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Abstract. We present Deep Stochastic Neighbor Compression (DSNC), a frame-
work to compress training data for instance-based methods (such as k-nearest
neighbors). We accomplish this by inferring a smaller set of pseudo-inputs in a
new feature space learned by a deep neural network. Our framework can equiva-
lently be seen as jointly learning a nonlinear distance metric (induced by the deep
feature space) and learning a compressed version of the training data. In particu-
lar, compressing the data in a deep feature space makes DSNC robust against la-
bel noise and issues such as within-class multi-modal distributions. This leads to
DSNC yielding better accuracies and faster predictions at test time, as compared
to other competing methods. We conduct comprehensive empirical evaluations,
on both quantitative and qualitative tasks, and on several benchmark datasets, to
show its effectiveness as compared to several baselines.

1 Introduction

In machine learning problems there are situations for which the massive data scale ren-
ders learning algorithms infeasible to run in a reasonable amount of time. One solution
is to first summarize the data in the form of a small set of representative data points that
best characterize and represent the original data, and then run the original algorithm on
this subset of the data. This may be desirable due to the requirement of making a fast
prediction at test time, in problems where the predictions depend on the entire train-
ing data, e.g., k-nearest neighbors (kNN) classification [8,4] or kernel methods such
as SVMs [21]. For example, in traditional kNN classification, the prediction cost for
each test example scales linearly in the number of training examples, which can be
expensive if the number of training examples is large. Traditional approaches to speed-
up such methods usually rely on cleverly designed data structures or select a compact
subset of the original data (e.g., via subsampling [4]). Although such methods may re-
duce the storage requirements and/or prediction time, the performance tends to suffer,
especially if the original data is high-dimensional and/or noisy.

Recently [24] introduced Stochastic Neighbor Compression (SNC), which learns a
set of pseudo-inputs for kNN classification by minimizing a stochastic 1-nearest neigh-
bor classification error on the training data. Compared to the data sub-sampling ap-
proaches, SNC achieves impressive improvements in test accuracy when using these
pseudo-inputs as the new training set. However, since SNC performs data compression
in the original data space (or in a linearly transformed lower-dimensional space), it may
perform poorly when the data in the original space are highly non-separable and noisy.
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Motivated by this, we present Deep Stochastic Neighbor Compression (DSNC), a
new framework to jointly perform data summarization akin to the methods like SNC,
while also learning a nonlinear feature representation of the data via a deep learning ar-
chitecture. Our framework is based on optimizing an objective function that is designed
to learn nonlinear transformations that preserve the neighborhood structure in the data
(based on label information), while simultaneously learning a small set of pseudo-inputs
that summarize the entire data. Note that, due to the neighborhood preserving property,
our framework can also be viewed as performing a nonlinear (deep) distance metric
learning [22], while also learning a summarized version of the original data. The data
summarization aspect also makes DSNC much faster than other metric learning based
approaches which need all the training data. In DSNC, the data summarization and fea-
ture learning, both, are performed jointly through backpropagation [30] using stochastic
gradient descent, making our framework readily scalable to large data sets. Moreover,
our framework is also more general than standard feedforward neural networks which
perform simultaneous feature learning and classification but are not designed to learn a
summary of the data which may be useful in its own right.

In our comprehensive empirical studies, DSNC achieves superior classification ac-
curacies on the seven datasets we used in the experiments, outperforming SNC by a
significant margin. For example, with DSNC, 1-NN is able to achieve 0.67% test error
on MNIST with only ten compressed data samples (one per class) on a 20-dimensional
feature space, compared to 7.71% for SNC. We also report qualitative experiments (via
visualization) showing that DSNC is effective in learning a good summary of the data.

2 Background

Throughout this paper, we denote vectors as bold, lower-case letters, and matrices as
bold, upper-case letters. ‖ ·‖ applied to a vector denotes the standard vector norm, [X]ij
means the (i, j)-th element of matrix X. We denote the training data X = {x1, ...,xN},
where X ∈ RD×N are N observed data samples of dimensionality D with correspond-
ing labels Y = {y1, ..., yN} ∈ YN , with Y as a discrete set of possible labels.

To motivate our proposed framework DSNC (described in Section 3), we first pro-
vide an overview of Neighborhood Components Analysis (NCA) [16,31] and Stochastic
Neighbor Compression (SNC) [24], which our proposed framework builds on.

2.1 Neighborhood Components Analysis

Neighborhood Components Analysis (NCA) [16] is a distance metric learning method
that learns a mapping f(·|W) with parameters W to optimize the k-nearest-neighbors
classification objective. The optimization is based on preserving the Euclidean distance
dij = ‖f(xi) − f(xj)‖2 in the transformed space for xi and xj , based on their origi-
nal neighborhood relationship in the original space. Specifically, soft neighbor assign-
ments are used in NCA to directly optimize the mapping f for kNN classification
performance. The probability pij that xi is assigned to xj as its stochastic nearest-
neighbor is modeled with a softmax over distances between xi and the other training
samples, i.e., pij =

exp(−dij)∑
k:k 6=i exp(−dik)

. The objective of NCA is to maximize the expected
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number of correctly classified points, expressed here as a log-minimization problem:
Ŵ = argminW−

∑N
i=1 log(pi), where pi is the probability that the mapped sample

f(xi|W) is correctly classified with label yi, i.e., pi =
∑
j:yi=yj

pij . Although NCA
can learn a distance metric adaptively from data, the entire training data still needs to
be stored, making it computationally and storage-wise expensive at test time. To extend
NCA with nonlinear transformations, [31] defines f(·|W) to be a feedforward neural
network parameterized by weights W.

2.2 Stochastic Neighbor Compression (SNC)

Stochastic Neighbor Compression (SNC) is an improvement over NCA by learning a
compressed kNN training set by optimizing a soft neighborhood objective [24] . The
goal in SNC is to find a subset of m�N compressed samples Z = [z1, ..., zm] with
labels Ŷ = [ŷ1, ..., ŷm], to best approximate the kNN decision rule on the original set
of training samples X and labels Y. Different from NCA, a compressed set Z needs
to be learned from the whole data. The objective is to maximize the stochastic nearest-
neighbor accuracy with respect to Z, i.e., Ẑ = argminZ−

∑N
i=1 log(pi), where the

probability of a correct assignment between a training sample xi and the compressed
neighbors zi is defined as pi =

∑
j:yi=yj

exp(−γ2‖xi−zj‖2)∑m
k=1 exp(−γ2‖xi−zk‖2) , where γ is the width

of the gaussian kernel. Given such probabilities, the objective of SNC is constructed
as in the case of NCA and is optimized w.r.t. the m pseudo-inputs Z. In [24], a linear
metric learning extension of this approach was also considered, which defines pi =∑
j:yi=yj

exp(‖−A(xi−zj)‖2)∑m
k=1 exp(−γ2‖−A(xi−zk)‖2) , in which the pseudo-inputs will be learned in

the linearly transformed space. However, in the case of noisy and highly non-separable
data sets, the linear transformation may not be able to learn a good set of pseudo-inputs.
Our proposed framework, on the other hand, is designed to learn these pseudo-inputs,
while simultaneously learning a nonlinear feature representation for these.

3 Deep Stochastic Neighbor Compression

Our proposed framework Deep Stochastic Neighbor Compression (DSNC) is based on
the idea of summarizing/compressing data in a nonlinear feature space learned via
a deep feedforward neural network. Although methods like SNC (Section 2.2) can
achieve a significant data compression, the inferred pseudo-inputs Z still belong to the
original feature space, or a linear subspace of the original data. In contrast, DSNC learns
Z in a more expressive, nonlinear feature space. Note that, in our framework, nonlinear
feature learning naturally corresponds to a nonlinear (deep) metric learning.

DSNC consists of a deep feedforward neural network architecture which jointly
learns a compressed set Z ∈ Rd×m with m pseudo-inputs (m � N ), along with a
deep feature mapping f(·|W) from the original feature space RD to a transformed
space Rd. The procedure is illustrated in Figure 1. The set Z consisting of the inferred
pseudo-inputs and the deep feature representation f(·|W) are used as a reference set
and feature transformation, respectively, at test-time of an instance based method such
as kNN classification. In the following we describe the key components of DSNC.
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Input Data Deep Feature 
Transformation After Optimization

Compressed Data

Fig. 1. A conceptual illustration of DSNC, which transforms the data via a deep feedforward
neural net while simultaneously learning the pseudo-inputs that summarize the original data.

3.1 Deep Stochastic Reference Set

Let f(·|W) :RD→Rd be a deep neural network mapping function, with W as the set
of parameters from all layers of the network.1 Similar to SNC, we aim to learn a com-
pressed set of pseudo-inputs, Z = [z1, · · · , zm] with z ∈ Rd, such that Z summarizes
the original training set in the deep feature space. To this end, akin to SNC, we define
the probability that input xi chooses zj as its nearest reference vector as:

pij =
exp(−γ2‖f(xi)− zj‖2)∑m
k=1 exp(−γ2‖f(xi)− zk‖2)

. (1)

In the optimization, in addition to learning the parameters of a deep neural network, the
compressed set Z is also learned from the data. This is done by first initializing Z with
m randomly sampled examples from X, noted as X

′
, and then computing their deep

representation via Z = f(X
′
), while recording their original labels. Note that while

learning f and Z, these labels are fixed throughout, while Z and the parameters W of
the deep mapping f are learned jointly with the objective defined below.

3.2 DSNC Objective

To define an objective function for DSNC, we would like to ensure pi ,
∑
j:yi=yj

pij =
1 for all xi ∈ X, where pij is defined in (1). This means that the probability pij corre-
sponding to an input xi and a pseudo-input zj , both having different labels, is zero. We
then define the KL-divergence between the “perfect” distribution “1” and pi as

KL(1‖pi) = − log(pi) (2)

We wish to find a compressed set Z such that as many training inputs as possible are
classified correctly in the deep feature space. In other words, we would like pi to be
close to 1 for all xi ∈ X. This leads to the following objective:

L̃(Z,W) = −
n∑
i=1

log(pi) , (3)

where W denotes the parameters of the deep feedforward neural network.
1 For conciseness, we will typically omit the parameters W from the notation for the mapping

function, i.e., f(·) , f(·|W).
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Algorithm 1 DSNC in pseudo-code
1: Input: {X,Y}; compressed data set size m
2: Initialize Z by sampling m inputs from X, uniformly in each class, and forwarding into the

initialized deep neural network f(·)
3: Learn Z and the deep networks f(·) with back-propagation using gradients in (5) and (6)
4: Return f(·) and Z

There are two possible issues that may arise while optimizing the objective (3) for
DSNC and need to be properly accounted for. First, since we are jointly learning the
deep feature map f and the compressed set Z, without any constraints, it is possible that
the mapped samples f(xi) are on a different scale than the compressed samples Z in
the deep feature space, while achieving a small value for the objective function (3). To
handle this issue, we encourage the distance between f(xi) and zj to be small to avoid
an inhomogeneous distribution in the feature space.

Second, it is also possible that all the compressed data samples with the same la-
bel collapse into a single point since our objective aims to maximize the classification
accuracy. As a result, we also penalize the distribution of the compressed samples to
encourage a multi-modal distribution for each label. This is done by maximizing the
pair-wise distance between two pseudo-inputs zi and zj with the same label. Conse-
quently, the DSNC objective function combines the KL-divergence term L̃(Z,W) with
two additional regularization terms to account for these, and is given by

L(Z,W) =−
n∑
i=1

log(pi) + λ1

n∑
i=1

m∑
j=1

‖f(xi)− zj‖2︸ ︷︷ ︸
R1

− λ2
m∑
i=1

m∑
j=1

δ(ŷi, ŷj)‖zi − zj‖2︸ ︷︷ ︸
R2

(4)

where λ1 and λ2 are regularization coefficients and the delta function δ(ŷi, ŷj) = 1 if
ŷi = ŷj , and 0 otherwise. {ŷi} are the labels for the compressed set Z. R1 regularizes
the compressed samples to be close to the training data in the deep feature space, while
R2 encourages compressed samples with the same label to dissociate.

3.3 Learning with stochastic gradient descent

The objective function (4) can be easily optimized via the back-propagation algorithm
with stochastic gradient descent [7]. We adopt the RMSProp algorithm [34].

Specifically, there are two components that need to be updated: the parameters W
of the deep neural network, and the compressed set Z. Parameters W are updated by
back-propagation, which requires the gradient of the objective with respect to the output
f(X), which is then back-propagated down the neural network. The compressed set Z
can be simply updated with a stochastic gradient descent step. The stochastic gradients



6

for both Z and f(X) have simple and compact forms. To write down the gradients, we
first define the following matrices {Q,P, P̂} ∈ Rn×m,Q1 ∈ Rm×m,P1 ∈ Rd×n, and
{P2,Q2} ∈ Rd×m as

[Q]ij = (δyi,ŷj − pi), [Q2]ij =

m∑
i=1

Qij

[Q1]ij = δ(ŷi, ŷj), [P]ij =
pij
pi
, [P̂]ij = pij

[P1]ik =

m∑
j

zij , [P2]jk =

n∑
i

xji

Here, pij is defined in (1), xij and zij denote the corresponding elements of row/column
i/j in X/Z. After some careful algebra, the gradient of L with respect to the com-
pressed set Z and f(X) can then be conveniently represented in matrix operations with
the above defined symbols, i.e.,

∂L
∂Z

= −2γ2
(
X (Q ◦P)− Z diag

(
(Q ◦P)

T
1n

))
(5)

+ 2λ1 (nZ−P2) + 2λ2 (ZQ1 −Q2 ◦ Z)
∂L

∂f(X)
= −2γ2Z

(
Q ◦P− P̂

)T
+ 2λ1 (mX−P1) . (6)

where ◦ is the Hadamard (element-wise) product, 1n is the n × 1 vector of all ones,
and diag(·) is the diagonal operator placing a vector along the diagonal of an otherwise
0 matrix. Given the gradients, learning is straightforward by applying the RMSProp
algorithm on Z and the back-propagation for learning W , described in Algorithm 1.

3.4 Relationship with deep neural net with softmax output

We now show how DSNC is related to a deep neural network with a softmax output.
Note they are comparable only when m = |Y |, i.e., the number of pseudo-inputs is
equal to the number of classes. Note that, for a deep neural network with a softmax
output, the corresponding probability for (1) can be written as

pij =
exp(fT (xi)zj)∑|Y |
k=1 exp(f

T (xi)zk)
.

Note that the Euclidean distance in DSNC is replaced by an inner product in softmax
function above. When γ2 = 1

2 and ||f(xi)||22 = ||zj ||22 = 1, the probability that xi
belongs to “class” zj , as given by (1) can be written as

pij =
exp(− 1

2‖f(xi)‖
2) exp(− 1

2‖zj‖
2) exp(fT (xi)zj)∑|Y |

k=1 exp(−
1
2‖f(xi)‖2) exp(−

1
2‖zk‖2) exp(fT (xi)zk)

=
exp(fT (xi)zj)∑|Y |
k=1 exp(f

T (xi)zk)

which exactly recovers the softmax output. Therefore, a deep neural network with a
softmax output can be viewed as a special case of our DSNC framework.
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4 Related Work

Our work is aimed at improving the accuracies of instance based methods, such as
kNN, by learning highly discriminative feature representations (equivalently, learning
a good distance metric), while also speeding up the test-time predictions. It is therefore
related to both feature/distance-metric learning algorithms, as well as data summariza-
tion/compression algorithms for instance based methods.

In the specific context of kNN methods, there have been several previous efforts
to speed up kNN’s test-time predictions. The vast majority of these methods reduce
to speeding up the retrieval of k nearest neighbors without modifying the training set.
These include space partition algorithms such as ball-trees [6,29] and kd-trees [5], as
well as approximate neighbor search like local-sensitive hashing [3,14]. Our paper ad-
dresses the problem from the perspective of data compression that reduces the size of
the training set. Note that data compression approach is orthogonal to prior efforts on
fast retrieval approaches, and thus these two methodologies could be combined.

Perhaps the most straightforward idea for data compression is subsampling the
dataset. The seminal work in this area is Condensed Nearest Neighbors (CNN) pro-
posed by [18]. It starts off with two sets, S and T , where S contains an instance of the
training set and T contains the rest. CNN repeatedly scans T , looking for an instance
in T that is misclassified using the data in S. This instance is then moved from T to
S. This process continues until no more data movement can be made. Since this work,
there have been several variants of CNN, including MCNN to address the order depen-
dent issue of CNN [11], post-processing method [13], and fast CNN (FCNN) [4]. With
these methods, the compressed training set is always a subset of the original training
set, which is not necessarily a good representation. Recently, [24] introduce Stochas-
tic Neighbor Compression (SNC), which learns a synthetic set as the compressed set.
Assuming the synthetic set is presented as the design variables, SNC uses stochas-
tic neighborhood [16,20,35] to model the probability of each training instance being
correctly classified by the synthetic set. The synthetic set is obtained through numer-
ical optimization, where the objective is to minimize the KL-divergence between the
modeled distribution and the “perfect” distribution in which all training instances are
correctly classified.

Among other works on summarizing/compressing massive data sets for machine
learning problems includes methods such as coresets [1] for geometric problems (e.g.,
k-means/k-median clustering, nearest neighbor methods, etc). Kernel methods are also
known to have the problem of having to store the entire training data in the memory and
being slow at test time, and several methods such as landmarks based approximations
[40,21] have been proposed to address these issues. However all these methods can only
perform data compression by learning a set of representatives in the original feature
space, and are not suited for data sets that are high-dimensional and exhibit significant
nonlinearities.

All of the above methods operate on the original data space, not embracing the
superior expressive power of deep learning. With unprecedented generalization per-
formance, deep learning has achieved great success in various important applications,
including speech recognition [19,17,28], natural language processing [27,26,9], im-
age labeling [23,12,33,39], and object detection [15,36]. Recently, the kNN classifier
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has been equipped with deep learning in modern face recognition systems, such as
FaceNet [32]. In particular, kNN performs classification on the space mapped by a con-
volutional net [25]. However, Facenet trains the convolutional net to reflect the actual
similarity between images/faces, rather than the accuracy performance of kNN. [31] in-
troduce a method to train a deep neural net for kNN to perform well on the transformed
space. Though inspired by this work, our DSNC is fundamentally different in that it not
only optimizes the kNN performance but also (and more importantly) simultaneously
learns a compressed set in a new nonlinear feature space learned by a feedforward deep
neural network.

5 Results

We present experimental results on seven benchmark datasets, including four from [24],
i.e., MNIST, YALEFACE, ISOLET, ADULT; and three additional, more complex datasets,
i.e., 20NEWS, CIFAR10 and CIFAR100. We begin by describing these datasets, and then
evaluate the test errors, compression ratios, feature representations, sensitivity to hyper-
parameters and visualization of distributions of the test sets in the deep feature space.
Our code is publicly available at http://people.duke.edu/˜ww107/.

Table 1. Summary of datasets used in the evaluation.

Dataset n |Y | d (dL) Nmax

MNIST 60000 10 784 (164) 600
YALEFACE 1961 38 8064 (100) 100
ISOLET 3898 26 617 (172) 100
ADULT 32562 2 123 (50) 100
20NEWS 11314 20 2000 (100) 100
CIFAR10 50000 10 3072 (200) 100
CIFAR100 50000 100 3072 (200) 300

5.1 Datasets

Some statistics of the seven datasets for the evaluation of DSNC are listed in Table 1.
YALEFACE consists of greyscale images of 38 individuals, with several illumination
conditions for each individual. The task is to identify the individual from the gray-scale
pixels. ISOLET is derived from spoken letters, represented by audio feature vectors. The
learning task is to identify which letter is spoken. MNIST is a set of gray-scale images
of handwritten digits, and the objective is to recognize the digit from the pixel values.
ADULT consists of statistics of individual households, and the aim is to predict if a
household has an income over $50, 000. 20NEWS comprises a collection of newsgroup
posts on 20 topics, after pre-processing, it is represented in the bag of words format with
only the 2000 most common words. The task is to predict the newsgroup to which the
post was made. CIFAR10 and CIFAR100 are labeled RGB images. The learning problem
is to classify the image to its ground truth label, one of the 10 or 100 classes, respec-
tively. Since YALEFACE has no predefined test set, we report the average performance
over 10 splits. All other results are reported on predefined test sets.

http://people.duke.edu/~ww107/
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Table 2. The feedforward neural network structure used for each dataset. ‘Ck’ (‘Hk’) indicates a
convolutional (fully-connected) layer with k filters (hidden units). The variable d represents the
dimensionality of the output feature representation of the inferred pseudo-inputs Z.

Dataset Network Structure
MNIST C20-C50-Hd
YALEFACE C20-C50-Hd
ISOLET H500-H500-Hd
ADULT H200-H200-Hd
20NEWS H800-H800-Hd
CIFAR10 C64-C128-C256-C128-Hd
CIFAR100 C64-C128-C256-C128-Hd

5.2 Experimental setting

To explore the advantages of our deep-learning-based method, we use raw features
as the input for DSNC and the corresponding reference deep neural networks2. For
MNIST, YALEFACE (rescaled to 48×42 pixels [37]), CIFAR10 and CIFAR100, we adopt
convolutional neural networks, while ISOLET, ADULT and 20NEWS are fitted with feed-
forward neural networks. ReLU is adopted as the activation function after hidden layers
for all models. Details of the network structures are shown in Table 2. When comparing
the error with varying compressed ratios in Section 5.4, we fix d in Hd to be dL in
Table 1, and the time comparing the error with varying dimensions in Section 5.5, we
keep the compared size m to be Nmax.

DSNC is implemented using Torch7 [10] and trained on NVIDIA GTX TITAN
graphics cards with 2688 cores and 6GB of global memory. We verify the implemen-
tation by numerical gradient checking, and optimize using stochastic gradient descent
with RMSprop, using mini-batch in size of 100 . For all the datasets, we randomly select
20% of the training data for cross-validation of hyper-parameters λ1 and λ2 and early
stopping. In contrast to SNC, our DSNC is not sensitive to γ. Thus we use a constant
value 1 for all DSNC experiments set up.

With SNC we follow a similar setup to [24]. For ISOLET and MNIST, the dimen-
sionality is reduced with LMMN as described in [38]. For YALEFACE, we follow [38]
and first rescale the images to 48×42 pixels, then reduce the dimensionality with PCA,
while omitting the leading five principal components which largely account for light-
ing variations. Finally we apply large margin nearest neighbor (LMNN) to reduce the
dimensionality further to d = 100. For CIFAR10 and CIFAR100, we use LMNN to re-
duce the dimensionality to d = 200. In fact, the dimensionality of SNC is determined
by LMNN. The parameters used for comparing the test error with varying compression
rates and dimensionality are exactly the same as DSNC as we described before. Param-
eters are listed in Table 1. Notice that LMNN is used as the pre-processing step for all
the methods except our DSNC and the corresponding reference networks.

2 The same network structure as DSNC except with a softmax-output.
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5.3 Baselines

We experiment with two versions of DSNC, one uses the compressed data Z as the kNN
reference during testing, denoted by Compression, the other uses the entire training
data, denoted by ALL. We compare DSNC against the following related baselines:

– kNN without compression, with/without dimensionality reduction with LMNN;
– kNN using Stochastic Neighbor Compression (SNC) [24];
– Approximate kNN with Locality-Sensitive Hashing (LSH) [14,2];
– kNN using CNN [18] and FCNN [4] dataset compression;
– Deep neural network classifier with the same network structure as DSNC.

Throughout, we adopt the 1-nearest neighbor (1-NN) rule for all kNN methods.

5.4 Errors with varying compression ratios

In this section we experiment with varying compressed ratio of the dataset, defined as
the ratio between the compressed data size and the whole data size. The results are
plotted in Figure 2. Several conclusions can be drawn from the results: 1) DSNC out-
performs other methods on all data sets. The gap between DSNC and SNC is huge for
all the data sets, which indicates the advantage of learning the nonlinear feature space
for data compression. 2) DSNC emerges as a stable compression method that is robust
to the compression ratio. This is especially true when the compression ratio is small,
for example, when the compression data size equals the number of classes (m = |Y |),
DSNC still performs well, yielding significantly lower errors than LSH, CNN, FCNN
and SNC. And, generally, with increasingm, test errors tend to decrease to a certain de-
gree. 3) Compared with reference deep neural networks with softmax outputs, DSNC
exhibits better performances on most datasets except ADULT, but with smaller gaps than
the other methods. A possible reason could be that the task is binary classification and
multi-modality within class distributions may be not that explicit in the dataset. It is no-
table when m = |Y |, DSNC degrades to the reference neural network using Euclidean
distance as the metrics in softmax. We can see on 20NEWS, CIFAR10 and CIFAR100,
the reference neural networks perform better. However, with an adaptive m, DSNC can
always surpass the reference neural networks; while the observation on Y aleFace is
particular surprising, as there is a big performance gap between DSNC and the cor-
responding convolutional neural networks. This indicates our motivation of learning a
representative feature space for data compression to be effective, as DSNC has more
degrees of freedom to adapt the compression data to a weak feature presentation.

5.5 Errors with varying feature dimensions

Next we investigate the impact of feature dimensions on the classification accuracy. To
test the adaptive ability of DSNC to extremely low-dimensional feature spaces, we vary
the feature space dimensions from 10 to 300 on CIFAR10 and CIFAR100, and from
10 to 100 on the other datasets. The results are plotted in Figure 3. We can see from the
figure that the performance does not deteriorate when learning with a deep nonlinear
transformation, i.e., DSNC and DNN/CNN yield almost the same test errors with dif-
ferent feature dimensions on all the datasets, while other methods produce significantly
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Fig. 2. Test error with varying dataset compression rates. The images below or on the right side
in the blue rectangle are the zoom in images

worse performance when the feature dimension is low. Particularly, for MNIST and
ISOLET, a 20 dimensional space is found to be powerful enough to express the dataset,
while for CIFAR100, a nonlinear transformation into a 100-dimensional space obtains
an accuracy that is close to the optimal performance. Interestingly, we also notice that
using the compressed data outperforms the one using the entire mapped data. This is be-
cause our objective optimizes directly on the compressed data set, which can effectively
filter out the noise in the original data set consisting of all the observations.
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Fig. 3. Test error rates after mapping into different size of feature space. Zoom in images are
organized the same as Figure 2

5.6 Sensitivity to hyper-parameters

In contrast to SNC, it is found that our model is not sensitive to the parameter γ in the
stochastic neighborhood term. However, the hyper-parameters λ1 and λ2 do influence
the performance of DSNC, because they control different behaviors of the objective.
Specifically, λ1 tends to pull the compressed data closer to the training sets in the deep
feature space, while λ2 pushes the compressed data with the same label to be far away
from each other, such that they do not collapse into a single point and tend to capture
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Fig. 4. tSNE visualization on 20NEWS with varying λ1 and λ2, compresseion size 500 (black
circle), color indicates categories

the within-class multi-modality. We visualize the effects for these hyper-parameters by
embedding the compressed data into 2-dimensional space using tSNE [35]. We use the
20NEWS dataset for visualization in Figure 4. Consistent with our intuition, we find
that with increasing λ1, the compressed data tends to be condense, and far way from
the training data; while increasing λ2 generally pushes the compressed data in the same
class to distribute more scatteringly. This indicates that if we want a larger compressed
set of pseudo-inputs (i.e., m is large), a larger value of λ2 should be set. The accuracies
with different values of λ1 and λ2 are summarized in Table 3, which indicates suitable
choices for λ1 and λ2 is essential for good performance.

5.7 Comparison of DSNC with SNC and SOFTMAX

In order to further understand the advantage of DSNC over SNC and softmax-based
deep neural networks (SOFTMAX for short), we compare them using a visualization
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Table 3. Test errors on 20news with varying the hyper-parameters λ1 and λ2 under the networks
structure H800-H800-H100. The compressed size m fixes to be 100. The bold indicates the
minimum mean test error by averaging five runs.

HH
HHHλ2

λ1
10−3 10−4 10−5 10−6 10−7

10−4 30.36 28.75 30.48 32.80 34.10
10−5 29.96 28.47 30.33 32.86 33.50
10−6 30.80 29.27 29.77 33.55 32.70
10−7 29.12 28.74 29.80 32.84 33.20
10−8 29.02 28.54 30.68 33.86 33.27

example on the MNIST dataset. We adopt the same models as the above experiments,
except that a reference set consisting of m = 100 pseudo-inputs is chosen for the
two methods. This gives us cleaner results in the visualization. The inferred pseudo-
inputs in the feature space are plotted in Figure 5. It can be clearly seen that DSNC
is able to learn both separable feature space and representative data, whereas for the
SNC, the compressed data does not seem to be separable. In terms of SOFTMAX, even
though it can learn centered clusters, its tendency to only learn unimodal within-class
distributions lead to poor performance around the decision boundary.

DSNC SNC SOFTMAX

Fig. 5. Comparison of DSNC (left) with SNC (middle), SOFTMAX (right) on MNIST dataset.
Circles represent the reference set.

6 Conclusion
In this paper, we propose DSNC, a data compression algorithm that is able to jointly
learn a deep feature space and a subset of compressed data that best represents the whole
data. The algorithm consists of a deep neural network component for feature learning,
on top of which an objective is proposed to optimize the kNN criteria, leading to a nat-
ural extension of the popular softmax-based deep neural networks. We test DSNC on
a number of benchmark datasets, obtaining significantly improved performance com-
pared to existing data compression algorithms.
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