
Bayesian Structural Adaptation for Continual Learning

Abhishek Kumar * 1 Sunabha Chatterjee * 2 Piyush Rai 3

Abstract
Continual Learning is a learning paradigm where
learning systems are trained on a sequence of
tasks. The goal here is to perform well on the
current task without suffering from a performance
drop on the previous tasks. Two notable directions
among the recent advances in continual learning
with neural networks are (1) variational Bayes
based regularization by learning priors from pre-
vious tasks, and, (2) learning the structure of deep
networks to adapt to new tasks. So far, these two
approaches have been largely orthogonal. We
present a novel Bayesian framework based on
continually learning the structure of deep neural
networks, to unify these distinct yet complemen-
tary approaches. The proposed framework learns
the deep structure for each task by learning which
weights to be used, and supports inter-task transfer
through the overlapping of different sparse sub-
sets of weights learned by different tasks. An ap-
pealing aspect of our proposed continual learning
framework is that it is applicable to both discrimi-
native (supervised) and generative (unsupervised)
settings. Experimental results on supervised and
unsupervised benchmarks demonstrate that our
approach performs comparably or better than re-
cent advances in continual learning.

1. Introduction
Continual learning (CL) (Ring, 1997; Parisi et al., 2019)
is the learning paradigm where a single model is required
to learn solving a sequence of tasks. At any point of time,
the model is expected to (i) make predictions for the tasks
it has seen so far, (ii) if subjected to training data for a
new task, adapt to the new task, leveraging the past knowl-
edge if possible (forward transfer), and benefit the previous
tasks if possible (backward transfer). While the desirable

*Equal contribution ; work done while at IIT Kanpur.
1Microsoft, India 2SAP Labs, India 3Department of Computer
Science, IIT Kanpur, India. Correspondence to: Piyush Rai
<piyush@cse.iitk.ac.in>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

aspects of more mainstream transfer learning (sharing of
bias between related tasks (Pan & Yang, 2009)) might rea-
sonably be expected here too, the principal challenge is to
retain the predictive power for the older tasks even after
learning new tasks, thus avoiding the so-called catastrophic
forgetting (Kirkpatrick et al., 2017).

Real world applications in, for example, robotics or time-
series forecasting, are rife with this challenging learning
scenario, the ability to adapt to dynamically changing en-
vironments or evolving data distributions being essential
in these domains. Continual learning is also desirable in
unsupervised learning problems as well (Smith et al., 2019;
Rao et al., 2019b) where the goal is to learn the underlying
structure or latent representation of the data. Also, as a skill
innate to humans (Flesch et al., 2018), it is naturally an in-
teresting scientific problem to reproduce the same capability
in artificial predictive modelling systems.

Existing approaches to continual learning are mainly based
on three foundational ideas. One of them is to constrain
the important parameters of previous tasks to not deviate
significantly from their previously learned values by using
some form of regularization or trade-off between previous
and new learned weights (Schwarz et al., 2018; Kirkpatrick
et al., 2017; Zenke et al., 2017; Lee et al., 2017). A natu-
ral way to accomplish this is to train a model using online
Bayesian inference, whereby the posterior of the parameters
learned from task t serves as the prior for task t + 1 as in
Nguyen et al. (2018) and Zeno et al. (2018). This new in-
formed prior helps in the forward transfer, and also prevents
catastrophic forgetting by penalizing large deviations from
itself. In particular, VCL (Nguyen et al., 2018) achieves
the state of the art results by applying this simple idea to
Bayesian neural networks.

The second idea is to perform an incremental model selec-
tion for every new task. For neural networks, this is done
by evolving the structure as newer tasks are encountered
(Golkar et al., 2019; Li et al., 2019). To this end, structural
learning is a natural scheme for continual learning as a new
task may require a different network (sub)structure than pre-
vious (and possibly unrelated) tasks, and even if the tasks
are highly related, their lower-layer representations can be
very different. Another advantage of structural learning is
that while retaining a shared set of parameters (which can be

Bayesian Structural Adaptation for Continual Learning

used to model task relationships), it also allow task-specific
parameters that can increase the performance of the new
task while avoiding catastrophic forgetting caused due to
forced sharing of parameters.

The third idea is to invoke a form of ’replay’, whereby
selected (Lopez-Paz et al., 2017) or generated (Hu et al.,
2019) samples representative of previous tasks, are used to
retrain the model after new tasks are learned.

In this work, we introduce a novel Bayesian nonparametric
approach to continual learning that seeks to incorporate the
ability of structure learning into the simple yet effective
framework of online Bayes. In particular, our approach
models each hidden layer of the neural network using the
Indian Buffet Process (Griffiths & Ghahramani, 2011) prior,
which enables us to learn the network structure as new
tasks arrive continually. We can leverage the fact that any
particular task uses a sparse subset of the connections of a
neural network, and different related tasks share different
subsets (albeit possibly overlapping). Thus, in the setting of
continual learning, it would be more effective if the network
could accommodate changes in its connections dynamically
to adapt to a newly arriving task. Moreover, in our model,
we perform automatic model selection where each task can
select the number of nodes in each hidden layer. All of this
is done under the principled framework of variational Bayes
and a nonparametric Bayesian modeling paradigm.

Another appealing aspect of our approach is that in con-
trast to some of the recent state-of-the-art continual learning
models (Yoon et al., 2018; Li et al., 2019) that are specific to
supervised learning problems, our approach applies to both
deep discriminative networks (supervised learning) where
each task can be modeled by a Bayesian neural network
(Neal, 2012; Blundell et al., 2015), as well as deep genera-
tive networks (unsupervised learning) where each task can
be modeled by a variational autoencoder (VAE) (Kingma &
Welling, 2013).

2. Preliminaries
Bayesian neural networks (Neal, 2012) are discriminative
models where the goal is to model the relationship between
inputs and outputs via a deep neural network with param-
eters w. The network parameters are assumed to have a
prior p(w) and the goal is to infer the posterior given the
observed data D. Exact posterior inference is intractable in
such models and posterior approximation is needed. One
such approximate inference scheme is Bayes-by-Backprop
(Blundell et al., 2015) which uses a mean-field variational
posterior q(w) over the weights. Reparameterized samples
from this posterior are then used to approximate the evi-
dence lower bound via Monte Carlo sampling. Our goal
in the continual learning setting is to learn such Bayesian

neural networks for a sequence of tasks by inferring the
posterior qt(w) for each task t, without forgetting the infor-
mation contained in the posteriors of previous tasks.

Variational autoencoders (Kingma & Welling, 2013) are
generative models where the goal is to model a set of inputs
{x}Nn=1 via stochastic latent variables {z}Nn=1. The map-
ping from each zn to xn is defined by a generator/decoder
model (modeled by a deep neural network with parame-
ters θ) and the reverse mapping is defined by a recogni-
tion/encoder model (modeled by another deep neural net-
work with parameters φ). Inference in VAEs is done by
maximizing the variational lower bound on the marginal
likelihood. It is customary to do point estimation for de-
coder parameters θ and encoder parameters φ. However, in
the continual learning setting, it would be more desirable
to infer the full posterior qt(w) for each task’s encoder and
decoder parameters w = {θ, φ}, while not forgetting the
information about the previous tasks as more and more tasks
are observed. Our proposed continual learning framework
address this aspect as well.

Variational Continual Learning (VCL) (Nguyen et al.,
2018) is a recently proposed approach to continual learning
that combats catastrophic forgetting in neural networks by
modeling the network parameters w in a Bayesian fashion
and by setting pt(w) = qt−1(w), that is, a task reuses
the previous task’s posterior as its prior. VCL solves the
following KL divergence minimization problem for task t
with data Dt

qt(w) = arg min
q∈Q

KL
(
q(w)|| 1

Zt
qt−1(w)p(Dt|w)

)
(1)

While offering a principled way that is applicable to both
supervised (discriminative) and unsupervised (generative)
learning settings, VCL assumes that the model structure is
held fixed throughout, which can be limiting in continual
learning where the number of tasks and their complexity is
usually unknown beforehand. This necessitates adaptively
inferring the model structure, which can potentially evolve
with each incoming task. Another limitation of VCL is that
the unsupervised version, based on performing CL on VAEs,
only does so for the decoder model’s parameters (shared
by all tasks). It uses completely task-specific encoders and,
consequently, is unable to transfer information across tasks
in the encoder model. Our approach addresses both these
limitations in a principled manner.

3. Bayesian Structure Adaptation for
Continual Learning

In this section, we present a Bayesian model for continual
learning that can potentially grow and adapt its structure as
more and more tasks arrive. Our model extends seamlessly
for unsupervised learning as well. For brevity of exposition,

Bayesian Structural Adaptation for Continual Learning

in this section, we mainly focus on the supervised setting
where a task has labeled data with known task identities
t, i.e., the task-incremental setting (Van de Ven & Tolias,
2019). We then briefly discuss the unsupervised extension
(based on VAEs) in Sec. 3.3 where task boundaries may
or may not (task-agnostic) be available and provide further
details in the Supplementary Material (Sec H).

Our approach uses a basic primitive that models each hidden
layer using a nonparametric Bayesian prior (Fig. 1 shows an
illustration and Fig. 2 shows a schematic diagram). We can
use these hidden layers to model feedforward connections
in Bayesian neural networks or in the encoder/decoder of a
variational autoencoder (VAE).

For simplicity, consider a single hidden layer (Fig. 1). The
first task activates as many hidden nodes as required and
learns the posterior over the subset of edge weights incident
on each active node. Each subsequent task reuses some
of the edges learned by the previous tasks and uses the
posterior over the weights learned by the previous task as
the prior. Additionally, it may activate some new nodes
and learn the posterior over some of their incident edges.
It thus learns the posterior over a subset of weights that
may overlap with weights learned by previous tasks. While
making predictions, a task uses only the connections it has
learned. More slack for later tasks in terms of model size
(allowing it to create new nodes) indirectly lets the task learn
better without deviating too much from the prior (in this
case, posterior of the previous tasks) and further reduces
chances of catastrophic forgetting (Kirkpatrick et al., 2017).

3.1. Generative Story.

Omitting the task id t for brevity, consider modeling tth task
using a neural network having L hidden layers. We model
the weights in layer l as W l = Bl � V l, a element-wise
multiplication of a real-valued matrix V l (with a Gaussian
prior N (0, σ2

0) on each entry) and a task-specific binary
matrixBl. This ensures sparse connection weights between
the layers. Moreover, we model Bl ∼ IBP(α) using the
Indian Buffet Process (IBP) (Griffiths & Ghahramani, 2011)
prior, where the hyperparameter α controls the number of
nonzero columns inBl and its sparsity. The IBP prior thus
enables learning the size of Bl (and consequently of V l)
from data. As a result, the number of nodes in the hidden
layer is learned adaptively from data. The output layer
weights are denoted as Wout with each weight having a
Gaussian prior N (0, σ2

0). The outputs are

yn ∼ Lik(WoutφNN (xn)), n = 1, . . . , N (2)

Here φNN is the function computed (using parameter sam-
ples) up to the last hidden layer of the network thus formed,
and Lik denotes the likelihood model for the outputs.

Similar priors on the network weights have been used in

other recent works to learn sparse deep neural networks
(Panousis et al., 2019; Xu et al., 2019). However, these
works assume a single task to be learned. In contrast, our
focus here is to leverage such priors in the continual learning
setting where we need to learn a sequence of tasks while
avoiding the problem of catastrophic forgetting. Henceforth,
we further suppress the superscript denoting layer number
from the notation for simplicity; the discussion will hold
identically for all hidden layers. When adapting to a new
task, the posterior of V learned from previous tasks is used
as the prior. A newB is learned afresh, to ensure that a task
only learns the subset of weights that are relevant for it.

Figure 1. Illustration on single hidden layer

Stick Breaking Construction. As described before, to
adaptively infer the number of nodes in each hidden layer,
we use the IBP prior (Griffiths & Ghahramani, 2011), whose
truncated stick-breaking process (Doshi et al., 2009) con-
struction for each entry of B is as follows

νk ∼ Beta(α, 1), πk =

k∏
i=1

νi, Bd,k ∼ Bernoulli(πk)

(3)

for d ∈ 1, ..., D, where D denotes the number of input
nodes for this hidden layer, and k ∈ 1, 2, ...,K, where K
is the truncation level and α controls the effective value of
K, i.e., the number of active hidden nodes. Note that the
prior probability πk of weights incident on hidden node k
being nonzero decreases monotonically with k, until, say,
K nodes, after which no further nodes have any incoming
edges with nonzero weights from the previous layer, which
amounts to them being turned off from the structure. More-
over, due to the cumulative product based construction of
the πk’s, an implicit ordering is imposed on the nodes being
used. This ordering is preserved across tasks, and allocation
of nodes to a task follows this, facilitating reuse of weights.

The truncated stick-breaking approximation is a practically
plausible and intuitive solution for continual learning since
a fundamental tenet of continual learning is that the model
complexity should not increase in an unbounded manner
as more tasks are encountered. Suppose we fix a budget
on the maximum allowed size of the network (number of
hidden nodes in a layer) after it has seen, say, T tasks, which
essentially corresponds to the truncation level for each layer.
Then, for each task, nodes are allocated conservatively from
this total budget, in a fixed order, conveniently controlled by
the α hyperparameter. In (Sec. 3.4), we also discuss a dy-

Bayesian Structural Adaptation for Continual Learning

T

Nt

xtn

ytn

htn

θtH

θtS

θtM

X

θS

θ1
M

y1 yT

θT
M

θ1
H θT

H

h

...

...

T

Nt

xtn

ztn

htn

θtS

θtM

X

θS
enc

θ1
M

Z

θT
M...

θS
dec

θ1
M θT

M...
X

Figure 2. Schematics representing our models. In both (left) Discriminative model and (right) Generative model (VAE), θS are parameters
shared across all task, θM are the task specific mask parameters, and θH are last layer separate head parameters. In our exposition, we
collectively denote these parameters by W = B � V with the masks being B and other parameters being V .

namic expansion scheme that avoids specifying a truncation
level (and provide experimental results).

3.2. Inference

Exact inference is intractable in this model due to non-
conjugacy. Therefore, we employ variational inference
(Blei et al., 2017) to approximate the posterior. We use
the structured mean-field approximation (Hoffman & Blei,
2015), which performs better than the standard mean-field
approximation, as the former captures the dependencies
in the approximate posterior distributions of B and ν.
In particular, we use q(V ,B,v) = q(V)q(B|v)q(v),
where, q(V) =

∏D
d=1

∏K
k=1N (Vd,k|µd,k, σ2

d,k) is mean
field Gaussian approximation for network weights. Corre-
sponding to the Beta-Bernoulli hierarchy of (3), we use the
conditionally factorized variational posterior family, that
is, q(B|v) =

∏D
d=1

∏K
k=1 Bern(Bd,k|θd,k), where θd,k =

σ(ρd,k + logit(πk)) and q(v) =
∏K
k=1 Beta(vk|νk,1, νk,2).

Thus we have Θ = {νk,1, νk,2, {µd,k, σd,k, ρd,k}Dd=1}Kk=1

as set of learnable variational parameters.

Each column of B represents the binary mask for the
weights incident to a particular node. Note that although
these binary variables (in a single column of B) share a
common prior, the posterior for each of these variables are
different, thereby allowing a task to selectively choose a
subset of the weights, with the common prior controlling
the degree of sparsity.

L =Eq(V ,B,v)[ln p(Y |V ,B,v)]

−KL(q(V ,B,v)||p(V ,B,v)) (4)

Bayes-by-backprop (Blundell et al., 2015) is a common
choice for performing variational inference in such mod-
els. Eq. 4 defines the Evidence Lower Bound (ELBO) in
terms of data-dependent likelihood and data-independent
KL terms which further gets decomposed using mean-field

factorization.

L =
1

S

S∑
i=1

[f(V i,Bi,vi)−KL[q(B|vi)||p(B|vi)]]

−KL[q(V)||p(V)]−KL[q(v)||p(v)] (5)

The expectation terms are optimized by unbiased gradi-
ents from the respective posteriors. All the KL divergence
terms in (Eq. 5) have closed form expressions; hence using
them directly rather than estimating them from Monte Carlo
samples alleviates the approximation error as well as the
computational overhead, to some extent. The log-likelihood
term can be decomposed as

f(V ,B,v) = log Lik(Y |V ,B,v)

= log Lik(Y |WoutφNN (X;V,B, v)) (6)

where (X,Y) is the training data. For regression, Lik can
be Gaussian with some noise variance, while for classifica-
tion it can be Bernoulli with a probit or logistic link. Details
of sampling gradient computation for terms involving beta
and Bernoulli r.v.’s is provided in the Supplementary Mate-
rial. (Sec. E).

3.3. Unsupervised Continual Learning

Our discussion thus far has primarily focused on continual
learning where each task is a supervised learning problem.
Our framework however readily extends to unsupervised
continual learning (Nguyen et al., 2018; Smith et al., 2019;
Rao et al., 2019b) where we assume that each task involves
learning a deep generative model, commonly a VAE. In
this case, each input observation xn has an associated latent
variable zn. Collectively denoting all inputs asX and latent
variables as Z, we can define ELBO similar to Eq. 4 as

L =Eq(Z,V ,B,v)[ln p(X|Z,V ,B,v)]

−KL(q(Z,V ,B,v)||p(Z,V ,B,v)) (7)

Note that, unlike the supervised case, the above ELBO also
involves an expectation over Z. Similar to Eq. 5 this can be

Bayesian Structural Adaptation for Continual Learning

approximated using Monte Carlo samples, where each zn is
sampled from the amortized posterior q(zn|V ,B,v,xn).
In addition to learning the model size adaptively, as shown
in the schematic diagram (Fig. 2 (ii)), our model learns
shared weights and task-specific masks for the encoder and
decoder models. In contrast, VCL uses fixed-sized model
with entirely task-specific encoders, which prevents knowl-
edge transfer across the different encoders.

3.4. Other Key Considerations

Task Agnostic Setting Our framework extends to task-
agnostic continual learning as well where the task bound-
aries are unknown. Based on (Lee et al., 2020), we use a
gating mechanism (Eq. 8 with tn represents the task identity
of nth sample xn) and define marginal log likelihood as

p(tn = k|xn) =
p(xn|tn = k)p(tn = k)∑K
k=1 p(xn|tn = k)p(tn = k)

(8)

log p(X) =Eq(t=k) [p(X, t = k|θ)]
+KL (q(t = k)||p(t = k|X, θ)) (9)

where, q(t = k) is the variational posterior over task iden-
tity. Similar to E-step in Expectation Maximization (Moon,
1996), we can reduce the KL-Divergence term to zero and
maximize marginal log likelihood in M-step as

arg max
θ

Ep(t=k|X,θold) log p(X|t = k) (10)

Here, log p(X|t = k) is intractable but can be replaced
with its variational lower bound (Eq. 7). We use Monte
Carlo sampling for approximating p(xn|tn = k). The prior
distribution over tasks p(t = k) can be assumed to be a
uniform distribution but it fails to consider the degree upto
which each mixture is being used. Therefore, we keep
a count over the number of instances belonging to each
task and use that as prior (i.e p(t = k) = Nk

N , with Nk
being effective number of instances belonging to task k and
N =

∑
kNk)

Inspired from (Rao et al., 2019a), we rely on a threshold to
determine if the data point is an instance from a new task or
not. During training, any instance with Ep(tn|xn)(ELBOtn)
less than threshold Tnew is added to a buffer Dnew. Once
the buffer Dnew reaches a fixed size limit M , we extend our
network with new task parameters and train our network
on Dnew, with known task labels (i.e p(y = T + 1) = 1
where T is total number of tasks learned). Note that training
this mixture model will require us to have all task specific
variational parameters to be present at every time step unlike
the case in earlier settings where we only need to store
the masks and can discard the variational parameters of
previously seen tasks. This will result in storage problems
since the number of parameters will grow linearly with

the number of tasks. To overcome this issue we fix the
task specific mask parameters and prior parameters before
the network is trained on new task instances. After the
task specific parameters have been fixed, the arrival of data
belonging to a previously seen task tprev is handled by
training the network parameters with task.

Masked Priors Using the previous task’s posterior as the
prior for current task (Nguyen et al., 2018) may introduce
undesired regularization in case of partially trained parame-
ters that do not contribute to previous tasks and may promote
catastrophic forgetting. Also, the choice of the initial prior
as Gaussian leads to creation of more nodes than required
due to regularization. To address this, we mask the new
prior for the next task t with the initial prior pt defined as

pt(Vd,k) = Bod,kqt−1(Vd,k) + (1−Bod,k)p0(Vd,k) (11)

whereBo is the overall combined mask from all previously
learned tasks i.e., (B1 ∪ B2... ∪ Bt−1), qt−1, pt are the
previous posterior and current prior, respectively, and p0
is the prior used for the first task. The standard choice of
initial prior p0 can be a uniform distribution.

Selective Finetuning While training with reparameteriza-
tion (Gumbel-softmax), the sampled masks are close to bi-
nary but not completely binary which reduces performance a
bit with complete binary mask. So we fine-tune the network
with fixed masks to restore performance.

Dynamic Expansion Although our inference scheme
uses a truncation-based approach for the IBP posterior, it is
possible to do inference in a truncation-free manner. One
possibility is to greedily grow the layer width until perfor-
mance saturates. However we found that this leads to a bad
optima (low peaks of likelihood). We can leverage the fact
that, given a sufficiently large number of columns, the last
few columns of the IBP matrix tend to be all zeros. So we
can increase the number of hidden nodes after every itera-
tion to keep the number of such empty columns equal to a
constant value T l in following manner.

Clj = Clj+1

Dl∏
i

I(Blij = 0), Gl = T l −
Kl∑
j=1

Clj (12)

where l represents current layer index, Bl is the sampled
IBP mask for current task, and Clj indicates if all columns
from jth column onward are empty. Gl is the number of
hidden units to expand in the current network layer.

4. Related Work
One of the key challenges in continual learning is to prevent
catastrophic forgetting, typically addressed through regu-
larization of the important parameter updates, preventing

Bayesian Structural Adaptation for Continual Learning

them from drastically changing from the value learnt from
the previous task(s). Notable methods based on this strategy
include EwC (Kirkpatrick et al., 2017), SI (Zenke et al.,
2017), LP (Smola et al., 2003), etc. As an alternative to reg-
ularizing in the weight space, functional regularization has
also been proposed where the idea is to directly regularize
the function’s outputs when moving from one task to the
next task (Benjamin et al., 2018; Titsias et al., 2019; Pan
et al., 2020).

Bayesian approaches offer a natural remedy for catastrophic
forgetting in that, for any task, the posterior of the model
learnt from the previous task serves as the prior for the
current task, which is the canonical online Bayes. This
approach is used in recent works like VCL (Nguyen et al.,
2018) and task agnostic variational Bayes (Zeno et al., 2018)
for learning Bayesian neural networks in the CL setting. Our
work is most similar in spirit to and builds upon this body
of work.

Another key aspect in CL methods is replay, where some
samples from previous tasks are used to fine-tune the model
after learning a new task (thus refreshing its memory in some
sense and avoiding catastrophic forgetting). Some of the
works using this idea include (Lopez-Paz et al., 2017), which
solves a constrained optimization problem at each task, the
constraint being that the loss should decrease monotonically
on a heuristically selected replay buffer; (Hu et al., 2019),
which uses a partially shared parameter space for inter-task
transfer and generates the replay samples through a data-
generative module; and (Titsias et al., 2020), which learns a
Gaussian process for each task, with a shared mean function
in the form a feedforward neural network, the replay buffer
being the set of inducing points typically used to speed up
GP inference. For VCL and our work, the coreset serves
as a replay buffer (Appx. C); but we emphasize that it
is not the primary mechanism to overcome catastrophic
forgetting in these cases, but rather an additional mechanism
to preventing it.

Recent work in CL has investigated allowing the structure of
the model to dynamically change with newly arriving tasks.
Among these, strong evidence in support of our assumptions
can be found in (Golkar et al., 2019), which also learns
different sparse subsets of the weights of each layer of the
network for different tasks. The sparsity is enforced by a
combination of weighted L1 regularization and threshold-
based pruning. There are also methods that do not learn
subset of weights but rather learn the subset of hidden layer
nodes to be used for each task; such a strategy is adopted
by either using Evolutionary Algorithms to select the node
subsets (Fernando et al., 2017) or by training the network
with task embedding based attention masks (Serrà et al.,
2018). One recent approach (Adel et al., 2020), instead
of using binary masks, tries to adapt network weights at

different scales for different tasks; it is also designed only
for discriminative tasks.

Among other related work, (Li et al., 2019; Yoon et al.,
2018; Xu & Zhu, 2018) either reuse the parameters of a
layer, dynamically grows the size of the hidden layer, or
spawn a new set of parameters (the model complexity be-
ing bounded through regularization terms or reward based
reinforcements). Most of these approaches however tend to
be rather expensive and rely on techniques, such as neural
architecture search. In another recent work (simultaneous
development with our work), (Kessler et al., 2020) did a pre-
liminary investigation on using IBP for continual learning.
They however use IBP on hidden layer activations instead of
weights (which they mention is worth considering), do not
consider issues such as the ones we discussed in Sec. 3.4,
and only applies to supervised setting. Modelling number
active nodes for a given task has also been explored by
(Serrà et al., 2018; Fernando et al., 2017; Ahn et al., 2019),
but modelling posterior over connections weights between
these nodes achieves more sparsity and flexibility in terms
of structural learning at the cost of increased number of
parameters, (von Oswald et al., 2020) tries to amortize the
network parameters directly from input samples which is a
promising direction for future work.

For non-stationary data, online variational Bayes is not di-
rectly applicable as it assumes independently and identi-
cally distributed (i.i.d.) data. As a result of which the
variance in Gaussian posterior approximation will shrink
with an increase in the size of training data, (Kurle et al.,
2020) proposed use of Bayesian forgetting, which can be
naturally applied to our approach enabling it to work with
non-stationary data but it requires some modifications for
task-agnostic setup. In this work, we have not explored this
extension keeping it as future work.

5. Experiments
We perform experiments on both supervised and unsuper-
vised continual learning scenarios. We also evaluate our
model on task-agnostic setup for unsupervised CL and com-
pare our method with relevant state-of-the-art methods. In
addition to the quantitative (accuracy/log-likelihood compar-
isons) and qualitative (generation) results, we also examine
the network structures learned by our model. Some of the
details (e.g., experimental settings) have been moved to the
Supplementary Material.

5.1. Supervised Continual Learning

We first evaluate our model on standard supervised CL
benchmarks. We experiment with several existing ap-
proaches such as, Pure Rehearsal (Robins, 1995), EwC
(Kirkpatrick et al., 2017), IMM (Lee et al., 2017), DEN

Bayesian Structural Adaptation for Continual Learning

1 2 3 4 5
97.0

97.4

97.8

98.2

A
v
g
.

A
c
c
u
ra

c
y

Perm. MNIST

1 2 3 4 599.6

99.7

99.8

99.9
Split MNIST

1 2 3 4 5

94

95

96

97

98Not MNIST

1 2 3 4 5

Tasks

97.5

98.0

98.5

99.0

A
v
g
.

A
c
c
u
ra

c
y

Fashion MNIST

1 2 3 4 5

Tasks

80

85

90

95
Split Cifar 10

2.5 5.0 7.5 10.0

Tasks

55

60

65

70

Split Cifar 100

Naive

Rehersal

EwC

 VCL

 VCL(coreset)

IMM(mode)

ours

ours(coreset)

DEN

RCL

HAT

Figure 3. Mean test accuracies of tasks seen so far as newer tasks
are observed on multiple benchmarks. Mean value is calculated as
average of accuracies of all tasks after observing the last task

(Yoon et al., 2018), RCL (Xu & Zhu, 2018), HAT (Serrà
et al., 2018), VCL (Nguyen et al., 2018), and “Naı̈ve” which
learns a shared model for all the tasks. We perform our eval-
uations on five supervised CL benchmarks: SplitMNIST,
Split notMNIST(small), Permuted MNIST, Split fashionM-
NIST and Split Cifar100. The last layer heads (Supp. Mat.
D.1) were kept separate for each task for a fair comparison.
For Split Cifar10, Split MNIST, Split notMNIST and Split
fashionMNIST each dataset is split into 5 binary classifi-
cation tasks. For Split Cifar100, the dataset was split into
10 multiclass classification tasks. For Permuted MNIST,
each task is a multiclass classification problem with a fixed
random permutation applied to the pixels of every image.
We generated 5 such tasks for our experiments1.

Performance evaluation Suppose we have a sequence of
T tasks. To gauge the effectiveness of our model towards
preventing catastrophic forgetting, we report (i) the test ac-
curacy of first task after learning each of the subsequent
tasks; and (ii) the average test accuracy over all previous
tasks 1, 2, . . . t after learning each task t. For fair compari-
son, we use the same architecture for each of the baselines
(details in Supp. Mat.), except for DEN, RCL which learn
the structure of the network dynamically.

Fig. 3 shows the mean test accuracies on all supervised
benchmarks as new tasks are observed. As shown, the
average test accuracy obtained by our method (without as
well as with coresets) is better than the compared baselines
(here, we have used random point selection method for
coresets). Moreover, the accuracy drops much more slowly

1The code for our models can be found at this link: https:
//github.com/npbcl/icml21

1 2 3 4 5

Tasks

86.0

88.0

90.0

92.0

94.0

96.0

P
e
rm

u
te

d
 M

N
IS

T

Task 1 - Accuracy

1 2 3 4 5

Tasks

15

20

25

30

35

Network Used (%)

2 3 4 5

Tasks

2

3

4

42 43

49

43

49

59

41

46

57

60

Sharing (%)

1 2 3 4 5

Tasks

97.0

97.5

N
o
t

M
N

IS
T

1 2 3 4 5

Tasks

20

30

40

50

60

70

2 3 4 5

Tasks

2

3

4

9 9

22

10

23

26

10

23

27

29

vcl

vcl(rand)

vcl(kcen)

ours

ours(rand)

ours(kcen)

ours(growing)

Figure 4. Variation in accuracy of first task (left), percentage of
network capacity in use (middle) as new tasks are observed and
percentage of shared network connections (right) among different
task pairs in first hidden layer

than other baselines, showing the efficacy of our model in
preventing catastrophic forgetting. In Fig. 4, we show that
deviations in accuracy of first task as new tasks arrive and
compare specifically with VCL. In this case, we observe
that our method yields a relatively stable first task accuracy
as compared to VCL, which is a result of adaptive structural
learning. We also observe that, for permuted MNIST, the
accuracy of the first task initially increases with training of
new tasks which shows the presence of backward transfer,
which is another desideratum of CL. We also report the
performance of our dynamically growing network variant
(for more details refer Supp. Mat. Sec. 3.4).

Network hidden layer sizes Avg accuracy (5 tasks)

[200] 98.180 ± 0.187
[100, 50] 98.188 ± 0.163
[250, 100, 50] 98.096 ± 0.152

Table 1. Comparing performance on Permuted MNIST under dif-
ferent network configurations

To justify the choice of single hidden layer with 200 units
in MNIST like experiments, we compare our model on Per-
muted MNIST experiment with multiple network depths
and with separate heads. As shown in Table 1, a single
hidden layer is sufficient for obtaining good enough results.
Table 2 shows the mean test accuracies obtained on per-
muted MNIST and split Cifar-100 experiments. Here, we
can observe that the use of uniform prior performs better
in comparison to Gaussian prior in retaining the highest
mean accuracy. On the other hand, when masks are not
used, the performance drops but the results are still better as

https://github.com/npbcl/icml21
https://github.com/npbcl/icml21

Bayesian Structural Adaptation for Continual Learning

Masked Prior Permuted MNIST Split Cifar-100

Uniform prior 98.180 73.745
Gaussian prior 97.994 69.921
No Masking 97.489 65.399

Table 2. Avg accuracy obtained under different masking priors

Method Epochs Time/Task (sec) Acc (10 tasks)

Ours 10 142 0.9794
VCL 100 380 0.9487
EwC 10 51 0.9173

Table 3. Performance statistics on Permuted MNIST for 10 tasks.
Number of epochs and time taken for training is on per task basis

compared to VCL, which can be attributed to the IBP prior
based structural learning.

We have performed our experiments with separate heads for
each task of permuted MNIST. Some methods use a single
head and do not require task labels at test-time. Table 3
shows a comparison with some of the baselines (that sup-
ports single head) with our model (single head) on Permuted
MNIST for 10 tasks. We also report number of epochs and
average time to run for a rough comparison of time com-
plexity taken by each model.

Some Structural Observations An appealing aspect of
our work is that, the results reported above, which are com-
petitive with the state-of-the-art, are achieved with very
sparse neural network structures learned by the model,
which we analyze qualitatively here. Fig. 4 shows some
examples of network structures learnt by our model. As
shown in Fig. 4 (Network Used), the IBP prior concentrates
weights on very few nodes, and learns sparse structures.
Also, most newer tasks tend to allocate fewer weights and
yet perform well, implying effective forward transfer. An-
other important observation as shown in Fig. 4 is that the
weight sharing between similar tasks in notMNIST is higher
than that between non-similar tasks in permuted MNIST.
Also note that new tasks show higher weight sharing, irre-
spective of similarity. This is an artifact induced by IBP
(Sec. 3.1) which tends to allocate more active weights on
upper side of matrix. We therefore conclude that although
a new task tends to share weights learned by old tasks, the
new connections that it creates are indispensable for its
performance. Intuitively, the more unrelated a task is to pre-
viously seen ones, the more new connections it will make,
thus reducing negative transfer (an unrelated task adversely
affecting other tasks) between tasks.

Fig. 5(a) shows the masks are captured on the pixel values
where the digits in MNIST datasets have high value and

(a) split MNIST (b) not MNIST (c) fashion

Figure 5. Masks learned for first hidden layer after training on
each task of split MNIST (left), not MNIST (middle) and fashion
MNIST (right) experiments. Active nodes are represented as dark
colored cells in the matrix.

zeros elsewhere which represents that our models adapts
with respect to data complexity and only uses those weights
that are required for the task. Due to the use of the IBP prior,
the number of active weights tends to shrink towards the
first few nodes of the first hidden layer. This observation
supports our idea of using the IBP prior to learn the model
structure based on data complexity. Similar behaviour can
be seen in notMNIST and fashionMNIST in Fig. 5(b and c).

5.2. Unsupervised Continual Learning

We next evaluate our model on generative tasks under the
CL setting. For that, we compare our model with existing
approaches such as Naı̈ve, EwC (Kirkpatrick et al., 2017)
and VCL (Nguyen et al., 2018). We do not include other
methods mentioned in supervised setup as their implementa-
tion does not incorporate generative modeling. We perform
continual learning experiments for deep generative mod-
els using a VAE style network. We consider two datasets,
MNIST and notMNIST. For MNIST, the tasks are sequence
of single digit generation from 0 to 9. Similarily, for notM-
NIST each task is single character generation from A to J.
Note that, unlike VCL and other baselines where all tasks
have separate encoder and a shared decoder, as we discuss
in Sec. 3.3, our model uses a shared encoder for all tasks,
but with task-specific masks for each encoder (cf., Fig. 2
(ii)). This enables transfer of knowledge across tasks while
the task-specific mask retains knowledge specific to the task
and effectively prevents catastrophic forgetting.

Sequential Generation: As shown in Fig 6 (left), the mod-
eling changes we introduce for the unsupervised setting,
results in much improved log-likelihood on held-out sets. In
each individual figure in Fig 7, each row represents the set
of generated samples from all the previously seen tasks and
the current task. We observe that the quality of generated
samples from our method does not deteriorate much in com-
parison to other baselines as more tasks are encountered.
This shows that our model can efficiently perform sequential
generative modeling while reusing subsets of the network
and activating minimal number of nodes for each task.

Task-Agnostic Learning: Fig 6 (right) shows a particular
case on MNIST data where nine tasks were inferred out

Bayesian Structural Adaptation for Continual Learning

0 2 4 6 8

− 100

− 95

− 90

− 85

− 80

− 75

− 70
Avg. log-likelihood

EwC

Naive

Vcl

Ours

Ours(TA)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

806

12

49

25

17

35

29

2

5

0

1093

19

5

8

1

4

0

5

0

1

990

13

15

2

3

5

3

0

0

11

936

25

19

2

5

12

0

0

2

0

972

2

2

0

4

0

1

1

47

2

824

13

1

3

1

2

2

0

6

63

884

0

0

0

3

24

7

51

1

1

926

15

0

0

24

42

23

40

12

1

832

0

2

7

20

827

9

3

86

54

Figure 6. Mean log-likelihoods (left) for MNIST sequential genera-
tion and confusion matrix (right) representing test samples mapped
to each generative task learned in TA (task-agnostic) setting

Figure 7. Sequential generation for MNIST (top) and notMNIST
(bottom) datasets (Supp. Material contains more illustrations and
zoomed-in versions)

of 10 classes, with high correlation among classes 4 and
9 due to visual similarity between them. Each task uses a
subset of the network connections. This result illustrates
our model’s ability to learn task relations based on network
sharing. Further, the log-likelihood obtained for the task-
agnostic setting is comparable to our model with known
task boundaries, suggesting that our approach can be used
effectively in task-agnostic settings as well.

Representation Learning: Table 4 represents the quality
of the unsupervisedly learned representation by our unsu-
pervised continual learning approach. For this experiment,
we use the learned representations in a KNN classification
model with different values of K. We note that, despite
having task-specific encoders, VCL and other baselines fail
to learn good latent representations, while the proposed
model learns good representations when task boundaries are
known and is also comparable to state-of-the-art baseline
CURL (Rao et al., 2019a) that are specifically designed for
task-agnostic unsupervised representation learning.

Fig 8 shows the t-SNE representations learned by our model
in both scenarios with known and unknown task boundaries
and shows a comparison with VCL. We observe that when
task boundaries are known, the model learns very good
separate latent representation, but the task boundaries start
to somewhat overlap in the task-agnostic setting as the task
inference is not perfect. VCL, on the other hand does not

Method 3-NN 5-NN 10-NN

Naive 30.1% 33.1% 36.0%
EwC 16.6% 19.5% 22.3%
VCL 16.0% 19.1% 30.2%
Ours 0.37% 0.40% 0.08%

Ours (Task Agnostic) 5.79% 5.32% 5.62%
CURL (Task Agnostic) 4.58% 4.35% 4.50%

Table 4. MNIST K-NN test error rates obtained in latent space for
both task-agnostic and know task setting.

Figure 8. Comparison of t-SNE plots learned between our task-
known (left), task-agnostic (middle) models and VCL(right)

learn good latent representation as it does not have a task-
inference mechanism.

6. Conclusion
We have successfully unified structure learning in Bayesian
neural networks with the variational Bayes approach of
doing continual learning, demonstrating competitive per-
formance with state-of-the-art models on both discrimina-
tive (supervised) and generative (unsupervised) learning
problems. In this work, we have experimented with task-
incremental continual learning for supervised setup and
sequential generation task for unsupervised setting. we
believe that our task-agnostic setup can be extended to class-
incremental learning scenario where inputs from a set of
classes arrives sequentially and model is expected to per-
form classification over all observed classes. It would also
be interesting to generalize this idea to more sophisticated
network architectures, such as recurrent or residual neural
networks, possibly by also exploring improved approxi-
mate inference methods. A few other interesting extensions
would be in semi-supervised continual learning and contin-
ual learning with non-stationary data. Adapting other sparse
Bayesian structure learning methods, e.g. (Ghosh et al.,
2018) to the continual learning setting is also a promising
avenue. Adapting the depth of the network is a more chal-
lenging endeavour that might also be undertaken. We leave
these extensions for future work.

Acknowledgment: PR acknowledges support from Visves-
varaya Young Faculty Fellowship and from Qualcomm In-
nvotation Fellowship.

Bayesian Structural Adaptation for Continual Learning

References
Adel, T., Zhao, H., and Turner, R. E. Continual learning

with adaptive weights (claw). In International Conference
on Learning Representations, 2020. URL https://
openreview.net/forum?id=Hklso24Kwr.

Ahn, H., Cha, S., Lee, D., and Moon, T. Uncertainty-based
continual learning with adaptive regularization. In
Advances in Neural Information Processing Systems,
volume 32, pp. 4392–4402. Curran Associates,
Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
2c3ddf4bf13852db711dd1901fb517fa-Paper.
pdf.

Benjamin, A. S., Rolnick, D., and Kording, K. Measur-
ing and regularizing networks in function space. arXiv
preprint arXiv:1805.08289, 2018.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-
tional inference: A review for statisticians. Journal of
the American statistical Association, 112(518):859–877,
2017.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural networks. ICML, 2015.

Doshi, F., Miller, K., Van Gael, J., and Teh, Y. W. Variational
inference for the indian buffet process. In AISTATS, pp.
137–144, 2009.

Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha,
D., Rusu, A. A., Pritzel, A., and Wierstra, D. Path-
net: Evolution channels gradient descent in super neu-
ral networks. CoRR, abs/1701.08734, 2017. URL
http://arxiv.org/abs/1701.08734.

Flesch, T., Balaguer, J., Dekker, R., Nili, H., and Summer-
field, C. Comparing continual task learning in minds
and machines. Proceedings of the National Academy of
Sciences, 115(44):E10313–E10322, 2018.

Ghosh, S., Yao, J., and Doshi-Velez, F. Structured varia-
tional learning of bayesian neural networks with horse-
shoe priors. ICML, 2018.

Golkar, S., Kagan, M., and Cho, K. Continual learning
via neural pruning. CoRR, abs/1903.04476, 2019. URL
http://arxiv.org/abs/1903.04476.

Griffiths, T. L. and Ghahramani, Z. The indian buffet pro-
cess: An introduction and review. JMLR, 12(Apr):1185–
1224, 2011.

Hoffman, M. and Blei, D. Stochastic Structured Variational
Inference. AISTATS, 38:361–369, 2015.

Hu, W., Lin, Z., Liu, B., Tao, C., Tao, Z., Ma, J.,
Zhao, D., and Yan, R. Overcoming catastrophic for-
getting via model adaptation. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGvcoA5YX.

Kessler, S., Nguyen, V., Zohren, S., and Roberts, S. Hier-
archical indian buffet neural networks for bayesian con-
tinual learning, 2020. URL https://arxiv.org/
abs/1912.02290.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. ICLR, 2013.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Kurle, R., Cseke, B., Klushyn, A., van der Smagt, P., and
Günnemann, S. Continual learning with bayesian neural
networks for non-stationary data. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=SJlsFpVtDB.

Lee, S., Ha, J., Zhang, D., and Kim, G. A neural dirichlet
process mixture model for task-free continual learning. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=SJxSOJStPr.

Lee, S.-W., Kim, J.-H., Jun, J., Ha, J.-W., and Zhang, B.-
T. Overcoming Catastrophic Forgetting by Incremental
Moment Matching. NIPS, Mar 2017.

Li, X., Zhou, Y., Wu, T., Socher, R., and Xiong, C. Learn
to grow: A continual structure learning framework for
overcoming catastrophic forgetting. ICML, 2019.

Lopez-Paz, D. et al. Gradient episodic memory for continual
learning. In NIPS, pp. 6467–6476, 2017.

Moon, T. K. The expectation-maximization algorithm. IEEE
Signal Processing Magazine, 13(6):47–60, 1996.

Neal, R. M. Bayesian learning for neural networks, volume
118. Springer Science & Business Media, 2012.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. Varia-
tional continual learning. ICLR, 2018.

Pan, P., Swaroop, S., Immer, A., Eschenhagen, R., Turner,
R. E., and Khan, M. E. Continual deep learning by func-
tional regularisation of memorable past. In NeurIPS,
2020.

https://openreview.net/forum?id=Hklso24Kwr
https://openreview.net/forum?id=Hklso24Kwr
https://proceedings.neurips.cc/paper/2019/file/2c3ddf4bf13852db711dd1901fb517fa-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2c3ddf4bf13852db711dd1901fb517fa-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2c3ddf4bf13852db711dd1901fb517fa-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2c3ddf4bf13852db711dd1901fb517fa-Paper.pdf
http://arxiv.org/abs/1701.08734
http://arxiv.org/abs/1903.04476
https://openreview.net/forum?id=ryGvcoA5YX
https://openreview.net/forum?id=ryGvcoA5YX
https://arxiv.org/abs/1912.02290
https://arxiv.org/abs/1912.02290
https://openreview.net/forum?id=SJlsFpVtDB
https://openreview.net/forum?id=SJlsFpVtDB
https://openreview.net/forum?id=SJxSOJStPr
https://openreview.net/forum?id=SJxSOJStPr

Bayesian Structural Adaptation for Continual Learning

Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):
1345–1359, 2009.

Panousis, K., Chatzis, S., and Theodoridis, S. Nonpara-
metric bayesian deep networks with local competition.
In International Conference on Machine Learning, pp.
4980–4988, 2019.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter,
S. Continual lifelong learning with neural networks: A
review. Neural Networks, 2019.

Rao, D., Visin, F., Rusu, A., Pascanu, R., Teh, Y. W., and
Hadsell, R. Continual unsupervised representation learn-
ing. In Advances in Neural Information Processing Sys-
tems 32, pp. 7647–7657. Curran Associates, Inc., 2019a.

Rao, D., Visin, F., Rusu, A., Pascanu, R., Teh, Y. W., and
Hadsell, R. Continual unsupervised representation learn-
ing. In Advances in Neural Information Processing Sys-
tems, pp. 7645–7655, 2019b.

Ring, M. B. Child: A first step towards continual learning.
Machine Learning, 28(1):77–104, 1997.

Robins, A. Catastrophic forgetting, rehearsal and pseudore-
hearsal. Connection Science, 7(2):123–146, 1995.

Schwarz, J., Luketina, J., Czarnecki, W. M., Grabska-
Barwinska, A., Whye Teh, Y., Pascanu, R., and Hadsell,
R. Progress & Compress: A scalable framework for
continual learning. ICML, May 2018.

Serrà, J., Surı́s, D., Miron, M., and Karatzoglou, A. Over-
coming catastrophic forgetting with hard attention to the
task. CoRR, abs/1801.01423, 2018.

Smith, J., Baer, S., Kira, Z., and Dovrolis, C. Unsupervised
continual learning and self-taught associative memory
hierarchies. ICLR, 2019.

Smola, A. J., Vishwanathan, V., and Eskin, E. Laplace
propagation. In NIPS, pp. 441–448, 2003.

Titsias, M. K., Schwarz, J., Matthews, A. G. d. G., Pascanu,
R., and Teh, Y. W. Functional regularisation for contin-
ual learning with gaussian processes. In International
Conference on Learning Representations, 2019.

Titsias, M. K., Schwarz, J., Matthews, A. G. d. G., Pascanu,
R., and Teh, Y. W. Functional regularisation for continual
learning using gaussian processes. ICLR, 2020.

Van de Ven, G. M. and Tolias, A. S. Three scenarios for
continual learning. arXiv preprint arXiv:1904.07734,
2019.

von Oswald, J., Henning, C., Sacramento, J., and Grewe,
B. F. Continual learning with hypernetworks. In In-
ternational Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=SJgwNerKvB.

Xu, J. and Zhu, Z. Reinforced Continual Learning. NIPS,
art. arXiv:1805.12369, May 2018.

Xu, K., Srivastava, A., and Sutton, C. Variational russian
roulette for deep bayesian nonparametrics. In Interna-
tional Conference on Machine Learning, pp. 6963–6972,
2019.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. Lifelong
learning with dynamically expandable networks. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=Sk7KsfW0-.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In ICML, pp. 3987–3995.
JMLR. org, 2017.

Zeno, C., Golan, I., Hoffer, E., and Soudry, D. Task agnostic
continual learning using online variational bayes. arXiv
preprint arXiv:1803.10123, 2018.

https://openreview.net/forum?id=SJgwNerKvB
https://openreview.net/forum?id=SJgwNerKvB
https://openreview.net/forum?id=Sk7KsfW0-
https://openreview.net/forum?id=Sk7KsfW0-

Supplementary Material
Bayesian Structure Adaptation for Continual Learning

Abhishek Kumar * 1 Sunabha Chatterjee * 2 Piyush Rai 3

A. Data
The data sets used in our experiments with train test split
information are listed in table given below. MNIST dataset
comprises 28 × 28 monochromatic images consisting of
handwritten digits from 0 to 9. notMNIST dataset com-
prises of glyph’s of letters A to J in different fonts for-
mats with similar configuration as MNIST. fashion MNIST
is also monochromatic comprising of 10 classes (T-shirt,
Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag,
Ankle boot) with similar to MNIST. Cifar100 and Cifar10
dataset contains RGB images with each class representing
different animals and objects.

Dataset Classes Training size Test size

MNIST 10 60000 10000
notMNIST 10 14974 3750

fashionMNIST 10 50000 20000
Cifar100 100 50000 10000
Cifar10 100 50000 10000

B. Model Configurations
The VCL implementation was taken from its official
repository at https://github.com/nvcuong/
variational-continual-learning. For
DEN we used the official implementation https:
//github.com/jaehong-yoon93/DEN. IMM im-
plementation was taken from https://github.com/
btjhjeon/IMM_tensorflow, RCL implementation
was taken from https://https://github.com/
xujinfan/Reinforced-Continual-Learning,
For EwC, HAT we used HAT’s official implementation at
https://github.com/joansj/hat. For others,
we used our own implementations.

*Equal contribution ; work done while at IIT Kanpur.
1Microsoft, India 2SAP Labs, India 3Department of Computer
Science, IIT Kanpur, India. Correspondence to: Piyush Rai
<piyush@cse.iitk.ac.in>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

For permuted MNIST, split MNIST, split notMNIST and
fashion MNIST experiments, we use fixed architecture of
network for all the models with single hidden layer of 200
units except for DEN (which grows structure dynamically)
which used two hidden layers initialized to 256, 128 units.

B.1. Supervised CL: Hyperparameter settings

For MNIST, notMNIST, fashionMNIST datasets, our
model uses single hidden layer neural network with 200
hidden units. For RCL (Xu & Zhu, 2018) and DEN (Yoon
et al., 2018), two hidden layers were used with initial
network size of 256, 128 units, respectively. For the Ci-
far100 dataset we used an Alex-net like structure with
three convolutional layers of 128, 256, 512 channels with
4×4, 3×3, 2×2 channels followed by two dense layers of
2048, 2048 units each. For the convolutional layer, batch-
norm layers were separate for each task. We adopt Adam
optimizer for our model keeping a learning rate of 0.01 for
the IBP posterior parameters and 0.001 for others; this is
to avoid vanishing gradient problem introduced by sigmoid
function. For selective finetuning, we use a learning rate
of 0.0001 for all the parameters. The temperature hyper-
parameter of the Gumbel-softmax reparameterization for
Bernoulli gets annealed from 10.0 to a minimum limit of
0.25. The value of α is initialized to 30.0 for the initial task
and maximum of the obtained posterior shape parameters
for each of subsequent tasks. Similar to VCL, we initialize
our models with maximum-likelihood training for the first
task. For all datasets, we train our model for 5 epochs. We
selectively finetune our model after that for 5 epochs. For
experiments including coresets, we use a coreset size of 50.
Coreset selection is done using random and k-center meth-
ods (Nguyen et al., 2018). For our model with dynamic
expansion, we initialize our network with 50 hidden units.

B.2. Unsupervised CL: Hyperparameter settings

For all datasets, our model uses 2 hidden layers with
500, 500 units for encoder and symmetrically opposite for
the decoder with a latent dimension of size 100 units. For
other approaches like Naive, EwC and VCL (Kirkpatrick
et al., 2017; Nguyen et al., 2018), we use task-specific en-
coders with 3 hidden layers of 500, 500, 500 units respec-

https://github.com/nvcuong/variational-continual-learning
https://github.com/nvcuong/variational-continual-learning
https://github.com/jaehong-yoon93/DEN
https://github.com/jaehong-yoon93/DEN
https://github.com/btjhjeon/IMM_tensorflow
https://github.com/btjhjeon/IMM_tensorflow
https://https://github.com/xujinfan/Reinforced-Continual-Learning
https://https://github.com/xujinfan/Reinforced-Continual-Learning
https://github.com/joansj/hat

Bayesian Structural Adaptation for Continual Learning

tively with latent size of 100 units, and a symmetrically re-
versed decoder with last two layers of decoder being shared
among all the tasks and the first layer being specific to each
task. we use Adam optimizer for our model keeping the
learning rate configuration similar to that of supervised set-
ting. Temperature for gumbel-softmax reparametrization
gets annealed from 10 to 0.25. We initialize encoder hid-
den layers α values as 40, 40, respectively, and symmetri-
cally opposite in decoder for the first task. We update α’s in
similar fashion to supervised setting for subsequent tasks.
For latent layers, we intialize α to 20. For the unsupervised
learning experiments, we did not use coresets.

C. Coreset Method Explanation
Proposed in (Nguyen et al., 2018) as a method for cleverly
sidestepping the issue of catastrophic forgetting, the core-
set comprises representative training data samples from all
tasks. Let M (t−1) denote the posterior state of the model
before learning task t. With the t-th task’s arrival having
data Dt, a coreset Ct is created comprising choicest ex-
amples from tasks 1 . . . t. Using data Dt \ Ct and having
prior M (t−1), new model posterior M t is learnt. For pre-
dictive purposes at this stage (the test data comes from tasks
1 . . . t), a new posterior M t

pred is learnt with M t as prior
and with data Ct. Note that M t

pred is used only for predic-
tions at this stage, and does not have any role in the subse-
quent learning of, say, M (t+1). Such a predictive model is
learnt after every new task, and discarded thereafter. Intu-
itively it makes sense as some new learnt weights for future
tasks can help the older task to perform better (backward
transfer) at testing time.

Coreset selection can be done either through random selec-
tion orK-center greedy algorithm (Gonzalez, 1985). Next,
the posterior is decomposed as follows:

p(θ|D1:t) ∝ p(θ|D1:t\Ct)p(Ct|θ) ≈ q̃t(θ)p(Ct|θ)

where, q(θ) is the variational posterior obtained using the
current task training data, excluding the current coreset
data. Applying this trick in a recursive fashion, we can
write:

p(θ|D1:t\Ct) = p(θ|D1:t−1\Ct−1)p(Dt ∪ Ct−1\Ct|θ)
≈ q̃t−1(θ)p(Dt ∪ Ct−1\Ct|θ)

We then approximate this posterior using variational ap-
proximation as q̃t(θ) = proj(q̃t−1(θ)p(Dt ∪ Ct−1\Ct|θ))
Finally a projection step is performed using coreset data
before prediction as follows: qt(θ) = proj(q̃t(θ)p(Ct|θ)).
This way of incorporating coresets into coreset data before
prediction tries to mitigate any residual forgetting. Algo-
rithm 1 summarizes the training procedure for our model
for setting with known task boundaries.

D. Other Practical Details
D.1. Segregating the head

It has been shown in prior work on supervised continual
learning (Zeno et al., 2018) that using separate last lay-
ers (commonly referred to as “heads”) for different tasks
dramatically improves performance in continual learning.
Therefore, in the supervised setting, we use a generalized
linear model that uses the embeddings from the last hidden
layer, with the parameters up to the last layer involved in
transfer and adaptation. Although we do report compari-
sion of single head models available in Sec ??.

D.2. Space complexity

The proposed scheme entails storing a binary matrix for
each layer of each task which results into 1 bit per weight
parameter, which is not very prohibitive and can be effi-
ciently stored as sparse matrices. Moreover, the tasks make
use of very limited number of columns of the IBP matrix,
and hence does not pose any significant overhead. Space
complexity grows logarithmically with number of tasks T
as O(M + T log2(M)) where M number of parameters.

D.3. Adjusting bias terms

The IBP selection acts on the weight matrix only. For the
hidden nodes not selected in a task, their corresponding bi-
ases need to be removed as well. In principle, the bias vec-
tor for a hidden layer should be multiplied by a binary vec-
tor u, with ui = I[∃d : Bd,i = 1]. In practice, we simply
scale each bias component by the maximum reparameter-
ized Bernoulli value in that column.

E. Additional Inference Details
Sampling Methods We obtain unbiased reparameterized
gradients for all the parameters of the variational poste-
rior distributions. For the Bernoulli distributed variables,
we employ the Gumbel-softmax trick (Jang et al., 2017),
also known as CONCRETE (Maddison et al., 2017). For
Beta distributed v’s, the Kumaraswamy Reparameteriza-
tion Gradient technique (Nalisnick & Smyth, 2017) is used.
For the real-valued weights, the standard location-scale
trick of Gaussians is used.

Inference over parameters φ that involves a random or
stochastic node Z (i.e Z ∼ qφ(Z)) cannot be done in
a straightforward way, if the objective involves Monte
Carlo expectation with respect that random variable (L =
Eqφz(L(z)))). This is due to the inability to back-
propagate through a random node. To overcome this issue,
(Kingma & Welling, 2013) introduced the reparametriza-
tion trick. This involves deterministically mapping the ran-
dom variable Z = f(φ, ε) to rewrite the expectation in

Bayesian Structural Adaptation for Continual Learning

Algorithm 1 Nonparametric Bayesian CL

Input:Initial Prior p0(Θ)
Initialize the network parameters and coresets
Initialize : pnew ← p0(Θ)
for i = 1 to T do

Observe current task data Dt;
Update coresets (Sec. C);
Masked Training;
Lt ← ELBO with prior pnew;
Θt ← arg minLt;

Selective Finetuning;
Fix the IBP parameters and learned mask;
Θt ← arg minLt;

pnew ← qt(Θ);
pnew ←Mask(pnew) using Eq ??;
Perform prediction for given test set..

end for

terms of new random variable ε, where ε is now randomly
sampled instead of Z (i.e L = Eqε[L(ε, φ)]). In this sec-
tion, we discuss some of the reparameterization tricks we
used.

E.1. Gaussian distribution Reparameterization

The weights of our Bayesian nueral network are assumed to
be distributed according to a Gaussian with diagonal vari-
ances (i.e Vk ∼ N (Vk|µVk , σ2

Vk
)). We reparameterize our

parameters using location-scale trick as:

Vk = µVk + σVk × ε, ε ∼ N (0, I)

where k is the index of parameter that we are sam-
pling. Now, with this reparameterization, the gradients over
µVk , σVk can be calculated using back-propagation.

E.2. Beta distribution Reparameterization

The beta distribution for parameters ν in the IBP posterior
can be reparameterized using Kumaraswamy distribution
(Nalisnick & Smyth, 2017).

Since Kumaraswamy distribution and beta distribution are
identical if any one of rate or shape parameters are set to 1.
The Kumaraswamy distribution is defined as p(ν;α, β) =
αβνα−1(1− να)β−1 which can be reparameterized as:

ν = (1− u1/β)1/α, u ∼ U(0, 1)

where U represents a uniform distribution. The KL-
Divergence between Kumaraswamy and beta distributions

can be written as:

KL(q(ν; a, b)||p(ν;α, β)) =
a− α
a

(
−γ −Ψ(b)− 1

b

)
+ log ab+ log(B(α, β))− b

1− b

+ (β − 1)b

∞∑
m=1

1

m+ ab
B(

m

a
, b) (1)

where γ is the Euler constant, Ψ is the digamma function
and B is the beta function. As described in (Nalisnick &
Smyth, 2017), we can approximate the infinite sum in Eq.1
with a finite sum using first 11 terms.

E.3. Bernoulli distribution Reparameterization

For Bernoulli distribution over mask in the IBP posterior,
we employ the continuous relaxation of discrete distribu-
tion as proposed in Categorical reparameterization with
Gumbel-softmax (Jang et al., 2017), also known as the
CONCRETE (Maddison et al., 2017) distribution. We sam-
ple a concrete random variable from the probability sim-
plex as follows:

Bk =
exp((log(αk) + gk)/λ)∑K
i=1 exp((log(αi) + gi)/λ)

, gk ∼ G(0, 1)

where, λ ∈ (0,∞) is a temperature hyper-parameter, αk is
posterior parameter representing the discrete class proba-
bility for kth class and gk is a random sample from Gumbel
distribution G. For binary concrete variables, the sampling
reduces to the following form:

Yk =
log (αk) + log (uk/(1− uk))

λ
, u ∼ U(0, 1)

then, Bk = σ(Yk) where σ is sigmoid function and uk is
sample from uniform distribution U. To guarantee a lower
bound on the ELBO, both prior and posterior Bernoulli
distribution needs to be replaced by concrete distributions.
Then the KL-Divergence can be calculated as difference of
log density of both distributions. The log density of con-
crete distribution is given by:

log q(Bk;α, λ) = log (λ)− λYk + logαk

− 2 log (1 + exp (−λYk + logαk))

With all reparameterization techniques discussed above,
we use Monte Carlo sampling for approximating the ELBO
with sample size of 10 while training and a sample size of
100 while at test time.

F. IBP Hyperparameter α

In this section, we discuss the approach to tune the IBP
prior hyperparameter α. We found that using a sufficiently

Bayesian Structural Adaptation for Continual Learning

large value of αwithout tuning performs reasonably well in
practice. However, we experimented with other alternatives
as well. For example, we tried adapting α with respect
to previous posterior as α = max(α,max(aν)) for each
layer, where aν is Beta posterior shape parameter. Several
other considerations can also be made regarding its choice.

F.1. Scheduling across tasks

Intuitively, α should be incremented for every new task ac-
cording to some schedule. Information about task related-
ness can be helpful in formulating the schedule. Smaller
increments of α discourages creation of new nodes and
encourages more sharing of already existing connections
across tasks.

F.2. Learning α

Although not investigated in this work, one viable alter-
native to choosing α by cross-validation could be to learn
it. This can be accommodated into our variational frame-
work by imposing a gamma prior on α and using a suitably
parameterized gamma variational posterior. The only dif-
ference in the objective would be in the KL terms: the KL
divergence of v will then also have to estimated by Monte
Carlo approximation (because of dependency on α in the
prior). Also, since gamma distribution does not have an
analytic closed form KL divergence, the Weibull distribu-
tion can be a suitable alternative (Zhang et al., 2018).

G. Additional Results: Supervised CL
In this section, we provide some additional experimen-
tal results for supervised continual learning setup. Table
1 shows final mean accuracies over 5 tasks with devia-
tions, obtained by all the approaches on various datasets.
It also shows that our model performs comparably or better
than the baselines. We have included some more models
in this comparison namely, HIBNN (Kessler et al., 2020),
UCL (Ahn et al., 2019), HAT (Serrà et al., 2018) and A-
GEM (Chaudhry et al., 2019). Note that coreset based re-
play is not helping much in our case, In of VCL use of
coresets performs better since it forces all parameters to
be shared leading to catastrophic forgetting. Our method
has very less catastrophic forgetting hence the use of core-
sets does not improve performance significantly. Although
in cases where we do not grow the model size dynami-
cally and keep feeding tasks to it even after the model has
reached its capacity (model will be forced to share more pa-
rameters), it will lead to forgetting and their use of coresets
might help as it did for VCL.

On the other hand Fig 1 (left) shows the sharing of weights
between subsequent tasks of different datasets. It can be
observed that the tasks that are similar at input level of

representation have more overlapping/sharing of parame-
ters (e.g split MNIST) in comparison to those that are not
very similar (e.g permuted MNIST). It also shows Fig 1
(right) that the amount of total network capacity used by
our model differs for each task, which shows that complex
tasks require more parameters as compared to easy tasks.

Since the network size is fixed, the amount of network us-
age for all previous tasks tends to converge towards 100
percent. This promotes parameter sharing but also intro-
duces forgetting, since the network is forced to share pa-
rameters and is not able to learn new nodes.

1

2

3

4

Ta
sk

s
(s

pl
it

M
NI

ST
)

35 35

49

34

50

59

30

45

53

59 20

30

40

50

2 3 4 5

1

2

3

4

Ta
sk

s
(n

ot
 M

NI
ST

)

42 43

49

43

49

59

41

46

57

60

2 4

20

25

30

35

1

2

3

4

Ta
sk

s
(fa

sh
io

n
M

NI
ST

) 38 40

54

40

55

64

39

54

60

63 30

40

50

60

70

Tasks

1

2

3

4

Ta
sk

s
(p

er
m

ut
ed

 M
NI

ST
) 9 9

22

10

23

26

10

23

27

29

Tasks

20

40

60

1

2

3

4

Ta
sk

s
(s

pl
it

M
NI

ST
)

35 35

49

34

50

59

30

45

53

59 20

30

40

50

2 3 4 5

1

2

3

4

Ta
sk

s
(n

ot
 M

NI
ST

)

42 43

49

43

49

59

41

46

57

60

2 4

20

25

30

35

1

2

3

4

Ta
sk

s
(fa

sh
io

n
M

NI
ST

) 38 40

54

40

55

64

39

54

60

63 30

40

50

60

70

Tasks

1

2

3

4

Ta
sk

s
(p

er
m

ut
ed

 M
NI

ST
) 9 9

22

10

23

26

10

23

27

29

Tasks

20

40

60

Figure 1: Percentage weight sharing between tasks (left),
percentage of network capacity already used by previous
tasks(right).

Further, to analyse the performance decrease and generality
of approach with number of tasks, we perform Permuted
MNIST experiment with separate heads and a single hidden
layer of 200 units for different number of tasks. Table 2
shows that model quite stable and performance does not
drop alot even with large number of tasks for a fixed model
size.

G.1. Other Metrics

We quantified and observed the forward and backward
transfer of our and VCL model, using the three metrics
given in (Dı́az-Rodrı́guez et al., 2018) on Permuted MNIST
dataset as follows:

Accuracy is defined as the overall model performance
averaged over all the task pairs as follows:

Acc =

∑
i≥j Ri,j
N(N−1)

2

where, Ri,j is obtained test classification accuracy of the
model on task tj after observing the last sample from task
ti.

Forward Transfer is the ability of previously learnt task
to perform on new task better and is give by:

FWT =

∑N
i<j Ri,j
N(N−1)

2

Bayesian Structural Adaptation for Continual Learning

Method s-MNIST n-MNIST p-MNIST f-MNIST s-Cifar100 s-Cifar10

Naı̈ve 79.615±0.7 72.339±0.8 90.090±0.4 79.319±0.6 47.082±0.7 -
Rehearsal 99.102±0.3 95.203±0.5 97.565±0.3 97.981±0.3 61.110±0.4 87.04±0.3
EwC 81.530±0.4 90.297±0.6 95.392±0.5 86.577±0.4 55.157±0.2 83.98±0.3
IMM (mode) 92.206±0.6 84.442±0.4 96.433±0.5 88.765±0.4 - -
HIBNN 98.712±0.4 - 97.003±0.3 - - -
VCL 98.952±0.3 93.732±0.3 97.353±0.3 97.970±0.2 63.994 81.161
VCL(coreset) 98.731±0.4 94.993±0.2 97.464±0.3 98.154±0.3 - -
A-GEM - - 95.645±0.2 - 62.945±0.1 -
HAT 99.701 96.749 97.912 98.592 66.410 90.24
DEN 99.779±0.1 96.485±0.3 97.945±0.2 98.580±0.3 - -
UCL 99.791 97.112 97.883 98.896 64.32 89.96
RCL 99.768±0.1 96.722±0.2 98.005±0.2 98.698±0.2 64.814±0.1 89.76 ±0.2
Ours 99.819±0.1 97.152±0.2 98.180±0.2 98.986±0.2 70.105±0.2 91.77±0.2
Ours(coreset) 99.834±0.1 97.061±0.2 98.163±0.3 98.990±0.2 69.459±0.2 91.81±0.2

Table 1: Comparison of final mean accuracies on test set obtained using different methods over 10 runs except for some
with zero deviations (1-2 runs). Deviations are rounded to 1 decimal place, very small deviations are kept as 0.1.

No. of tasks Avg accuracy obtained

5 98.180
10 98.062
20 97.874

Table 2: Comparison of model performance over different
number of tasks for Permuted MNIST experiment

Backward Transfer is the ability of newly learned task
to affect the performance of previous tasks. It can be de-
fined as:

BWT =

∑N
i=2

∑i−1
j=1(Ri,j −Rj,j)
N(N−1)

2

We compare our model with VCL and other baselines over
these three metrics in Table 3.

We can observe that backward transfer for our model is
more as compared to most baselines, which shows that our
approach has suffers from less forgetting as well. On the
other hand forward transfer seems to give close to random
accuracy (0.1) which is due to the fact that the model is not
trained on the correct class labels and is asked to predict
the correct label. So this metric is not very useful here;
an alternative would be to train a linear classifier on the
representations that are learned after each subsequent tasks
for future task.

Method Accuracy FWT BWT

Naive 90.090 0.1 −3.60e−2

EwC 95.392 0.1 −1.90e−2

Rehearsal 97.565 0.1 +1.30e−4

VCL 97.353 0.1 −4.00e−3

Ours 98.180 0.1 +1.33e−5

Table 3: Comparison on other metrics for permuted
MNIST dataset

H. Unsupervised Continual Learning
Here we describe the complete generative model for our
unsupervised continual learning approach. The generative
story for unsupervised setting can be written as follows (for
brevity we have omitted the task id t):

Bl ∼ IBP (α)

V l
d,k ∼ N (0, σ2

0)

W l = Bl � V l

W out
d,k ∼ N (0, σ2

0)

Zn ∼ N (µz, σ
2
z)

Xn ∼ Bernoulli(σ(W outφNN (W ,Zn)))

where, µz, σ2
z are prior parameters of latent representation;

they can either be fixed or learned, and σ is the sigmoid
function. The stick-breaking process for the IBP prior re-

Bayesian Structural Adaptation for Continual Learning

mains the same here as well. For doing inference here, once
again we resort to structured mean-field assumption:

q(Z,V ,B,v) = q(Z|B,V ,ν,X)q(V)q(B|v)q(v)

where, q(Z|B,V ,ν,X) =
∏N
n=1N (µφNN , σ

2
φNN

), and
φNN is IBP masked neural network used for amortization
of Gaussian posterior parameters. Rest of variational pos-
teriors are factorized in a similar way as in the supervised
approach. Evidence lower bound calculation can done as
explained in section 3.3.

H.1. Additional Experimental Results for
Unsupervised Continual Learning

In this section, we show further results for unsupervised
continual learning. Fig 6 shows, for MNIST and notM-
NIST datasets, how the likelihoods vary for individual tasks
as subsequent tasks arrive. It can be observed that the indi-
vidual task accuracies learned by our model are better than

0 50 100 150 200 250 300

0

50

100

150

200

250

300

Figure 2: On MNIST dataset (left) Reconstruction of im-
ages after all tasks have been observed. (right) t-SNE plot
of each class after all tasks have been observed.

0 50 100 150 200 250 300

0

50

100

150

200

250

300

Figure 3: On notMNIST dataset (left) Reconstruction of
images after all tasks have been observed. (right) t-SNE
plot of each class after all tasks have been observed.

other baselines; this suggests that use of new weights when
needed helps in retaining a better optima per task, and also
the deterioration of our model is much less as compared
to other model, representing effective protection against
catastrophic forgetting. Fig 2 shows the reconstructed im-
ages of MNIST and also the t-SNE plot of latent codes
our model produces. it can be observed that reconstruction
quality is good despite heavy constraints on the model.

Fig 4 shows the generated samples from the learned prior
over latent space after all tasks are observed.

0 50 100 150 200 250 300

0

50

100

150

200

250

300
0 50 100 150 200 250 300

0

50

100

150

200

250

300

Figure 4: Generated samples on MNIST and notMNIST
dataset after all tasks have been observed

Similarily, Fig 3 shows the reconstructed images of not
MNIST dataset and the t-SNE plot of latent codes our
model produces, and Fig 4 shows the generated samples
from the learned prior over latent space after all tasks are
observed.

Figure 5: t-SNE plot of latent space of VCL model on
notMNIST (left) and MNIST (right) datasets

Representation Learning In t-SNE plots, it can be ob-
served that the latent space for MNIST dataset is more
clearly seperated as compared to notMNIST dataset. This
can be attributed to the abundance of data and less varia-
tion in MNIST dataset as compared to notMNIST dataset.
we further analyzed the representations that were learned
by our model by doing K-Nearest Neighbour classifica-
tion on the latent space. Table 4 shows the KNN test error
of our model and few other benchmarks on MNIST and
notMNIST datasets. We performed the test with three dif-
ferent values for K. As shown in the table, the represen-
tations learned by other baselines are not very useful (as
evidenced by the large test errors), since the latent space
are not shared among the tasks, whereas our model uses a
shared latent space (yet modulated for each task based on
the learned task-specific mask) which results in effective
latent representation learning.

I. Task Agnostic Setting
We extended our unsupervised continual learning model
to a generative mixture model, where each mixture com-

Bayesian Structural Adaptation for Continual Learning

0 1 2 3 4 5 6 7 8 9

−105

−100
0

1 2 3 4 5 6 7 8 9
−60

−40
1

2 3 4 5 6 7 8 9

−120

−110

2

3 4 5 6 7 8 9
−110

−100

3

4 5 6 7 8 9
−100

−95

−90
4

5 6 7 8 9

−105

−100

5

6 7 8 9

−95

−90

6

7 8 9

−80

−70
7

8 9
−115

−110

8

9
−90

−80

9

0 1 2 3 4 5 6 7 8 9
−200

−180
A

1 2 3 4 5 6 7 8 9

−250

−200
B

2 3 4 5 6 7 8 9

−200

−150
C

3 4 5 6 7 8 9
−250

−200

D

4 5 6 7 8 9
−220

−200

E

5 6 7 8 9

−200

−150
F

6 7 8 9

−250

−200

G

7 8 9
−225
−200
−175

H

8 9

−140

−120
I

9
−175

−150

J

naive ewc vcl ours

Figure 6: Generative Model : Test likelihood decays of individual tasks after subsequent tasks have been observed. (Top
two) represents MNIST and (Bottom two) represents notMnist datasets.

Figure 7: Reconstructed MNIST samples and T-SNE plots
of our task agnostic setting

Benchmarks MNIST
3-KNN err 5-KNN err 10-KNN err

Naive 30.1% 33.1% 36.0%
EwC 16.6% 19.48% 22.3%
VCL 17.0% 19.02% 30.2%
Ours 0.37% 0.40% 0.51%

Benchmarks not MNIST
3-KNN err 5-KNN err 10-KNN err

Naive 20.6% 24.87% 30.8%
EwC 11.7% 13.1% 17.8%
VCL 12.3% 13.8% 16.5%
Ours 0.08% 0.09% 0.21%

Table 4: Comparison with unsupervised learning bench-
marks on sampled latent representations using K-nearest
neighbour test.

ponent is considered as a task distribution (i.e p(X) =∑K
k=1 p(X|t = k)p(t = k) with t representing the task

identity).

Representation Learning It makes more sense do learn
representations when we don’t have target class labels or
task labels. As discussed, we trained our model using a
gating mechanism with a threshold value of −130. Fig 7
qualitatively shows the t-SNE plots and reconstruction for
each class data points. Based on these results, we can con-
clude that the task boundaries are well understood and sep-
arated by our model.

References
Ahn, H., Cha, S., Lee, D., and Moon, T. Uncertainty-

based continual learning with adaptive regularization.
In Advances in Neural Information Processing Sys-
tems, volume 32, pp. 4392–4402. Curran Associates,
Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
2c3ddf4bf13852db711dd1901fb517fa-Paper.
pdf.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elho-
seiny, M. Efficient lifelong learning with a-GEM. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=Hkf2_sC5FX.

Dı́az-Rodrı́guez, N., Lomonaco, V., Filliat, D., and Mal-

https://proceedings.neurips.cc/paper/2019/file/2c3ddf4bf13852db711dd1901fb517fa-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2c3ddf4bf13852db711dd1901fb517fa-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2c3ddf4bf13852db711dd1901fb517fa-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2c3ddf4bf13852db711dd1901fb517fa-Paper.pdf
https://openreview.net/forum?id=Hkf2_sC5FX
https://openreview.net/forum?id=Hkf2_sC5FX

Bayesian Structural Adaptation for Continual Learning

toni, D. Don’t forget, there is more than forgetting:
new metrics for continual learning. arXiv preprint
arXiv:1810.13166, 2018.

Gonzalez, T. F. Clustering to minimize the maximum inter-
cluster distance. Theor. Comput. Sci., 38:293–306, 1985.

Jang, E., Gu, S., and Poole, B. Categorical reparame-
terization with gumbel-softmax. 2017. URL https:
//arxiv.org/abs/1611.01144.

Kessler, S., Nguyen, V., Zohren, S., and Roberts, S. Hier-
archical indian buffet neural networks for bayesian con-
tinual learning, 2020. URL https://arxiv.org/
abs/1912.02290.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. ICLR, 2013.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ra-
malho, T., Grabska-Barwinska, A., et al. Overcoming
catastrophic forgetting in neural networks. Proceed-
ings of the national academy of sciences, 114(13):3521–
3526, 2017.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. ICLR, 2017.

Nalisnick, E. and Smyth, P. Stick-Breaking Variational Au-
toencoders. ICLR, art. arXiv:1605.06197, May 2017.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. Varia-
tional continual learning. ICLR, 2018.

Serrà, J., Surı́s, D., Miron, M., and Karatzoglou, A. Over-
coming catastrophic forgetting with hard attention to the
task. CoRR, abs/1801.01423, 2018.

Xu, J. and Zhu, Z. Reinforced Continual Learning. NIPS,
art. arXiv:1805.12369, May 2018.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. Life-
long learning with dynamically expandable networks. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=Sk7KsfW0-.

Zeno, C., Golan, I., Hoffer, E., and Soudry, D. Task ag-
nostic continual learning using online variational bayes.
arXiv preprint arXiv:1803.10123, 2018.

Zhang, H., Chen, B., Guo, D., and Zhou, M. WHAI:
Weibull hybrid autoencoding inference for deep topic
modeling. In International Conference on Learning Rep-
resentations, 2018. URL https://openreview.
net/forum?id=S1cZsf-RW.

https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1912.02290
https://arxiv.org/abs/1912.02290
https://openreview.net/forum?id=Sk7KsfW0-
https://openreview.net/forum?id=Sk7KsfW0-
https://openreview.net/forum?id=S1cZsf-RW
https://openreview.net/forum?id=S1cZsf-RW

