
Architecture-Adaptive Code Variant Tuning

Saurav Muralidharan
University of Utah

sauravm@cs.utah.edu

Amit Roy
University of Utah
aroy@cs.utah.edu

Mary Hall
University of Utah
mhall@cs.utah.edu

Michael Garland
NVIDIA Corporation
mgarland@nvidia.com

Piyush Rai
IIT Kanpur

piyush@cse.iitk.ac.in

Abstract
Code variants represent alternative implementations of a
computation, and are common in high-performance libraries
and applications to facilitate selecting the most appropri-
ate implementation for a specific execution context (target
architecture and input dataset). Automating code variant se-
lection typically relies on machine learning to construct a
model during an offline learning phase that can be quickly
queried at runtime once the execution context is known. In
this paper, we define a new approach called architecture-
adaptive code variant tuning, where the variant selection
model is learned on a set of source architectures, and then
used to predict variants on a new target architecture with-
out having to repeat the training process. We pose this as a
multi-task learning problem, where each source architecture
corresponds to a task; we use device features in the con-
struction of the variant selection model. This work explores
the effectiveness of multi-task learning and the impact of
different strategies for device feature selection. We evaluate
our approach on a set of benchmarks and a collection of six
NVIDIA GPU architectures from three distinct generations.
We achieve performance results that are mostly comparable
to the previous approach of tuning for a single GPU archi-
tecture without having to repeat the learning phase.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Modeling Techniques; D.2.8 [Metrics]: Perfor-
mance Measures; D.3.4 [Processors]: Optimization

Keywords autotuning; cross-architectural tuning; input-
adaptive; multi-task learning; device feature selection

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

ASPLOS ’16, April 02-06, 2016, Atlanta, GA, USA
Copyright c© 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2872362.2872411

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

GTX	480	 C2075	 GTX	770	 K20c	 750	Ti	 GTX	980	

%
	P
er
fo
rm

an
ce
	w
.r.
t.	
Be

st
	

Histogram	Performance	on	GeForce	750	Ti	

Tuned	

Figure 1: Histogram performance on the GeForce 750 Ti
when trained on other architectures. The tuned line shows
the performance of our system when trained using data from
all architectures other than 750 Ti.

1. Introduction
Modern high-performance computing hardware has grown
increasingly complex with the proliferation of deep mem-
ory hierarchies, hierarchical parallelism and latency vs.
throughput-optimized processor cores. Achieving high per-
formance on such systems thus often requires the use of au-
tomatic performance tuning (autotuning) software [6, 18,
32, 37, 38]. Autotuners systematically navigate a search
space of possible implementations of a computation to find
the implementation(s) that best meets a specific optimiza-
tion criteria, usually performance. Code variants in such
systems represent alternative implementations of a com-
putation. Each code variant has the same interface, and is
functionally equivalent to the other variants but may em-
ploy fundamentally different algorithms or implementation
strategies.

Prior work on code variant selection and related code
optimization systems have successfully employed machine

This research was funded in part by the U.S. Government. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Government.

325

learning to develop an optimization model during an of-
fline training phase [1, 11, 16, 23, 24, 29, 30, 35]. Such a
model can be queried to perform variant selection at runtime
once properties of the input dataset are available. These sys-
tems, however, require the variant selection model(s) to be
re-trained every time the software is installed on a new ar-
chitecture or if the underlying hardware is upgraded. This
training process is typically very time-consuming and heavy
on system resources; we are required to evaluate each vari-
ant v for each input i when collecting the training data. This
paper evaluates the following question: Can we develop a
methodology to reuse results of training on two or more
source architectures to create a variant selection model for
a different target architecture without training on the target
architecture? While the overall approach we present in this
paper is general, we simplify the problem by focusing on
only NVIDIA GPUs.

As a motivating example, consider the Histogram opera-
tion: it counts the number of observations that fall into one
of a set of disjoint bins. Consider the six code variants for
Histogram in the high-performance GPU CUB library [26],
which are described in Figure 3. There are two variants that
do not use atomic operations, two that use global mem-
ory atomics and two that use shared memory atomics. The
best variant is therefore architecture-sensitive, based on the
relative performance of atomic operations, and also input-
sensitive, e.g., affected by input size and mean sample dis-
tribution.

Figure 1 shows performance for Histogram on the GeForce
750 Ti GPU (Maxwell), when using a variant selection
model trained on six different GPU architectures. The x-axis
captures results when trained on the corresponding GPU.
The y-axis represents percentage performance achieved by
the variant selected by a model with respect to the best-
performing variant (exhaustive search), averaged across all
inputs in a test dataset. From the figure, it is clear that while
variant selection models trained and tested on the same ar-
chitecture perform well (above 95% of exhaustive search),
this is not the case when models trained on architecture X
are deployed on architecture Y (X 6= Y), with performance
dropping to as low as 30% of exhaustive in some cases.

While an architecture-specific model yields high perfor-
mance, the time-consuming training phase must be repeated
for each application and target architecture. In this paper, we
instead develop a system that automatically constructs code
variant selection model(s) on a target architecture using only
training data from a set of source architectures specified by
the programmer, together with information that character-
izes each architecture. On the target, no variants are executed
during the model construction process, since no training data
from the target is required. Our system thus enables the
construction of performance-portable software that quickly
and automatically adapts to both changing inputs and new
hardware architectures. In Figure 1, the line labeled ‘Tuned’

shows performance achieved by our system trained on data
from every architecture except the 750 Ti.

We treat the cross-architectural tuning problem as a multi-
task [8] learning problem, where each separate task denotes
an architecture. Features that characterize each architecture
(hereafter referred to as device features) are collected auto-
matically (a one-time operation) on each architecture. De-
vice features not relevant to the application in question are
pruned away. The resulting device features are then used
in the multi-task learner to come up with variant selection
model(s) for the target architecture.

This paper makes the following contributions: (1) it de-
velops the first automated approach (to our knowledge) to
cross-architecture autotuning, which uses multi-task learn-
ing to develop a model on a target architecture from training
on different source architectures; (2) it summarizes a wealth
of empirical data for six computations and six GPU archi-
tectures across three distinct generations that captures rea-
sons behind architectural sensitivity to code variant selec-
tion; and, (3) it demonstrates that device feature selection
is valuable in building a successful code variant selection
model on new architectures, discussing the strengths and
limitations of the approach.

2. System Overview
The automated system described in this paper extends the
Nitro autotuning framework [29]. Nitro provides a library
interface that permits expert programmers to express code
variants along with meta-information that aids the system in
selecting among the set of variants at runtime. Figure 2(a)
illustrates the approach in Nitro. A learning algorithm –
Support Vector Machine (SVM) classifier by default – con-
structs a code variant selection model on the target architec-
ture as a result of an offline training phase on the same ar-
chitecture. For each architecture, training data has the form
{(x1, y1), . . . , (xN , yN)}, where each xi represents an input
feature vector and each yi represents the best variant for that
input. When presented with a new, unseen input at runtime,
the model predicts the best variant to use.

Figure 2(b) shows how we have extended Nitro to support
architecture-adaptive tuning. We can omit the training data
collection on the target architecture by using previously-
collected training data from one or more source architec-
tures. To capture the signature of the target architecture and
its relationship to the source architectures, we rely on device
features, listed in Table 1. On NVIDIA platforms, these fea-
tures are obtained in three possible ways: most are discov-
ered instantaneously using the built-in deviceQuery program
bundled with the CUDA toolkit. Static device features are
easily-obtained published specifications that augment what
is returned by deviceQuery. If any other features are needed,
then Custom features can be added. We observed that there
were no features that captured the cost of atomic operations,
which vary significantly across GPU generations. Therefore,

326

Target Model Learning Algorithm Target Training Inputs

Selected Variant Input

Model Training (Offline)

Deployment (Runtime)

Model Query

Target Model

(a) Overview of the original Nitro system.

Selected Variant

Deployment on Target (Runtime)

Model Query

Target Model

Model Construction (Offline)

Training Inputs

Selected Device Features
Multi-Task Learning Target Model

Source Architectures

Input

Selected Device Features

(b) Architecture-adaptive tuning overview.

Figure 2: Comparison of the original Nitro system with architecture-adaptive tuning. When tuning across architectures, values
of the device features selected through DFS are obtained on both the source (during model construction) and target (during
deployment). These are then concatenated with feature values of the relevant input data point (‘+’ operator in the figure).

Fermi Kepler Maxwell
Feature 480 C2075 770 K20c 750 980

deviceQuery
global_mem (GB) 1.5 5.2 4.0 4.7 2.0 4.0
cuda_cores 480 448 1536 2496 640 2048
clock_rate (MHz) 1401 1147 1110 706 1268 1216
mem_clock_rate (MHz) 1848 1566 3505 2600 2700 3505
mem_bus_width (bits) 384 384 256 320 128 256
l2_cache_size (KB) 768 768 512 1280 2048 2048
shared_mem_per_block (KB) 48 48 48 48 48 48
copy_engines 1 2 1 2 1 2

Static
peak_gbps 177.4 144.0 224.0 208.0 86.4 224.0
peak_gflops_sp 1345 1030 3213 3520 1389 4612
peak_gflops_dp 168 515 134 1170 43 156

Custom
shared_atomic (msec) 0.193 0.238 0.281 0.361 0.011 0.006
global_atomic (msec) 0.402 0.488 0.034 0.051 0.063 0.036

Table 1: Values of GPU device features for 6 architectures.

we added to Nitro two microbenchmarks that measure this;
other microbenchmarks could be added to the Custom set as
needed. Device feature values for the six GPU architectures
we consider in this paper are also listed in Table 1.

We pose the problem of architecture-adaptive tuning as a
multi-task learning (MTL) problem. MTL algorithms learn
multiple tasks simultaneously to capture intrinsic relatedness
between tasks. In our system, each separate architecture is
represented as a task, and inter-task relationships are learned
using MTL algorithms. We use feature concatenation for
MTL, which derives the code variant selection model for the
target architecture and is formally described in Section 3.1.
In earlier stages of this research, we implemented and ex-
plored other MTL algorithms such as weighted kernels and
probabilistic SVMs [7], but found that variant selection per-
formance was far more affected by device feature selection
than MTL algorithms.

We have discovered that using the full set of 13 device
features does not yield the most accurate predictions, and
which features are most relevant to code variant selection is
application-specific. Therefore, our system performs device

480 C2075 770 K20c 750 980
H S H S H S H S H S H S

480 1 1 0.9 0.8 0.3 -0.4 0.6 0.3 -0.8 -0.6 0.2 -0.4
C2075 0.9 0.8 1 1 0 -0.8 0.5 -0.3 -0.6 0 -0.3 -0.8
770 0.3 -0.4 0 -0.8 1 1 0.9 0.8 -0.8 -0.6 0.3 1
K20c 0.6 0.3 0.5 -0.3 0.9 0.8 1 1 -1 -1 -0.1 0.8
750 -0.8 -0.6 -0.6 0 -0.8 -0.6 -1 -1 1 1 0 -0.6
980 0.2 -0.4 -0.3 -0.8 0.3 1 -0.1 0.8 0 -0.6 1 1

Table 2: Cosine similarity between architectures for His-
togram (H) and SpMV (S). Values closer to +1 indicate sim-
ilarity, while values closer to -1 indicate dissimilarity.

feature selection (DFS) to pinpoint the small number of
device features relevant to the current application.

Each code variant stresses different components of the
hardware architecture, such as the DRAM subsystem, floating-
point performance, parallelism, machine balance, etc. To
demonstrate that device feature selection is application-
specific, Table 2 approximates the similarity between archi-
tectures for two benchmarks: Histogram and Sparse Matrix-
Vector Multiplication (SpMV). Each entry in the table corre-
sponds to the cosine-similarity (cosine of the angle between
vectors) between device feature vectors of the corresponding
architectures. Thus, values closer to +1 indicate similarity,
while values closer to -1 indicate dissimilarity. Note that
the optimal set of device features for both the benchmarks
are different, since Histogram and SpMV variants stress dif-
ferent components of the hardware architecture. Thus, two
architectures which are very similar for the SpMV computa-
tion may be completely different for Histogram. For exam-
ple, the entry corresponding to (C2075, 750) shows that for
Histogram, the C2075 and 750 are quite dissimilar (a fact
confirmed in Figure 1), while the same pair of architectures
is relatively similar for the SpMV benchmark.

3. Tuning Process
Our system employs a two-phase device feature selection
(DFS) strategy to automatically find the best-performing
subset of device features (in terms of final variant selection

327

performance) for each computation. These selected device
features may then be used by a multi-task learning algo-
rithm to automatically construct variant selection models.
The following subsection describes the process of model
training using the feature concatenation technique. The sub-
sections that follow describe how the multi-task learner con-
structs variant selection models on the target architecture
using (1) all device features; (2) device features found by
profile DFS (P-DFS); and, (3) device features found by per-
forming cross-validation search on the output of P-DFS.

3.1 Model Construction using MTL
The feature concatenation strategy for multi-task learning
appends device features to input features and builds an SVM
model based on this new training dataset. More formally,
let there be M source architectures and N training inputs.
Further, let {a1,a2, ...,aM} denote device feature vectors
for each of the M source architectures. Then, for a given
source architecture s, the corresponding training set is:

Ts = {([x1 ◦ as], ys1), . . . , ([xN ◦ as], ysN)}

where {x1, . . . ,xN} is the set of N input feature vectors
from the training set, and each ysi denotes the label (best
variant) for training input i on architecture s; [◦] denotes
vector concatenation. The full training set is then: T =⋃M
s=1 Ts, which is used to train an SVM classifier. During

testing, the device features of the target architecture are
concatenated with the input features before querying the
model.

3.2 Utilizing the Full Set of Device Features
A straightforward solution to the architectural tuning prob-
lem is to feed the entire device feature set to the multi-task
learner when it builds the variant selection model for the tar-
get. In this subsection, we describe how this naïve strategy
works.

Source Architecture Side On the source architectures,
when the user invokes the autotuning system, input features
and corresponding variant labels are collected automatically,
as in the original Nitro system [29]. This information is also
recorded in a repository, to be retrieved when needed by tar-
get architectures. The device feature values for the source
architecture in question are also collected and recorded in
the repository.

Target Architecture Side On the target architecture, the
user invokes a function in the autotuner, which automatically
(1) retrieves the data collected from the source architectures
from the repository; and (2) collects device feature values of
the target. Each training input from the source architectures
is of the form 〈I, v〉, where I represents an input feature
vector and v represents the label of the best variant for that
input. Using this together with device feature values for each
source architecture, a variant selection model for the target
architecture is constructed as explained in Section 3.1.

3.3 Profile Device Feature Selection (P-DFS)
With a restricted set of source architectures, extraneous de-
vice features can confuse the multi-task learner, as demon-
strated in Section 6.2. We now describe an improvement over
using the full set of device features called profile DFS (P-
DFS), which uses the profiling data of the variants of a com-
putation to predict the device features most relevant to that
computation.

Application Proxies An application proxy is a small pro-
gram that takes an intensity value φ as input, ranging from
0 to 5, and produces a GPU kernel with roughly φ * 20% in-
structions of a particular kind. The first column of Table 3
lists the application proxies used by our system. Thus, the
SP-GFLOP proxy generates kernels with single-precision float-
ing point instructions, the ATOMIC proxy generates kernels
with atomic add instructions and so on. As a concrete exam-
ple, when the SP-GFLOP proxy is provided an intensity value
of 2, the proxy generates a CUDA kernel with roughly 40%
single-precision floating point arithmetic instructions. The
following code snippet shows the generated kernel code:

// 6 loads and stores, 4 floating-point instructions

A[i] = A[i+1]*beta + alpha;

A[i+1] = A[i+2]*beta + alpha;

A[i+2] = A[i+3];

Here, A is an array of type float32, alpha and beta are scalars
(also of type float32), and i is the array index.

Each proxy Pj , where j ranges from 1 to 5 (total num-
ber of proxies) is associated with a set of device fea-
tures Fj , representing the hardware component(s) that it
stresses. The ATOMIC proxy, for example, is associated with
the shared_atomic and global_atomic features. The first and
last columns in Table 3 list these associations for each proxy.

Application Proxy Profiling For each proxy Pj , the sys-
tem automatically collects tuples of the form 〈Cφj , φ〉,
where Cφj represents the profiling data of a single run of
proxy Pj , and φ is the intensity with which it is run. Each
proxy has a subset of relevant profiling metrics, which are
also listed in Table 3 (column 3). Running a proxy at every
intensity from 0 to 5, we obtain a set of 〈Cφj , φ〉 tuples that
can be used to train a machine learning model. A model is
built for every proxy, which can then be queried with profil-
ing data of code variants.

Source Architecture Side The P-DFS approach requires
collecting the following data on at least one source archi-
tecture: (1) profiling metrics Cv of each code variant v on
each training input; and (2) profiling metrics of application
proxies at different intensities 〈Cφj , φ〉. Thus, in addition to
invoking the autotuner as described in Section 3.2, the user
is required to initiate profiling data collection. This automat-
ically collects all the required profiling data and stores it in
the repository.

Target Architecture Side On the target, the construction
of variant selection models proceeds as in Section 3.2. How-

328

Proxy Description Profiling Metrics Device Features
SP-GFLOP Single precision floating-point flop_count_sp, inst_fp_32,

flop_sp_efficiency

peak_gflops_sp, cuda_cores,

clock_rate

DP-GFLOP Double precision floating-point flop_count_dp, inst_fp_64,

flop_dp_efficiency

peak_gflops_dp, cuda_cores,

clock_rate

ATOMIC Atomic operation latency atomic_transactions_per_request,

atomic_transactions, l2_atomic_-

transactions, l2_atomic_-

throughput, atomic_throughput

global_atomic, shared_atomic

MEM-BW Global memory bandwidth l1_cache_global_hit_rate,

l1_cache_local_hit_rate, gld_-

transactions, gst_transactions,

local_load_transactions,

local_store_transactions,

gld_transactions_per_request,

gst_transactions_per_request,

local_load_transactions_per_-

request, local_store_-

transactions_per_request,

stall_memory_dependency, gld_-

efficiency, gst_efficiency,

l2_l1_read_hit_rate, l2_read_-

transactions, l2_write_-

transactions, dram_read_-

transactions, dram_write_-

transactions, l2_l1_read_-

transactions, l2_l1_write_-

transactions, l2_utilization

peak_gbps, mem_clock_rate,

mem_bus_width, l2_cache_size

SH-MEM-BW Shared memory bandwidth shared_load_transactions,

shared_store_transactions,

shared_load_transactions_per_-

request, shared_store_throughput

shared_mem_per_block

Table 3: GPU application proxies with corresponding profiling metrics and device features.

ever, this time, only device features selected by the P-DFS
system are used for training the variant selection model.

Algorithm 1 provides an overview of the P-DFS pro-
cess. The profiling data for the proxies at various intensities
〈Cφj , φ〉 is first retrieved from the repository. This is then
used to construct a set of models, one for each proxy. If we
denote the model for proxy Pj as λj , then querying λj with
the profiling metrics of a variant Cv will yield the intensity
value corresponding to Pj for the variant. By querying each
proxy model using the profiling data of the variants in the
computation (also retrieved from the repository), and exam-
ining the predicted intensity values, the best proxies can be
found. These are recorded for each input and in the final step,
a majority voting scheme is used to select a global best set
of proxies. The device features associated with the winning
proxies (last column of Table 3) is returned as output of the
P-DFS system.

3.4 Cross-Validation Device Feature Selection
(CV-DFS)

Although device features obtained as a result of P-DFS are
relevant to the computation in question, there may still be

Algorithm 1 Profile Device Feature Selection

1: . V: Set of variants
2: . I: Set of training inputs
3: . P: Set of application proxies
4: global_best← {}
5: for v ∈ V do
6: . For each kernel in variant v
7: for k ∈ kernels[v] do
8: . For each training input
9: for i ∈ I do

10: intensity← {}
11: for p ∈ P do
12: . Profiling data for kernel k on input i
13: t← profile[k, i]
14: . Predict intensity for proxy p on profile
15: intensity[p] = intensity-predict(t, p)
16: best_proxies[i] = {x : intensity[x]is highest}
17: . Add best proxies across inputs to global best
18: global_best ∪ = majority-vote(best_proxies)

return global_best

329

Algorithm 2 Cross-Validation Device Feature Selection

1: . S: Set of source architectures
2: . D: Set of device features from P-DFS
3: global_best← {}
4: . For each source architecture
5: for s ∈ S do
6: best_accuracy← 0
7: best_set← ∅
8: . Assign a temporary target
9: target← s

10: sources← S − {s}
11: Ts← {training-data(x): x ∈ sources}
12: Tt← training-data(target)
13: for d ∈ subsets[D] do
14: . Get device feature values of source and target
15: DFs← {df-values(d, x): x ∈ sources}
16: DFt← df-values(d, target)
17: . Train MTL model using Ts and DFs
18: model← mtl-train(Ts, DFs)
19: . Predict and calculate accuracy w.r.t. Tt
20: accuracy← predict(model, Tt, DFt)
21: if accuracy > best_accuracy then
22: best_accuracy← accuracy
23: best_set← d

24: . Record best features and their frequencies
25: global_best ∪ = best_set
26: . Return the k most frequently occurring features
27: return most-frequent(global_best, k)

extraneous features that confuse the variant selection model
on the target. To obtain an even more pruned and relevant
set of device features, we employ a cross-validation DFS
(CV-DFS) strategy. An overview of CV-DFS is provided in
Algorithm 2.

CV-DFS is performed on the target architecture, and does
not require any extra data collection on the source architec-
tures (over P-DFS). The algorithm proceeds by assigning
one of the source architectures as a temporary target (Line
9 in Algorithm 2). Then, with the remaining source architec-
tures, every subset of device features (currently restricted to
size three) is exhaustively used to build a variant selection
model for the temporary target (Line 18, mtl-train func-
tion) and performance of this model on the temporary tar-
get’s training data is evaluated (Line 20, the predict func-
tion). This process is iteratively performed for each source
architecture, and the k device features that perform best over
all source architectures are chosen. By default, k is set to one
(i.e., return the best device feature).

CV-DFS relies on the assumption that device features that
yield good prediction performance on source architectures
are likely to be good predictors on the target for the same
computation. As demonstrated in Section 6, this assumption
holds for most applications.

1 from nitro import *
2 import glob

3
4 histogram = code_variant("histogram", 6)

5 # Record training data in store

6 histogram.record = True

7 histogram.device_id = "gtx_480"

8 # Create autotuner instance

9 tuner = autotuner("histogram")

10 inputs = glob.glob("training/*.jpg")

11 tuner.set_training_args(inputs)

12 # Tune for current architecture

13 tuner.tune([histogram])

Listing 1: Histogram tuning example - source architecture.

1 from nitro import *
2
3 histogram = code_variant("histogram", 6)

4 histogram.profiling_based_dfs = True

5 histogram.search_based_dfs = True

6 # Create autotuner instance

7 tuner = autotuner("histogram")

8 # Build model from source data

9 tuner.tune_from_source([histogram])

Listing 2: Histogram tuning example - target architecture.

4. Implementation
The Nitro framework [29] provides C++ and Python inter-
faces for code variant tuning. Variants, input features, and
optional constraints are specified using the C++ interface
within the application, while a separate Python script is used
to customize the tuning process. For the system described in
this paper, we extend Nitro’s Python tuning interface with
additional functions and options.

The function tune_from_source automatically builds mod-
els for the target architecture using source training data and
device feature values. We have implemented a storage sys-
tem for variant training data using Redis [34]. The variant
name, together with the device identifier is used to index
into the store, where the variant training data, optional pro-
filing data (for both the variants and proxy applications),
and device feature values are kept. The tune_from_source

function automatically retrieves the right data and builds the
models. Users have the option of toggling both P-DFS (us-
ing the profiling_based_dfs knob) and CV-DFS (using the
search_based_dfs knob). If P-DFS is enabled, then per-input
profiling data must also be collected on at least one of the
source architectures (using the profile function). Listings 1
and 2 provide examples of how this interface is used on the
source and target sides, respectively.

5. Benchmarks
Figure 3 lists the benchmarks we use to evaluate our sys-
tem’s effectiveness, including a description of the set of vari-
ants, the features used, and number of inputs for training and
test datasets. All of these benchmarks are derived from high-
performance CUDA libraries that already included code

330

variants. By using existing high-performance libraries, we
are able to focus the experiment on the small amount of
additional code required to apply our automated system to
these benchmarks. The training and test inputs come from
standard sources, as described, and the training inputs are
not included in the test inputs. Further, we choose training
inputs such that all variants are well-represented in the train-
ing set for each benchmark.

Histogram Histograms are very commonly used as build-
ing blocks in a number of domains, especially image pro-
cessing. We use the variants implemented in the high-
performance CUDA Unbound (CUB) library [26]. We evalu-
ate three variants and two grid-mapping strategies, thus giv-
ing rise to six code variants. We use three features. We con-
struct a 256-bin histogram for grayscale images, with pixel
values ranging from 0 to 255. For training and testing, we
use the images from the INRIA Holidays Dataset [21] (con-
verted to grayscale). Out of the 1491 images in the dataset,
200 are used for training and the rest for testing.

Sparse Matrix-Vector Multiplication (SpMV) SpMV is
used in many iterative methods for solving large-scale linear
systems. For this experiment, we use the variants provided
by the CUSP library [4]. We use 5 features and a training
set consisting of 54 matrices from the UFL Sparse Matrix
collection [15]. For the 100 matrices in the test set, we
selected 10 matrices each from a set of 9 groups in the UFL
collection at random (with the exception of the Williams
group, which has only 7 matrices in the UFL collection),
and generated 13 matrices related to stencils.

Sort We use 3 high-performance GPU sorting algorithms:
Merge Sort, Locality-Optimized Segmented Sort, and Radix
Sort as variants for this benchmark. The Merge and Locality
Sorts are part of the ModernGPU [3] library of GPU prim-
itives, while the Radix Sort implementation is provided in
CUB [26].

Sorting is performed on 32 and 64-bit floating point keys.
We train a combined model for both data types and report
performance achieved on a test set consisting of both types
of data. The training set consists of 60 sequences for each
data type, thus giving us a total of 120 instances. For testing,
we use a total of 600 sequences, 300 for each data type. Fur-
ther, each of the 300 instances is divided into 3 categories,
100 consisting of uniformly random keys, 100 consisting
of reverse sorted keys, and 100 consisting of almost sorted
keys. The “almost sorted” category is generated by taking
a sorted sequence and randomly swapping 20-25% of the
keys. Key lengths are varied from 100K to 20M keys.

Breadth-First Search (BFS) BFS is used as a basis for
algorithms that analyze sparse relationships (such as social
networks and electronic design automation) represented as
graphs. Variants are selected from a set of highly optimized
BFS implementations for GPUs described in [28], part of
a larger set of GPU primitives provided in the Back40 Li-

brary [25]. We consider a set of six variants provided in
the library, which are designed for different types of input
graphs. We use a set of 5 features. The training set for BFS
consists of a set of 20 graphs and the test set consists of all
the graphs in the DIMACS10 group in the UFL Sparse Ma-
trix collection. We run 100 randomly-sourced BFS traversals
for each graph to evaluate each variant. Further, we use tra-
versed edges per second (TEPS) as the optimization metric.

Linear Solvers and Preconditioners Many large-scale sci-
entific simulations such as computational fluid dynamics
(CFD) and structural mechanics [20] involve solving par-
tial differential equations (PDE) systems. Typically, solu-
tions to a PDE involve solving the underlying sparse lin-
ear system using software toolkits [2, 31]. One of the chal-
lenges in effectively using such toolkits is the selection of
an appropriate 〈linear solver, preconditioner〉 combination
as this selection impacts both the performance and conver-
gence of the computation. For this experiment, we use 6
〈linear solver, preconditioner〉 combinations from the CULA
Sparse toolkit [31], which is a GPU library for solving large
sparse linear systems. Features used for this benchmark are
based on the work by Bhowmick et al. [5]. We use symmetric
sparse matrices from [15] to represent sparse linear systems.

Matrix Transposition In-place transposition of square ma-
trices is a well-studied problem. Transposition of a non-
square matrix is a much more involved process, requiring
O(mn logmn) work. Catanzaro et al. [10] describe a set of
in-place matrix transposition algorithms which perform the
operation in O(mn) time. These algorithms are packaged as
an open-source library [9]. We use four variants from this
library for our experiment: two for general row-to-column
and column-to-row transposition, and another two special-
ized for skinny matrices. We use four features related to
the dimensions of the matrix. Matrix dimensions are cho-
sen from a uniform-random distribution with the constraint
that the matrix fits in the memory of the GTX 480 GPU (the
GPU with lowest memory capacity). The matrices are popu-
lated with 64-bit double precision values. 194 such matrices
are used for training and 1000 for testing.

6. Results
We run our experiments on six NVIDIA GPUs characterized
by the device features in Table 1: (1) GeForce GTX 480,
(2) Tesla C2075, (3) GeForce GTX 770, (4) Tesla K20c,
(5) GeForce 750 Ti, and (6) GeForce GTX 980. As shown
in Table 1, these graphics cards span three GPU architec-
ture families: Fermi, Kepler, and Maxwell. We use CUDA
Toolkit version 6.5 for our experiments1. The host system is
an Intel Core i7-4770 CPU (3.4 Ghz) with 32 GB of RAM.
GPU profiling metrics are collected using the nvprof tool.
Each profiling metric is normalized with respect to the total
number of issued instructions in the GPU kernel.
1 Except for Solvers, which requires CUDA 6.0 (due to CULA).

331

Benchmark Variants Description Features Description (#Training,8
#Testing)8I/Ps

CSR,%CSR&VEC
Performs%SpMV%on%CSR&formatted%matrices.
CSR%assigns%a%thread%to%each%row.
CSR&Vec%assigns%a%warp%to%each%row.

DIA,%ELL Perform%SpMV%on%DIA%and%ELL%formatted%matrices.
CG&Jacobi,%CG&Bjacobi,%
CG&Fainv

Conjugate%gradients%method%with%Jacobi,%Blocked%Jacobi%
and%Factorized%Approximate%Inverse%preconditioners

BiCGStab&Jacobi
BiCGStab&BJacobi
BiCGStab&Fainv

BiConjugate%gradients%Stabilized%method%with%Jacobi,%
Blocked%Jacobi%and%Factorized%Approximate%Inverse%
preconditioners

EC&Fused,%EC&Iterative
Expand%incoming%vertex%frontier,%filter,%and%produce%
outgoing%vertex%frontier.%Fused%version%invokes%single%
kernel%that%steps%through%BFS%iterations.%Iterative%
version%invokes%a%separate%kernel%for%each%BFS%iteration.

CE&Fused,%CE&Iterative Contract%incoming%edge%frontier,%filter,%and%produce%
outgoing%edge%frontier.

2&Phase&Fused
2&Phase&Iterative

Isolates%vertex%expansion%and%edge%contraction%
workloads%into%separate%kernels

Sort&ES,%Sort&Dynamic
Sort%data%first,%and%then%do%a%quick%run&length%detection.%
Even&Share%(ES)%version%assigns%an%even%share%of%inputs%
to%thread%blocks,%dynamic%uses%a%queue.

Global&Atomic&ES
Global&Atomic&
Dynamic

Compute%Histogram%using%global%atomic%add%operations.%

Shared&Atomic&ES
Shared&Atomic&
Dynamic

Compute%Block&level%Histogram%using%shared%memory%
atomicAdd,%and%then%reduce%to%final%Histogram.

Merge%Sort Merge%sort%from%ModernGPU%library.

Locality%Sort Locality%sort%from%ModernGPU%library.

Radix%Sort Radix%sort%from%CUB.

R2C,%C2R R2C,%C2R%variants%from%inplace%library

Skinny%R2C
Skinny%C2R R2C,%C2R%specialization%for%skinny%matrices

Sort

N

NBits

#AscSeq

Input%size.

32%or%64%bits.

#%Ascending%sub&sequences.

(120,%600)

Transpose

M, N

RowMajor

CoPrime

Number%of%rows,%columns.

Is%in%row&major%layout.

Are%M%and%N%co&prime.

(194,%1000)

BFS
AvgOutDeg, Deg-SD,
MaxDeviation

#Vertices, #Edges

Features%related%to%graph%out&
degree.

Number%of%vertices%and%
edges.

(20,%138)

Histogram
N, N/#Bins

SubSampleSD

Sequence%of%length%and%
average%length.%

Standard%deviation%of%sub&
sample.

(200,%1291)

SpMV

AvgNZPerRow, RL-
SD, MaxDeviation

DIA-Fillin, ELL-
Fillin

Features%related%to%row%
length.

Fillin%ratio%for%DIA%and%ELL%
formats.

(54,%100)

Solver

NNZ, #Rows

Trace

DiagAvg, DiagVar,
DiagDominance

LBw

Norm1

Number%of%nonzeros%and%
rows.

Trace%of%a%matrix.

Features%related%to%diagonal%
elements%of%a%matrix.

Left%bandwidth%of%a%matrix.

1&norm%of%a%matrix.

(26,%100)

Figure 3: Variants and features used for each benchmark. The last column lists the sizes of training and testing sets.

6.1 Architecture Sensitivity of Benchmarks
We first ask the question whether architecture differences
significantly impact code variant selection. For this pur-
pose, we identify the best variant (found through exhaustive
search) for each input in the testing set across all bench-
marks and architectures. Figure 4 provides a measurement
of the architectural sensitivity of each benchmark. Here, the
x-axis is the set of benchmarks, and the y-axis is the percent-
age of test inputs for which at least one architecture selects
a different best variant than the others. In other words, it
is the percentage of test inputs for which the exact same
variant of the benchmark was not selected across all archi-
tectures. Figure 5 is similar, except it depicts architectural
sensitivity of benchmarks within GPUs of each generation
- namely, Fermi, Kepler, and Maxwell. Figure 5 shows that
differences in variant selection are usually less pronounced
within the same architectural family, but not always. Further
data is shown in Table 4, where each sub-table represents a
benchmark and a row represents the distribution of variant
selection (via exhaustive search) across all test inputs for

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Histogram	 SpMV	 Sort	 BFS	 Solver	 Transpose	

%
	M

ism
at
ch
	a
cr
os
s	a

rc
hi
te
ct
ur
es
	

Architecture	Sensi-vity	

Figure 4: Architecture-sensitivity of each benchmark. The
y-axis represents the percentage of test inputs for which at
least one architecture selects a different best variant than the
others.

a particular architecture. We use these two figures and the
table in the remainder of this subsection.

From one generation to the next, new architecture fea-
tures and machine configurations may dramatically affect

332

SpMV
CSR CSR-VEC DIA ELL

GTX 480 0.00 50.52 19.59 29.90
C2075 0.00 54.64 19.59 25.77

GTX 770 0.00 49.48 19.59 30.93
K20c 3.09 48.45 18.56 29.90

750 Ti 4.12 45.36 20.62 29.90
GTX 980 0.00 56.70 18.56 24.74

BFS
EC-Fused EC-Iter CE-Fused CE-Iter 2P-Fused 2P-Iter

GTX 480 0.00 0.70 90.91 4.90 1.40 2.10
C2075 0.00 0.71 90.00 7.86 1.43 0.00

GTX 770 0.71 59.29 0.71 37.86 0.00 1.43
K20c 24.64 0.00 75.36 0.00 0.00 0.00

750 Ti 13.04 0.00 86.96 0.00 0.00 0.00
GTX 980 4.29 0.00 94.29 0.00 1.43 0.00

Transpose
R2C C2R Skinny R2C Skinny C2R

GTX 480 44.10 55.10 0.00 0.80
C2075 45.50 53.80 0.00 0.70

GTX 770 42.50 56.90 0.00 0.60
K20c 25.10 74.30 0.00 0.60

750 Ti 45.00 54.40 0.00 0.60
GTX 980 32.90 66.40 0.00 0.70

Solver
CG-J CG-BJ CG-FAI BiCGStab-J BiCGStab-BJ BiCGStab-FAI

GTX 480 12.90 15.05 6.45 35.48 23.66 6.45
C2075 13.98 12.90 6.45 32.26 30.11 4.30

GTX 770 6.45 10.75 13.98 35.48 23.66 9.68
K20c 11.83 13.98 5.38 36.56 24.73 7.53

750 Ti 18.28 11.83 6.45 34.41 16.13 12.90
GTX 980 12.90 16.13 7.53 37.63 17.20 8.60

Sort
Locality Merge Radix

GTX 480 3.50 27.17 69.33
C2075 7.50 47.00 45.50

GTX 770 2.50 26.00 71.50
K20c 1.67 36.00 62.33

750 Ti 33.50 4.50 62.00
GTX 980 39.00 17.17 43.83

Histogram
Sort-ES Sort Dynamic GA-ES GA-Dynamic SA-ES SA-Dynamic

GTX 480 0.64 36.30 0.00 0.00 7.13 55.93
C2075 0.00 33.73 0.00 0.00 26.92 39.34

GTX 770 0.08 73.56 4.49 0.40 0.24 21.23
K20c 0.00 85.18 0.08 0.00 4.49 10.26

750 Ti 0.00 0.00 0.00 0.00 97.84 2.16
GTX 980 0.00 0.00 0.00 0.00 0.16 99.84

Table 4: Variant selection histograms across different benchmarks and architectures. Each sub-table represents the distribution
of variant selections across test data for a particular benchmark.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Histogram	 SpMV	 Sort	 BFS	 Solver	 Transpose	

%
	M

ism
at
ch
	a
cr
os
s	a

rc
hi
te
ct
ur
es
	

Architecture	Sensi-vity	within	GPU	Genera-ons		

Fermi		 Kepler		 Maxwell	

Figure 5: Architecture-sensitivity within GPUs of the same
generation.

variant selection (e.g., support for atomic operations). But
within a single generation, different selections are usually at-
tributed to differences in (1) raw performance metrics (clock
speed, memory bandwidth, floating point performance, etc.);
or, (2) parallelism (number of cores). These architecture dif-
ferences are captured in the device features of Table 1. From
Figures 4 and 5 and Table 4, we see that Histogram reflects
significant differences both across and within an architec-
ture generation. The Maxwell generation devices (GTX 980
and 750 Ti) use the shared-atomic variants (SA-ES and SA-
Dynamic) almost exclusively due to their low latency of
shared memory atomics. However, these two devices rarely
select the same shared-atomic variant, with the GTX 980
preferring SA-Dynamic and 750 Ti preferring SA-ES for
most inputs. The Dynamic variants treat the input as a queue

and atomically dequeue work in tiles for processing. Due
to the reliance of these variants on atomics, the GTX 980
prefers them compared to the 750 Ti (the GTX 980’s perfor-
mance on atomics is nearly twice that of the 750 Ti, as Ta-
ble 1 shows). The Kepler and Fermi devices predominantly
use the Sort-Dynamic, SA-ES and SA-Dynamic variants,
with the Kepler devices (GTX 770 and K20c) preferring the
sorting-based variant over the shared-atomic ones. We be-
lieve that the slightly lower performance of shared atomics
on Kepler when compared to the Fermi devices (GTX 480
and C2075) is the reason for this.

For BFS, most of the differences arise on the GTX 770
architecture. Specifically, the EC-Iterative and CE-Iterative
variants are rarely selected by any architecture except the
GTX 770. As described in Figure 3, the Iterative variants
invoke a separate kernel for each BFS kernel, while the
Fused versions use a single kernel to step through BFS
iterations. Notice that l2_cache_size is a relevant device
feature for BFS (Table 5, second column) and the GTX 770
has the lowest L2 cache size of all GPUs (Table 1). Since
doing more work in a single kernel invocation typically
increases L2 cache usage, we suspect that this is the reason
for the GTX 770 preferring the Iterative variants over Fused
ones.

Sort and Transpose exhibit architecture sensitivity, but
not to the extent shown by Histogram and BFS and mostly
across generations. The Maxwell generation of devices
prefers to pick Locality sort over Merge sort, when com-
pared to devices from other generations. The lower cost of
atomic operations on Maxwell is most likely the reason for

333

Benchmark Best Device Features Proxies predicted by P-DFS Best Feature by CV-DFS
Histogram peak_gbps, shared_atomic,

mem_bus_width

MEM-BW, ATOMIC shared_atomic

SpMV peak_gbps, mem_speed MEM-BW, SH-MEM-BW peak_gbps

Sort global_atomic, l2_cache_size,

shared_atomic

MEM-BW, ATOMIC shared_atomic

BFS global_atomic, shared_atomic,

l2_cache_size, peak_gbps

MEM-BW, ATOMIC, SH-MEM-BW shared_atomic

Solvers global_atomic, shared_atomic,

l2_cache_size, peak_gbps

MEM-BW, ATOMIC, SH-MEM-BW shared_atomic

Transpose global_atomic, shared_atomic,

l2_cache_size, peak_gbps

MEM-BW, SH-MEM-BW peak_gbps

Table 5: Best device features for each benchmark, proxies predicted by P-DFS, and the best features chosen by CV-DFS.

this, as Locality sort uses a dynamic work queue from which
tasks are peeled off atomically. For Transpose, the bigger
devices from the Kepler and Maxwell generations (the K20c
and the GTX 980, respectively), tend to slightly prefer the
C2R variant over R2C compared to other cards.

Finally, we notice from Table 4 that for the SpMV and
Solver benchmarks, variants tend to be picked uniformly
across architectures. We believe the primary reason for this
is the fact that SpMV and Solver variants are optimized for
various sparsity patterns of the input matrix and not neces-
sarily for architecture-specific features; thus making them
predominantly input-dependent. We were able to confirm
this for the SpMV variants in the CUSP library by analyzing
their source code, but not for the related Solver variants from
CULA, which are closed-source.

6.2 Prediction Performance
First we look at how well device feature selection detects
the relevant features for each benchmark. Table 5 shows the
best subset of device features found by exhaustive search and
by cross-validation search for each benchmark in the second
and fourth columns, respectively. The third column shows
the application proxies predicted by P-DFS for each bench-
mark. This exhaustive search finds the subset that yields best
prediction accuracy on the target’s test data. Since cross-
validation DFS may predict a different subset of device fea-
tures for every target, the last column of the table shows the
device feature that occurs most frequently among all targets.
We notice that P-DFS correctly predicts the proxies relevant
to each benchmark. For example, it predicts that atomics
are relevant to Histogram and BFS. Also, cross-validation
search, guided by proxies found by P-DFS, discovers most
of the important device features or nearby ones found via ex-
haustive search for all benchmarks. Another interesting ob-
servation is that although all the benchmarks we consider
are predominantly memory bandwidth-bound, some bench-
marks such as Histogram and BFS contain variants that rely
on the use of global and shared-memory atomics. This re-
inforces our earlier point that the magnitude of architectural

similarity is a function of the device features relevant to a
benchmark’s variants, and is not the same across all bench-
marks.

Now we examine how well the different variant selec-
tion models derived from multi-task learning compare in
their effectiveness against the original Nitro system (train-
ing and testing performed on the target architecture) and ex-
haustive search. In Figure 6, the benchmarks appear on the
x-axis, with each bar representing a different target archi-
tecture (the remaining 5 architectures are used as sources).
The y-axis shows percentage performance achieved com-
pared to exhaustive search, as defined in the previous subsec-
tion. Bars labeled Full Set represent performance achieved
when multi-task learning uses all device features, while the
P-DFS and CV-DFS bars represent performance achieved by
using device features selected by the profile DFS, and pro-
filing followed by cross-validation DFS, respectively. While
performing cross-validation DFS, we restrict the maximum
size of each device feature subset to 3, since we found that
increasing this beyond 3 rarely resulted in performance im-
provements. Also, we use the default value of 1 for the CV-
DFS parameter k (number of most frequently occurring de-
vice features) in our evaluation. While we discovered that
higher values suited certain benchmarks (for example, His-
togram performs 2.5% better on average across all archi-
tectures when k is set to 2), we avoid varying k on a per-
benchmark basis to remain consistent.

We expected the original Nitro bar would be an upper
bound on performance, as it is training on the target archi-
tecture. Indeed we see a modest performance loss for His-
togram. Performance is comparable for Transpose and Sort
for all architectures, and BFS for Fermi and Maxwell gener-
ations but not Kepler. The reasons for these deviations in per-
formance were explained in Section 6.1, but effectively they
indicate instances where the learning phase did not see sim-
ilar scenarios. Surprisingly, multi-task learning actually out-
performs the original Nitro for the Solver and SpMV bench-
marks on some architectures. This is a significant result con-
sidering the fact that we performed no training runs on the

334

0	

20	

40	

60	

80	

100	
O
rig

.	N
itr
o	

Fu
ll	
Se
t	

P-
DF

S	

CV
-D
FS
	

O
rig

.	N
itr
o	

Fu
ll	
Se
t	

P-
DF

S	

CV
-D
FS
	

O
rig

.	N
itr
o	

Fu
ll	
Se
t	

P-
DF

S	

CV
-D
FS
	

O
rig

.	N
itr
o	

Fu
ll	
Se
t	

P-
DF

S	

CV
-D
FS
	

O
rig

.	N
itr
o	

Fu
ll	
Se
t	

P-
DF

S	

CV
-D
FS
	

O
rig

.	N
itr
o	

Fu
ll	
Se
t	

P-
DF

S	

CV
-D
FS
	

Histogram	 SpMV	 Sort	 BFS	 Solver	 Transpose	

%
	P
er
fo
rm

an
ce
	w
.r.
t	B

es
t	

Architectural	Tuning	Performance	
GTX	480	 C2075	 GTX	770	 K20c	 750	Ti	 GTX	980	

Figure 6: Device feature selection performance.

0	

20	

40	

60	

80	

100	

Random	 Majority	 Full	Set	 P-DFS	 CV-DFS	%
	P
er
fo
rm

an
ce
	w
.r.
t	B

es
t	

Histogram	Performance:	GTX	480	Excluded	

C2075	 GTX	770	 K20c	 750	Ti	 GTX	980	

0	

20	

40	

60	

80	

100	

Random	 Majority	 Full	Set	 P-DFS	 CV-DFS	

%
	P
er
fo
rm

an
ce
	w
.r.
t	B

es
t	

Histogram	Performance:	GTX	770	Excluded	

GTX	480	 C2075	 K20c	 750	Ti	 GTX	980	

0	

20	

40	

60	

80	

100	

Random	 Majority	 Full	Set	 P-DFS	 CV-DFS	

%
	P
er
fo
rm

an
ce
	w
.r.
t	B

es
t	

Histogram	Performance:	750	Ti	Excluded	

GTX	480	 C2075	 GTX	770	 K20c	 GTX	980	

0	

20	

40	

60	

80	

100	

Random	 Majority	 Full	Set	 P-DFS	 CV-DFS	

%
	P
er
fo
rm

an
ce
	w
.r.
t	B

es
t	

Histogram	Performance:	GTX	980	Excluded	

GTX	480	 C2075	 GTX	770	 K20c	 750	Ti	

0	

20	

40	

60	

80	

100	

Random	 Majority	 Full	Set	 P-DFS	 CV-DFS	

%
	P
er
fo
rm

an
ce
	w
.r.
t	B

es
t	

Histogram	Performance:	K20c	Excluded	

GTX	480	 C2075	 GTX	770	 750	Ti	 GTX	980	

0	

20	

40	

60	

80	

100	

Random	 Majority	 Full	Set	 P-DFS	 CV-DFS	

%
	P
er
fo
rm

an
ce
	w
.r.
t	B

es
t	

Histogram	Performance:	C2075	Excluded	

GTX	480	 GTX	770	 K20c	 750	Ti	 GTX	980	

Figure 7: Device feature selection performance for Histogram on a restricted set of architectures.

target. It is an indication that multi-task learning is inferring
useful relationships between similar architectures, thus ef-
fectively increasing the amount of training data available for
model training compared to using only one architecture.

Now consider the differences between the three DFS
strategies. Cross-validation yields the best performance for
Histogram, SpMV, and Sort on almost all architectures, and
is comparable to the other two DFS approaches for Solver
and Transpose. The full set is preferable for the K20c version
of BFS. The effect of using incorrect device features is more
pronounced on a restricted set of source architectures. Space
does not permit us to present our system’s performance on
all source:target combinations for all the benchmarks. How-
ever, to demonstrate how sensitive the performance is to
the correct feature set, we perform the same experiment as
above for Histogram, but iteratively remove one architecture
from the total set - resulting in 4 source architectures instead
of 5. This seemingly small change has substantial effects on
performance.

Figure 7 shows the results for this experiment. Here, each
sub-figure shows the performance of MTL with different
device feature sets when a specific GPU is excluded from

the list of architectures. In this experiment, we also com-
pare against two simpler reference schemes: random selec-
tion and majority vote (Random and Majority in Figure 7,
respectively). Random simply chooses a valid variant uni-
formly at random for each test input. It indicates the extent
of input sensitivity, as it works well when variants have simi-
lar performance across inputs. We report the average of 1000
runs in this case for consistent results. Majority chooses the
most frequently predicted variant among all source architec-
tures for a given input as the predicted variant for the target.
To accomplish this, a variant selection model for each source
architecture is built separately using the original Nitro sys-
tem. Since these two schemes do not make use of any ar-
chitectural characteristics, their performance (especially on
a set of restricted architectures) can be used to indicate and
quantify the importance of device feature selection.

For all the source:target combinations, we notice a marked
improvement in performance for P-DFS and CV-DFS over
Full Set, demonstrating the importance of device feature
selection. Further, the performance of CV-DFS is at least
comparable to P-DFS, and often significantly better, espe-
cially on Fermi and Maxwell. In comparison, Random and

335

P-DFS CV-DFS
Histogram 4.70 100.50
SpMV 3.36 12.42
Sort 4.14 56.61
BFS 3.89 30.27
Solver 4.59 36.80
Transpose 4.26 48.24

Table 6: Device feature selection overhead (time in seconds).

Majority fare relatively poorly. In particular, the tendency of
Maxwell devices (750 Ti and GTX 980) to strongly prefer
the shared atomic variants over others (Table 4) seems to
confuse the majority vote scheme. This is confirmed by the
fact that removal of either of these devices improves Ma-
jority performance on all devices except the other device
in the same generation. CV-DFS proves to be much more
robust, and shows consistent performance across devices,
even when devices from the same generation are removed.
Overall, we notice that while majority vote performs well in
simple cases, knowledge of architectural characteristics via
device features is critical for robust performance.

6.3 Device Feature Selection Overhead
Table 6 shows the overhead incurred by P-DFS and CV-
DFS2 . As the table shows, P-DFS is fastest, since it primar-
ily involves construction of the models for the various prox-
ies, followed by querying the models on the profiling data
of the code variants. CV-DFS takes longer, since all subsets
of size <= 3 must be evaluated by the algorithm. Note that
CV-DFS takes less time in comparison to gathering training
data from source architectures, as we do not evaluate each
〈I, v〉 pair.

The CV-DFS strategy has a number of parameters that
can be adjusted by the user. The value of these parameters
can greatly affect the time taken to execute CV-DFS. Users
can adjust the training subset size, feature subset size and
the number of source architectures to use for CV. Reducing
the values of any of these aforementioned parameters signif-
icantly reduces CV-DFS execution time. In our experiments
we used the full training set, and feature subset sizes from 1
to 3 on all the source architectures.

6.4 Summary
Overall, multi-task learning produces results comparable to
training on the target architecture in most cases, and even
better results in a few cases. It falls short when the train-
ing data fails to capture a sufficiently similar scenario, and it
improves from additional training data available from multi-
ple sources. Finally, we observe that device feature selection
improves performance particularly when less training data is

2 Since the repository is stored on the local network, we do not include
communication overheads.

available, and that in such cases, CV-DFS produces superior
results but introduces more overhead than other approaches.

7. Related Work
Performance counters have been used to predict and guide
code tuning and compiler optimizations. Cavazos et al. [11]
use performance counters to determine good compiler op-
timization settings. Machine learning is used to learn rela-
tionships between performance counter and optimal code
optimization settings. Our framework, on the other hand,
uses machine learning to build a relationship between per-
formance counters and best device feature subsets, which are
subsequently used in the cross-architectural tuning pipeline.
Another system introduced by Parello et al. [30] uses perfor-
mance counter data to systematically optimize programs by
identifying performance anomalies. This system uses a de-
cision tree to iteratively fix performance issues by applying
optimization schemes to remedy the performance anomalies
encountered.

Machine learning has been extensively used in guid-
ing performance optimizations, as heuristics and exhaustive
search are not practical. Supervised classification has been
used to predict unroll factors to improve performance [35].
This problem can be seen as a variant selection problem
where the selection depends on features extracted from the
code itself. Our work specifically looks at variants whose
performance depends on input dataset.

Apart from machine learning-guided optimizations, there
has been prior work on input adaptivity. Ding et al. [16] ad-
dress this problem by extending the PetaBricks language [1]
to support input sensitivity. The language enables users to
define domain-specific features of the input. The PetaBricks
autotuner generates a number of implementations of the al-
gorithm (each optimized for a specific input size). These im-
plementations are used as variants that the machine learning
algorithm predicts based on the given input features. Our
framework focuses on streamlining the process of select-
ing variants and adapting selection across architectures and
hence does not automatically generate variants but rather lets
the user define the variants. G-ADAPT [23] is a framework
that discovers decisions for GPU code optimizations. This
system was subsequently adapted to handle input sensitivity.
The G-ADAPT framework achieves this by employing ma-
chine learning (Regression Trees) to build a mapping from
input to GPU code optimizations. This is achieved by an iter-
ative search for the set of near-optimal optimization param-
eters for a given input. Both of the above frameworks ad-
dress the input adaptivity problem but do not support cross-
architectural adaptation.

Magni et al. [24] address the tuning of OpenCL code
across architectures by applying a thread-coarsening trans-
formation to the code. A machine learning technique is em-
ployed to predict the optimal coarsening factor for these
transformations. Our framework does not apply transforma-

336

tions to the code but rather works with an existing set of
variants and does not require training on the target architec-
ture.

A number of systems support the tuning of optimization
parameters. Such systems can aid in variant generation and
tuning using parameterized templates which specify how to
generate new variants based on the actual values of the pa-
rameters in the template. Such systems include Active Har-
mony [36] (integrated with the CHiLL loop transformation
framework [12] to generate variants), POET [39], Orio [19],
Sequoia [33], the X-Language [17] and [27].

A number of frameworks aid in the development of effi-
cient and portable applications for specific domains. Exam-
ples of such systems include ATLAS [38], PhiPAC [6], and
OSKI [37] for linear algebra, FFTW [18] and SPIRAL [32]
for signal processing, and [13],[14],[22].

In summary, to our knowledge we are the first to adapt
code variant selection across architectures without re-training,
formulating this as a multi-task learning problem.

8. Conclusions
This paper has presented a novel approach to cross-architec-
ture autotuning, which uses multi-task learning to develop
a model on a target architecture from training on different
source architectures. On a set of benchmark applications and
a collection of six NVIDIA GPUs from three distinct archi-
tecture generations, we achieve performance results compa-
rable to the previous approach of tuning for a single archi-
tecture without having to repeat the learning phase, demon-
strating the promise of multi-task learning for addressing
performance portability across architectures. We view this
work on variant selection as an initial step towards a more
general approach to learning an optimization model on one
set of resources and adapting to a different set of resources
at runtime. Many questions remain: improving models for
outliers, examining very different architectures, and other
autotuning problems such as parameter selection. Tuning
across different architecture classes such as CPU and GPU
is particularly challenging, as higher-level device features
(e.g. gflops/gbps ratio) and profiling metrics that remain
valid across architecture classes must be used. These chal-
lenges will become increasingly important to future archi-
tectures, as complexity grows and systems become more dy-
namic.

Acknowledgments
We would like to thank NVIDIA Corporation for generous
equipment donations, and members of the NVIDIA research
group including Duane Merrill and Albert Sidelnik for valu-
able discussions. We would also like to thank the reviewers
who suggested additional experiments to improve the paper.
This research was funded by DARPA contract HR0011-13-
3-0001.

References
[1] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,

A. Edelman, and S. Amarasinghe. PetaBricks: A language and
compiler for algorithmic choice. In Proceedings of the 2009
ACM SIGPLAN conference on Programming language design
and implementation, PLDI ’09, pages 38–49, New York, NY,
USA, 2009. ACM.

[2] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Ef-
ficient management of parallelism in object oriented numeri-
cal software libraries. In Modern Software Tools in Scientific
Computing, pages 163–202. Birkhäuser Press, 1997.

[3] S. Baxter. Modern GPU library. http://nvlabs.github.io/

moderngpu/.

[4] N. Bell and M. Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In SC ’09:
Proc. Conference on High Performance Computing Network-
ing, Storage and Analysis, Nov. 2009.

[5] S. Bhowmick, B. Toth, and P. Raghavan. Towards low-cost,
high-accuracy classifiers for linear solver selection. In Pro-
ceedings of the 9th International Conference on Computa-
tional Science: Part I, ICCS ’09, pages 463–472, Berlin, Hei-
delberg, 2009. Springer-Verlag. ISBN 978-3-642-01969-2.

[6] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Op-
timizing matrix multiply using PHiPAC: A portable, high-
performance, ANSI C coding methodology. In Proceedings
of the 11th International Conference on Supercomputing, ICS
’97, pages 340–347, New York, NY, USA, 1997. ACM. ISBN
0-89791-902-5.

[7] E. V. Bonilla, F. V. Agakov, and C. K. I. Williams. Kernel
multi-task learning using task-specific features. In Proceed-
ings of the 11th International Conference on Artificial Intelli-
gence and Statistics (AISTATS), 2007.

[8] R. Caruana. Multitask learning. Mach. Learn., 28(1):41–75,
July 1997. ISSN 0885-6125.

[9] B. Catanzaro. In-place matrix transposition. https://github.
com/bryancatanzaro/inplace.

[10] B. Catanzaro, A. Keller, and M. Garland. A decomposition for
in-place matrix transposition. In Proceedings of the 19th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’14, pages 193–206, New York, NY,
USA, 2014. ACM.

[11] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle,
and O. Temam. Rapidly selecting good compiler optimiza-
tions using performance counters. In Proceedings of the Inter-
national Symposium on Code Generation and Optimization,
CGO ’07, pages 185–197, Washington, DC, USA, 2007. IEEE
Computer Society. ISBN 0-7695-2764-7.

[12] C. Chen. Model-guided empirical optimization for memory
hierarchy. In Ph.D dissertation, University of Southern Cali-
fornia, May 2007.

[13] M. Christen, O. Schenk, and H. Burkhart. PATUS: A code
generation and autotuning framework for parallel iterative
stencil computations on modern microarchitectures. In Pro-
ceedings of the 2011 IEEE International Parallel & Dis-
tributed Processing Symposium, IPDPS ’11, pages 676–687,

337

http://nvlabs.github.io/moderngpu/
http://nvlabs.github.io/moderngpu/
https://github.com/bryancatanzaro/inplace
https://github.com/bryancatanzaro/inplace

Washington, DC, USA, 2011. IEEE Computer Society. ISBN
978-0-7695-4385-7.

[14] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and
K. Yelick. Optimization and performance modeling of stencil
computations on modern microprocessors. SIAM Rev., 51(1):
129–159, Feb. 2009. ISSN 0036-1445.

[15] T. Davis. The University of Florida Sparse Matrix Collection.
ACM Transactions on Mathematical Software, 38:1:1–1:25,
2011.

[16] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M.
O’Reilly, and S. Amarasinghe. Autotuning algorithmic choice
for input sensitivity. In Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation, PLDI 2015, 2015.

[17] S. Donadio, J. Brodman, T. Roeder, K. Yotov, D. Barthou,
A. Cohen, M. J. Garzarán, D. Padua, and K. Pingali. A lan-
guage for the compact representation of multiple program ver-
sions. In Proceedings of the 18th International Conference on
Languages and Compilers for Parallel Computing, LCPC’05,
pages 136–151, Berlin, Heidelberg, 2006. Springer-Verlag.

[18] M. Frigo and S. G. Johnson. The fastest fourier transform in
the west. In Proceedings of the 1998 International Conference
on Acoustics, Speech, and Signal Processing, ICASSP ’98,
1997.

[19] A. Hartono, B. Norris, and P. Sadayappan. Annotation-based
empirical performance tuning using Orio. In Proceedings of
the 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, IPDPS ’09, pages 1–11. IEEE Com-
puter Society, 2009.

[20] M. A. Heroux, P. Raghavan, and H. D. Simon. Parallel
Processing for Scientific Computing (Software, Environments
and Tools). Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2006.

[21] H. Jégou, M. Douze, and C. Schmid. Hamming embedding
and weak geometric consistency for large scale image search.
In A. Z. David Forsyth, Philip Torr, editor, European Confer-
ence on Computer Vision, volume I of LNCS, pages 304–317.
Springer, oct 2008.

[22] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An
auto-tuning framework for parallel multicore stencil compu-
tations. In International Parallel and Distributed Processing
Symposium (IPDPS), 2010.

[23] Y. Liu, E. Z. Zhang, and X. Shen. A cross-input adaptive
framework for GPU program optimizations. In Proceedings
of the 2009 IEEE International Symposium on Parallel &
Distributed Processing, IPDPS ’09, pages 1–10, Washington,
DC, USA, 2009. IEEE Computer Society. ISBN 978-1-4244-
3751-1.

[24] A. Magni, C. Dubach, and M. F. P. O’Boyle. A large-scale
cross-architecture evaluation of thread-coarsening. In Pro-
ceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’13,
pages 11:1–11:11, New York, NY, USA, 2013. ACM.

[25] D. Merrill. Back40 Computing, . http://code.google.com/p/
back40computing/.

[26] D. Merrill. CUDA Unbound (CUB), . http://nvlabs.github.
io/cub/.

[27] D. Merrill, M. Garland, and A. Grimshaw. Policy-based tun-
ing for performance portability and library co-optimization. In
Proc. Innovative Parallel Computing (InPar 2012), May 2012.

[28] D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU
graph traversal. In Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’12, pages 117–128, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1160-1.

[29] S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and
B. Catanzaro. Nitro: A framework for adaptive code variant
tuning. In Proceedings of the 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, IPDPS ’14,
pages 501–512. IEEE Computer Society, 2014.

[30] D. Parello, O. Temam, A. Cohen, and J. Verdun. Towards
a systematic, pragmatic and architecture-aware program op-
timization process for complex processors. In Proceedings
of the ACM/IEEE SC2004 Conference on High Performance
Networking and Computing, Pittsburgh, PA, USA, 2004.

[31] E. Photonics and NVIDIA. CULA | sparse. http://www.

culatools.com/.

[32] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code
generation for DSP transforms. Proceedings of the IEEE,
special issue on “Program Generation, Optimization, and
Adaptation”, 93(2):232– 275, 2005.

[33] M. Ren, J. Y. Park, M. Houston, A. Aiken, and W. J. Dally.
A Tuning Framework for Software-Managed Memory Hierar-
chies. In International Conference on Parallel Architectures
and Compilation Techniques, pages 280–291, October 2008.

[34] S. Sanfilippo and P. Noordhuis. Redis. http://redis.io.

[35] M. Stephenson and S. Amarasinghe. Predicting unroll factors
using supervised classification. In Proceedings of the Inter-
national Symposium on Code Generation and Optimization,
CGO ’05, pages 123–134, Washington, DC, USA, 2005. IEEE
Computer Society.

[36] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. Hollingsworth.
A scalable auto-tuning framework for compiler optimization.
In Parallel Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, pages 1–12, May 2009.

[37] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A Library
of Automatically Tuned Sparse Matrix Kernels. Journal of
Physics: Conference Series, 16(1):521, 2005.

[38] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated
empirical optimization of software and the ATLAS project.
Parallel Computing, 27(1–2):3 – 35, 2001.

[39] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan. POET:
Parameterized optimizations for empirical tuning. In Parallel
and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, pages 1–8, 2007.

338

http://code.google.com/p/back40computing/
http://code.google.com/p/back40computing/
http://nvlabs.github.io/cub/
http://nvlabs.github.io/cub/
http://www.culatools.com/
http://www.culatools.com/
http://redis.io

	Introduction
	System Overview
	Tuning Process
	Model Construction using MTL
	Utilizing the Full Set of Device Features
	Profile Device Feature Selection (P-DFS)
	Cross-Validation Device Feature Selection (CV-DFS)

	Implementation
	Benchmarks
	Results
	Architecture Sensitivity of Benchmarks
	Prediction Performance
	Device Feature Selection Overhead
	Summary

	Related Work
	Conclusions

