
the paraphrase generation task in QA system, we perform a
comprehensive evaluation of our proposed model on the re-
cently released Quora questions dataset1, and demonstrates
its effectiveness for the task of question paraphrase gener-
ation through both quantitative metrics, as well as qualita-
tive analysis. Human evaluation indicate that the paraphrases
generated by our system are well-formed, and grammati-
cally correct for the most part, and are able to capture new
concepts related to the input sentence.

Methodology
Our framework uses a variational autoencoder (VAE) as a
generative model for paraphrase generation. In contrast to
the standard VAE, however, we additionally condition the
encoder and decoder modules of the VAE on the original
sentence. This enables us to generate paraphrase(s) specific
to an input sentence at test time. In this section, we first pro-
vide a brief overview of VAE, and then describe our frame-
work.

Figure 1: A macro-view of our model: the paraphrase gener-
ation model is also conditioned on the original sentence

1https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs

Variational Autoencoder (VAE)
The VAE (Kingma and Welling 2014; Rezende, Mohamed,
and Wierstra 2014) is a deep generative latent variable model
that allows learning rich, nonlinear representations for high-
dimensional inputs. The VAE does so by learning a latent
representation or “code” z ∈ RK for an input x ∈ RD such
that the original input x can be well reconstructed from the
latent code z. In contrast to the standard autoencoder (Good-
fellow, Bengio, and Courville 2016) which learns, for any
input x, a deterministic latent code z via a deterministic en-
coder function qφ, the VAE encoder is actually a posterior
distribution qφ(z|x) (also known as the recognition model)
over the latent code z. The posterior qφ(z|x) is usually as-
sumed to be a Gaussian distributionN (µ(x), diag(σ2(x))),
and the parameters φ = {µ(x), σ2(x)} are nonlinear trans-
formations of the input x and are the outputs of feedforward
neural networks that take x as input. The VAE also encour-
ages its posterior distribution qφ(z|x) to be close to the prior
p(z), which is typically taken as a standard normal distribu-
tion N (0, I).

The VAE also consists of a decoder model, which is an-
other distribution pθ(x|z) that takes as input a random la-
tent code z and produces an observation x. The parameters
of the decoder distribution θ are defined by the outputs of
another feedforward neural network, akin to the VAE de-
coder model. The parameters defining the VAE are learned
by maximizing the following objective:

L(θ, φ;x) = Eqφ(z|x)[log pθ(x|z)] − KL(qφ(z|x)||p(z))

which provides a lower bound on the model evidence
p(x|θ, φ), Here KL stands for the KL divergence.

Endowing the latent code z with a distribution “prepares”
the VAE decoder for producing realistic looking outputs
even when z is a random latent code not representing the
encoding of any of the previously seen inputs. This makes
VAE very attractive for generative models for complex data,
such as images and text data such as sentences.

In particular, (Bowman et al. 2015) presented a text-
generation model in which the encoder and decoder were
modeled by long short-term memory (LSTM) networks.
Moreover, training tricks such as KL-term annealing and
dropout of inputs of the decoder were employed to cir-
cumvent the problems encountered when using the standard
VAE for the task of modeling text data. Our work is in a
similar vein but the key difference lies in the design of a
novel VAE-LSTM architecture, specifically customized for
the paraphrase generation task, where the training examples
are given in form of pairs of sentences (original sentence
and its paraphrased version), and both encoder and decoder
of the VAE-LSTM are conditioned on the original sentence.
We describe our VAE-LSTM architecture in more detail in
the next section.

Model Architecture
Our training data is provided in form of N pairs
{s(o)n , s

(p)
n }Nn=1, with each pair consisting of the original

sentence (denoted by superscript o) and its paraphrase
(denoted by superscript p). For the nth pair, s

(o)
n =



Figure 2: The block diagram of our VAE-LSTM architecture for paraphrase generation

{w(o)
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set of Ln words from the original sentence and Mn words
from its paraphrase, respectively. In the following descrip-
tion, we will omit explicitly using the pair index n; e.g., we
will denote a pair of original sentence and its paraphrase
simply by s(o) and s(p), respectively. We will also use x(o)

and x(p) to denote the vector space representations of the
original sentence and its paraphrase, respectively. These rep-
resentations will be learned using LSTM networks, whose
parameters will be learned in an end-to-end fashion, with
the rest of the model.

Fig. 1 shows a macro view (without the LSTM) of our
proposed model architecture, which is essentially a VAE
based generative model for each paraphrase’s vector repre-
sentation x(p), which in turn is generated by a latent code z
and the original sentence xo. In addition, unlike the standard
VAE, note that our VAE decoder model pθ(x(p)|z,x(o)) is
also conditioned on the vector representation x(o) of the
original sentence. In particular, as Fig. 1 shows, the VAE
encoder as well as decoder are conditioned on the original
sentence.

A detailed zoomed-in view of our model architecture is
shown in Fig. 2, where we show all the components, in-
cluding the LSTM encoders and decoders. In particular, our
model consists of three LSTM encoders and one LSTM de-
coder (thus a total of four LSTMs), which are employed by
our VAE based architecture as follows:
• VAE Input (Encoder) Side: As shown in Fig. 2, two of

the LSTM encoders are used on the VAE’s input side. The
first one converts the original sentence s(o) into its vec-
tor representation x(o), which is fed, along with the para-
phrase version s(p) of this sentence, to the next LSTM en-
coder. The output of this LSTM encoder (x(p)) is passed
through a feedforward neural network to produce the
mean and variance parameters i.e., φ, of the VAE encoder.

• VAE Output (Decoder) Side: As shown in Fig. 2, the

VAE’s output side uses an LSTM decoder which takes as
input (1) the latent code z, and (2) vector representation
x(o) (produced by the third LSTM encoder) of the original
sentence. The vector representation xo is used to initialize
the LSTM decoder by feeding it to the first stage of the
decoder, in contrast to the latent code z which is fed to
each stage of the LSTM decoder (after being concatenated
with the output of previous LSTM stage). Thus both z and
xo are used to reconstruct the paraphrased sentence s(p).

Similar to the VAE, the variational lower-bound of the pro-
posed model is given by:

L(θ, φ;x(p),x(o)) = Eqφ(z|x(o),x(p))[log pθ(x
(p)|z,x(o))]

−KL(qφ(z|x(o),x(p))||p(z)) (1)

Maximizing the above lower bound trades off the expected
reconstruction of the paraphrased sentence’s representation
x(p) (given x(o)), while ensuring that the posterior of z is
close to the prior. We train our model following the same
training procedure as employed in (Bowman et al. 2015).

Implementation: At the training time, the sentence and
its paraphrase are given as input to the encoding side of the
network, and encoded through two LSTM encoders chained
together in a sequence. The output of the last LSTM cell of
the second encoder is sent to a feed-forward network which
outputs the parameters µ and σ. Then variable z is sam-
pled fromN (µ, σ). At the decoding side, we first obtain the
original sentence’s representation through a third LSTM en-
coder, and then send it along with z to the decoder (RNN
with LSTM cell). The decoder, at each time step, outputs the
probability distribution over the vocabulary, from which, we
can select a word using sampling or through beam search.
The above network architecture is trained in an end-to-end
fashion though back propagation, and is optimized for the
loss function given in Eq. 1. At the test time, we ignore the
encoding side, and only use the decoding side to generate
a paraphrase given an input sentence, with z sampled from



Table 1: Different models compared in the evaluation study.
Models Reference
Seq-to-Seq (Sutskever, Vinyals, and Le 2014)
With Attention (Bahdanau, Cho, and Bengio 2014)
Bi-directional LSTM (Graves, Jaitly, and Mohamed 2013)
Residual LSTM (Prakash et al. 2016)
Unsupervised Ours but baseline
VAE-S Ours but baseline
VAE-SVG Ours
VAE-SVG-eq Ours

standard normal distribution (prior). Having an input sen-
tence encoder at the decoding side allows us to generate a
paraphrase for the given sentence, without which, the model
will generate only random sentences.

Related Work
The task of generating paraphrases of a given sentence has
been dealt in great depth and in various different types
of approaches. Work has been done to use Statistical Ma-
chine Translation based models for generating paraphrases.
(Quirk, Brockett, and Dolan 2004) apply SMT tools, trained
on large volumes of sentence pairs from news articles.
(Zhao et al. 2008) proposed a model that uses multiple re-
sources to improve SMT based paraphrasing, paraphrase
table and feature function which are then combined in a
log-linear SMT model. Some old methods use data-driven
methods and hard coded rules such as (Madnani and Dorr
2010), (McKeown 1983b). (Hassan et al. 2007) proposes
a system for lexical substitution using thesaurus methods.
(Kozlowski, McCoy, and Vijay-Shanker 2003) pairs elemen-
tary semantic structures with their syntactic realization and
generate paraphrases from predicate/argument structure. As
mentioned in (Prakash et al. 2016), the application of deep
learning models to paraphrase generation has not been ex-
plored rigorously yet. This is one of the first major works
that used deep architecture for paraphrase generation and in-
troduce the residual recurrent neural networks.

Finally, our work is also similar in spirit to other gener-
ative models for text, e.g. controllable text generation (Hu
et al. 2017), which combines VAE and explicit constraints
on independent attribute controls. Other prior works on
VAE for text generation include (Bowman et al. 2015;
Semeniuta, Severyn, and Barth 2017) which used VAEs to
model holistic properties of sentences such as style, topic
and various other syntactic features.

Experiments
In this section, we describe the datasets, experimental setup,
evaluation metrics and the results of our experiments.

Datasets
We evaluate our framework on two datasets, one of which
(MSCOCO) is for the task of standard paraphrase genera-
tion and the other (Quora) is a newer dataset for the specific
problem of question paraphrase generation.

MSCOCO (Lin et al. 2014): This dataset, also used previ-
ously to evaluate paraphrase generation methods (Prakash et
al. 2016), contains human annotated captions of over 120K
images. Each image contains five captions from five differ-
ent annotators. This dataset is a standard benchmark dataset
for image caption generation task. In majority of the cases,
annotators describe the most prominent object/action in an
image, which makes this dataset suitable for the paraphrase
generation task. The dataset has separate division for train-
ing and validation. Train 2014 contains over 82K images and
Val 2014 contains over 40K images. From the five captions
accompanying each image, we randomly omit one caption,
and use the other four as training instances (by creating two
source-reference pairs). We further reduce the long captions
to first 15 words in order to be consistent with (Prakash et
al. 2016).

Quora: Quora released a new dataset in January 2017.
The dataset consists of over 400K lines of potential question
duplicate pairs. Each line contains IDs for each question in
the pair, the full text for each question, and a binary value
that indicates whether the questions in the pair are truly a du-
plicate of each-other.2. Wherever the binary value is 1, the
question in the pair are not identical; they are rather para-
phrases of each-other. So, for our study, we choose all such
question pairs with binary value 1. There are a total of 155K
such questions. In our experiments, we evaluate our model
on 50K, 100K and 150K training dataset sizes. For testing,
we use 4K pairs of paraphrases. Some examples of question
and their generated paraphrases can be found in Table 3.

Baselines

We consider several state-of-the-art baselines for our exper-
iments. These are described in Table 1. For MSCOCO, we
report results from four baselines, with the most important
of them being by (Prakash et al. 2016) using residual LSTM.
Residual LSTM is also the current state-of-the-art on the
MSCOCO dataset, however, it might be worth noting that
we did not have their train/test split available hence results
might not be comparable because of sampling bias. For the
Quora dataset, there were no known baseline results, so we
compare our model with (1) standard VAE model i.e., the
unsupervised version, and (2) a “supervised” variant VAE-
S of the unsupervised model. In the unsupervised version,
the VAE generator reconstructs multiple variants of the in-
put sentence using the VAE generative model trained only
using the original sentence (without their paraphrases); in
VAE-S, the VAE generator generates the paraphrase con-
ditioned on the original sentence, just like in the proposed
model. This VAE-S model can be thought of as a variation
of the proposed model where we remove the encoder LSTM
related to the paraphrase sentence from the encoder side. Al-
ternatively, it is akin to a variation of VAE where decoder is
made supervised by making it to generate “paraphrases” (in-
stead of the reconstructing original sentence as in VAE) by
conditioning the decoder on the input sentence.

2https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs



Table 2: Examples paraphrases generated on MSCOCO.
Source A man with luggage on wheels standing next to a white van .
Reference A white van is driving through a busy street .

Generated
A young man standing in front of an airport .
A yellow van is parked at the busy street .
A white van is in the middle of a park .

Source A table full of vegetables and fruits piled on top of each other .
Reference Group of mixed vegetables sitting on a counter top in a kitchen .

Generated
Several plates of fruits sitting on a table top in a kitchen .
Assortment of fruits and vegetables on a wooden table in a
kitchen .
Several types of fruit sitting on a counter top in a kitchen .

Evaluation
Quantitative Evaluation Metrics For quantitative eval-
uation, we use the well-known automatic evaluation met-
rics3 in machine translation domain : BLEU (Papineni et al.
2002), METEOR (Lavie and Agarwal 2007), and Transla-
tion Error Rate (TER) (Snover et al. 2006). Previous work
has shown that these metrics can perform well for the para-
phrase recognition task (Madnani, Tetreault, and Chodorow
2012) and correlate well with human judgments in evalu-
ating generated paraphrases (Wubben, Van Den Bosch, and
Krahmer 2010). BLEU considers exact match between ref-
erence paraphrase(s) and system generated paraphrase(s) us-
ing the concept of modified n-gram precision and brevity
penalty. METEOR also uses stemming and synonyms (us-
ing WordNet) while calculating the score and is based on a
combination of unigram-precision and unigram-recall with
the reference paraphrase(s). TER is based on the number of
edits (insertions, deletions, substitutions, shifts) required for
a human to convert the system output into one of the refer-
ence paraphrases.

Qualitative Evaluation Metrics To quantify the aspects
that are not addressed by automatic evaluation metrics, hu-
man evaluation becomes necessary for our problem. We col-
lect human judgments on 100 random input sentences from
both MSCOCO and Quora dataset. Two aspects are verified
in human evaluation : Relevance of generated paraphrase
with the input sentence and Readability of generated para-
phrase. Six Human evaluators (3 for each dataset) assign a
score on a continuous scale of 1-5 for each aspect per gen-
erated paraphrase, where 1 is worse and 5 is best.

Experimental Setup
Our framework primarily uses the following experimental
setup. These settings are directly borrowed from an exist-
ing implementation4 of the paper (Bowman et al. 2015), and
were not fine tuned for any of the datasets. In our setup, we
do not use any external word embeddings such as Glove;
rather we train these as part of the model-training. The di-
mension of the embedding vector is set to 300, the dimen-
sion of both encoder and decoder is 600, and the latent space

3We used the software available at
https://github.com/jhclark/multeval

4https://github.com/kefirski/pytorch_RVAE

Table 3: Examples paraphrases generated on Quora.
Source What is my old Gmail account ?
Reference How can you find all of your Gmail accounts ?

Generated
Is there any way to recover my Gmail account ?
How can I find my old Gmail account number?
How can I get the old Gmail account password ?

Source Which is the best training institute in Pune for digital marketing
and why ?

Reference Which is the best digital marketing training institute in Pune ?

Generated
Which is the best institute for digital training in Pune ?
Which is the best digital Tech training institute in Hyderabad ?
Which is the best digital marketing training center in Pune ?

dimension is 1100. The number of layers in the encoder is 1
and in decoder 2. Models are trained with stochastic gradi-
ent descent with learning rate fixed at a value of 5 × 10−5

with dropout rate of 30%. Batch size is kept at 32. Models
are trained for a predefined number of iterations, rather than
a fixed number of epochs. In each iteration, we sequentially
pick the next batch. A fixed number of iterations makes sure
that we do not increase the training time with the amount
of data. When the amount of data is increased, we run fewer
passes over the data as opposed to the case when there is less
data. Number of units in LSTM are set to be the maximum
length of the sequence in the training data.

Model Variations In addition to the model proposed in
Methodology Section, we also experiment with another vari-
ation of this model. In this variation, we make the encoder
of original sentence same on both sides i.e. encoder side and
the decoder side. We call this model VAE-SVG-eq (SVG
stands for sentence variant generation). The motivation for
this variation is that having same encoder reduces the num-
ber of model parameters, and hopefully helps in learning.

Results
We performed experiments on the above mentioned datasets,
and report, both qualitative and quantitative results of our
approach. The qualitative results for MSCOCO and Quora
datasets are given in Tables 2 and 3 respectively. In these
tables, italicized and underlined parts denote interesting
phrases which are different in the ground truth and gener-
ated variations respectively w.r.t. the input sentence. From
both the tables, we see that variations contain many inter-
esting phrases such as in front of an airport, busy street,
wooden table, recover, Tech training etc. which were not en-
countered in input sentences. Furthermore, the paraphrases
generated by our system are well-formed, semantically sen-
sible, and grammatically correct for the most part. For exam-
ple, for the MSCOCO dataset, for the input sentence A man
with luggage on wheels standing next to a white van., one
of the variants A young man standing in front of an airport.
is able to figure out that the situation pertains to “waiting in
front of an airport”, probably from the phrases standing and
luggage on wheels. Similarly, for the Quora dataset, for the
question What is my old Gmail account?, one of the variants
is Is there any way to recover my Gmail account? which



Table 4: Results on MSCOCO dataset. Higher BLEU and METEOR score is better, whereas lower TER score is better. ”Mea-
sure” column denotes the way metrics are computed over multiple paraphrases.

MSCOCO
Model Measure Beam size Layers BLEU METEOR TER

Seq-to-Seq (Sutskever, Vinyals, and Le 2014) - 10 2 16.5 15.4 67.1
With Attention (Bahdanau, Cho, and Bengio 2014) - 10 2 18.6 16.8 63.0

Seq-toSeq (Sutskever, Vinyals, and Le 2014) - 10 4 28.9 23.2 56.3
Bi-directional (Graves, Jaitly, and Mohamed 2013) - 10 4 32.8 24.9 53.7
With Attention (Bahdanau, Cho, and Bengio 2014) - 10 4 33.4 25.2 53.8

Residual LSTM (Prakash et al. 2016) - 10 4 37.0 27.0 51.6
Unsupervised - No beam 1, 2 12.8 17.5 78.8

VAE-S
Avg No beam 1, 2 7.0 14.0 82.3
best BLEU No beam 1, 2 11.3 16.8 76.5
best METEOR No beam 1, 2 11.0 17.7 78.8

VAE-SVG (our)

Avg No beam 1, 2 39.2 29.2 43.6
best BLEU No beam 1, 2 41.1 30.3 42.3
best METEOR No beam 1, 2 41.7 30.8 41.7
Avg 10 1, 2 41.3 30.9 40.8
best BLEU 10 1, 2 40.9 30.7 42.0
best METEOR 10 1, 2 41.3 31.0 41.6

VAE-SVG-eq (our)

Avg No beam 1, 2 37.3 28.5 45.1
best BLEU No beam 1, 2 39.2 29.5 43.9
best METEOR No beam 1, 2 39.8 30.0 43.4
Avg 10 1, 2 39.6 30.2 42.3
best BLEU 10 1, 2 39.3 30.1 43.5
best METEOR 10 1, 2 39.7 30.4 43.2

is very similar –but not the same– to the paraphrase avail-
able in the ground truth. It is further able to figure out that
the input sentence is talking about recovering the account.
Another variant How can I get the old Gmail account pass-
word? tells us that accounts are related to the password, and
recovering the account might mean recovering the password
as well.

In Tables 4 and 5, we report the quantitative results from
various models for the MSCOCO and Quora datasets re-
spectively. Since our models generate multiple variants of
the input sentence, one can compute multiple metrics with
respect to each of the variants. In our tables, we report av-
erage and best of these metrics. For average, we compute
the metric between each of the generated variants and the
ground truth, and then take the average. For computing the
best variant, while one can use the same strategy, that is,
compute the metric between each of the generated variants
and the ground truth, and instead of taking average find the
best value but that would be unfair. Note that in this case, we
would be using the ground truth to compute the best which
is not available at test time. Since we cannot use the ground
truth to find the best value, we instead use the metric be-
tween the input sentence and the variant to get the best vari-
ant, and then report the metric between the best variant and
the ground truth. Those numbers are reported in the Measure
column with row best-BLEU/best-METEOR.

In Table 4, we report the results for MSCOCO dataset. For
this dataset, we compare the results of our approach with
existing approaches. As we can see, we have a significant
improvement w.r.t. the baselines. Both variations of our su-
pervised model i.e., VAE-SVG and VAE-SVG-eq perform
better than the state-of-the-art with VAE-SVG performing

Figure 3: Recall vs BLEU/METEOR/TER after filtering the
results through x(o)-BLEU for Quora dataset

slightly better than VAE-SVG-eq. We also evaluate with re-
spect to best variant. The best variant is computed using dif-
ferent metrics, that is, BLEU and METEOR, however the
best variant is not always guaranteed to perform better than
average since best variant is computed with respect to the
input question not based on the ground truth. When using
the best variant, we get improvement in all three metrics in
the case of non-beam search, however when experimented
with generating paraphrases through beam-search, we get
further improvement for METEOR and TER however these
improvement are not as significant as for the Quora dataset,
as you will see below. This could be because MSCOCO is an
image captioning dataset which means that dataset does not
contain fully formed grammatical sentences, as one can see
from the examples in Table 2. In such cases, beam search is
not able to capture the structure of the sentence construction.
When comparing our results with the state-of-the-art base-



Table 5: Results on Quora dataset. Higher BLEU and METEOR score is better, whereas lower TER score is better.
Quora

50K 100K 150K
Model Measure BLEU METEOR TER BLEU METEOR TER BLEU METEOR TER

Unsupervised (baseline) - 8.3 12.2 83.7 10.6 14.3 79.9 11.4 14.5 78.0

VAE-S
(baseline)

Avg 11.9 17.4 77.7 13.0 18.4 76.8 14.2 19.0 74.8
best BLEU 15.8 20.1 69.4 17.5 21.6 67.1 19.8 22.6 63.9
best METEOR 15.6 21.1 71.5 17.5 22.7 69.5 19.7 23.8 66.9

VAE-SVG
(ours)

Avg 13.8 18.7 68.2 18.6 21.9 60.6 25.0 25.1 52.5
best BLEU 17.1 21.3 63.1 22.5 24.6 55.7 30.3 28.5 47.3
best METEOR 17.1 22.2 63.8 22.4 25.5 55.6 30.3 29.2 47.1

VAE-SVG-eq
(ours)

Avg 13.9 18.8 67.1 19.0 21.7 60.0 26.2 25.7 52.1
best BLEU 17.4 21.4 61.9 22.9 24.7 55.0 31.4 29.0 46.8
best METEOR 17.3 22.2 62.6 22.9 25.5 54.9 32.0 30.0 46.1
Avg (beam=10) - - - - - - 37.1 32.0 40.8
best BLEU (beam=10) - - - - - - 38.0 32.9 40.0
best METEOR (beam=10) - - - - - - 38.3 33.6 39.5

line, the average metric of the VAE-SVG model is able to
give a 10% absolute point performance improvement for the
TER metric, a significant number with respect to the differ-
ence between the best and second best baseline which only
stands at 2% absolute point. For the BLEU and METEOR,
our best results are 4.7% and 4% absolute point improve-
ment over the state-of-the-art.

In Table 5, we report results for the Quora dataset. As we
can see, both variations of our model perform significantly
better than unsupervised VAE and VAE-S, which is not sur-
prising. We also report the results on different training sizes,
and as expected, as we increase the training data size, re-
sults improve. Comparing the results across different vari-
ants of supervised model, VAE-SVG-eq performs the best.
This is primarily due to the fact that in VAE-SVG-eq, the
parameters of the input question encoder are shared by the
encoding side and the decoding side. We also experimented
with generating paraphrases through beam-search, and, un-
like MSCOCO, it turns out that beam search improves the
results significantly. This is primarily because beam-search
is able to filter out the paraphrases which had only few com-
mon terms with the input question. When comparing the best
variant of our model with unsupervised model (VAE), we
are able to get more than 27% absolute point (more than
3 times) boost in BLEU score, and more than 19% abso-
lute point (more than 2 times) boost in METEOR; and when
comparing with VAE-S, we are able to get a boost of almost
19% absolute points in BLEU (2 times) and more than 10%
absolute points in METEOR (1.5 times).

Table 6: Human evaluation results for paraphrase genera-
tion.

Dataset Input Relevance Readability
MSCOCO Ground Truth 3.38 4.68

System Output 3.0 3.84
Quora Ground Truth 4.82 4.94

System Output 3.57 4.08

The results of the qualitative human evaluation are
shown in Table 6. From the Table, we see that our method

produces results which are close to the ground truth for both
metrics Readability and Relevance. Note that Relevance of
the MSCOCO dataset is 3.38 which is far from a perfect
score of 5 because unlike Quora, MSCOCO dataset is an
image caption dataset, and therefore allows for a larger vari-
ation in the human annotations.

Note that one can use the metric between the variant and
the input question to provide filtering in the case of multiple
variants, or even to decide if a variant needs to be reported
or not. So in order to make the system more practical (a high
precision system), we choose to report the variant only when
the confidence in the variant is more than a threshold. We use
the metric between input question and the variant to compute
this confidence. Naturally this thresholding reduces the re-
call of the system. In Figure 3, we plot the recall for Quora
dataset, after thresholding the confidence (computed using
the BLEU between the variant and the input question), and
the average metrics for those candidates that pass the thresh-
old. Interestingly, we can increase the BLEU score of the
system as much as up to 55% at the recall of 10%. Plots
generated using other metrics such as METEOR and TER
showed a similar trend.

Conclusion
In this paper we have proposed a deep generative frame-
work, in particular, a Variational Autoencoder based archi-
tecture, augmented with sequence-to-sequence models, for
generating paraphrases. Unlike traditional VAE and uncon-
ditional sentence generation model, our model conditions
the encoder and decoder sides of the VAE on the input sen-
tence, and therefore can generate multiple paraphrases for
a given sentence in a principled way. We evaluate the pro-
posed method on a general paraphrase generation dataset,
and show that it outperforms the state-of-the-art by a signif-
icant margin, without any hyper-parameter tuning. We also
evaluate our approach on a recently released question para-
phrase dataset, and demonstrate its remarkable performance.
The generated paraphrases are not just semantically similar
to the original input sentence, but also able to capture new
concepts related to the original sentence.
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