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Abstract

We present a probabilistic framework for zero-shot ac-
tion recognition where some of the possible action cate-
gories do not occur in the training data. This problem is
of significant importance in Computer Vision since it is vir-
tually impossible to collect training data for all the possible
action classes. We propose a novel generative approach to
handle this problem. Our model assumes that the parame-
ters of the probability distribution representing any action
in the visual space can be expressed as a linear combina-
tion of a set of basis vectors where the combination weights
are given by the attributes of the action class. These basis
vectors can be learned solely using labeled data from the
known (i.e., previously seen) action classes, and can then
be used to predict the parameters of the probability distribu-
tions of unseen action classes. We consider two settings: (1)
Inductive setting, where we use only the labeled examples of
the seen action classes to predict the unseen action class pa-
rameters; and (2) Transductive setting which further lever-
ages unlabeled data from the unseen actions, facilitating
domain adaptation. While traditional methods model only
one of the two settings, we propose a very simple genera-
tive model that seamlessly combines the two in a stage-wise
manner. We evaluate our model in both standard(disjoint)
and generalized zero-shot learning settings.

Our framework also naturally extends to few-shot ac-
tion recognition where a few labelled examples from un-
seen classes are provided. Our experiments on the standard
datasets (UCF101, HMDB51 and Olympic) show signifi-
cant performance improvement with and without domain
adaptation in both standard(disjoint) and generalized set-
tings.

1. Introduction

Action Recognition is an important problem in Com-
puter Vision in which knowledge about a sequence of ac-

1Both authors have equal contribution.

tions is learned from a large collection of video clips. It is
a challenging task due to the inherent variability in actions,
non-deterministic occlusion patterns, abrupt changes in illu-
mination, cluttered dynamic background, and noisy videos.
Knowledge about an action is inferred usually by learning
from the labelled data in a supervised manner. Even as
more complex models are being built, it is a common obser-
vation that the number of categories of actions is progres-
sively increasing (for example, KTH has 6 categories while
Olympic, HMDB and UCF datasets have 16, 51, and 101
categories, respectively). Consequently, annotating videos
of this growing number of categories can be a very cumber-
some task and hence restricts the scalability of supervised
learning for a large number of categories.

To circumvent this problem, Zero-Shot Learning (ZSL)
of actions has been actively pursued. In the conventional
Action Recognition framework, only those classes present
in the training data can be recognized by the model during
the test phase. In Zero-Shot Learning, however, the model
is expected to recognize and categorize action classes that
did not appear in the training phase at all. The informa-
tion about the unseen classes is provided via other modal-
ities such as language in the form of textual descriptions,
word2vec [22] or human annotated attributes. Essentially,
the model has to learn to recognize the unseen classes based
on the knowledge acquired from the data instances of the
seen classes. Zero-shot learning typically categorized in
two settings. First one is standard setting, in which both
the seen and unseen classes are disjoint(Ytr ∩ Tte = Φ),
which is not true in real world. Hence the generalized zero-
shot(GZSL) setting has been proposed in which seen and
unseen classes may occur during test time [19, 23]. The
generalized zero-shot setting is harder than standard set-
ting(disjoint setting) since the models are biased towards
seen classes at training time. Most of the proposed methods
consider disjoint train and the test classes. The generalized
zero-shot setting relaxes this constraint.

Most zero-shot learning methods learn a linear com-
patibility mapping from the image space to the semantic
space. Since mapping is learned from seen classes which



are disjoint with unseen classes, it can lead to a domain
shift problem [7, 32] between visual space and semantic
space. Due to domain shift, learning an efficient mapping
becomes challenging. Another challenge to Zero-Shot Ac-
tion Recognition arises from the Hubness problem[4]. The
hubness problem occurs in the embedding space when a
few instances occur in the neighbourhood of a large number
of other instances regardless of their class labels. Hence,
a significant number of data instances can be potentially
misclassified. For reducing the Hubness problem, many
techniques have been proposed such as Domain Adaptation
based learning[10], Manifold based regression model[5] but
no significant improvement has been observed. In the pro-
posed method, we present a simple generative approach
that efficiently handles the above-mentioned shortcomings
in the existing approaches. The complete architecture of
our model is shown in figure 1. We tackle the hubness phe-
nomenon [4] by learning a set of basis vectors in the visual
space. The parameters of the distributions of each seen class
are represented by a linear combination of the basis vectors
weighted by the attributes of the corresponding class. The
parameters of an unseen class distribution are then com-
puted via a weighted combination of the learned basis vec-
tors, with weights being the attributes of the respective un-
seen class. The loss function (More details in Methodology
section) is formulated in such a way that the weighted com-
bination of the basis vectors of the seen classes are close
to the parameters obtained by the maximum likelihood esti-
mate over the data. We add an additional regularizer to en-
courage reconstruction ability of the attribute vectors from
the parameters of the seen class conditional densities so as
to minimize the information loss. Our proposed model has
a closed-form solution.

Our main contributions are as follows: (1) We provide
a probabilistic generative approach for zero-shot learning
(ZSL) where each action class is represented by a simple
Gaussian distribution; (2) We show that our approach al-
though simple generalizes well to the unseen classes in the
inductive setting and improves over the state-of-the-art; (3)
We show that our approach can be easily generalized to
the transductive setting where unlabeled data from unseen
classes are available at training time. (4) Since our approach
is generative, so we can generate unseen class examples by
using the parameters µc and σ2

c which helps the classifier in
the generalized zero-shot setting which is much harder than
the standard(disjoint) setting. Hence our model outperforms
in the generalized setting with significant improvement over
all the state-of-art methods. (5) We also extend the model to
the case where a few examples of each class are available;
and through extensive experimentation on three benchmark
datasets, we show that our simple approach gives significant
performance gains in all three settings over the state-of-the-
art methods.

2. Methodology
For the zero-shot action recognition setting, we denote

the total number of seen action classes by S and the total
number of unseen action classes by U . We take a genera-
tive classification based approach to the action recognition
problem where we assume that the data instances of each
action class (seen/unseen) c are generated by a distribution
p(x|θc). Without loss of generality, and for simplicity of
exposition, we will assume these distributions to be Gaus-
sians (note that our approach can be used with other dis-
tributions as well). In the Gaussian case, the parameters
θc consist of the mean vector µc ∈ RD and a diagonal
covariance matrix σ2

c . Where σ2
c ∈ RD is vector of diag-

onal covariance. In the zero-shot learning setting, we also
assume that each seen/unseen class has a class attribute vec-
tor ac ∈ RK , either provided by a human expert or as the
WORD2VEC embedding of the name of the action.

Given labeled data from the seen classes, it is straight-
forward to estimate the parameters µc,σc using Max-
imum Likelihood Estimation (MLE) or Maximum-a-
Posteriori (MAP) estimation. For example, using MLE,
the mean is estimated as µc = 1

Nc

∑Nc
i=1 xi and σc =

diag( 1
Nc

∑Nc
i=1(xi − µc)(xi − µc)

>) where Nc denotes
the number of labeled examples from class c. Here diag
represent diagonal of the covariance matrix, since instead
of full covariance, we are interested only in the diagonal
covariance.

However, this approach cannot be used to estimate the
parameters θc(c = S + 1, ..., S + U) of unseen classes
due to unavailability of labeled data corresponding to un-
seen classes. To resolve this problem, we parametrize the
θc = (µc,σ

2
c ) as a function of the class attributes ac,

i.e., θc = f(ac) and learn the function f using the labeled
data instances of seen classes in visual feature space. Once
learned, the function f can be used to predict θc for all the
unseen class actions c = S + 1, . . . , S + U using their re-
spective class attributes.

One simple choice of f is a linear mapping from the class
attributes ac to the class parameters θc. In the Gaussian
case, for the mean µc, such a linear function f can be model
as

µc = fµ(ac) s.t ac = f ′µ(µc), where c = 1 . . . S (1)

where f and ’‘inverse” f ′ are linear functions defined as:

fµ(ac) = Wµac and f ′(µc) = WT
µµc, where c = 1 . . . S

(2)
Here µc ∈ RD and Wµ ∈ RD×K . Wµ =

[wµ1 ,wµ2 , ..,wµK
] is a set of learned basis vectors in the

visual space, each column vector wµ1 ∈ RD represents
a basis vector. Given the empirical estimates of µ̂c, c =
1, . . . , S, we can use (ac, µ̂c) as “training data” to learn a



Figure 1. Proposed Model: Each class attribute is projected to the visual space, In the visual space each class is represented by a Gaussian
distribution. To avoid information loss, a reconstruction regularizer is added.

regression model f parametrized by Wµ that maps ac to
µ̂c.

Note that the model in Eq. 2 is akin to an autoen-
coder [12] since

µc = Wµac = WµW>
µµc (3)

Once the basis vectors Wµ,Wσ (which define the func-
tion f ) are learned, we can use them to estimate the data
distribution parameters (e.g., µc,σ2

c ) of the unseen classes.
Equation 3 shows the use of the basis vectors (Wµ) learned
from seen class labeled data instances to estimate the distri-
bution mean µc of unseen classes.

2.0.1 Linear Regression

Given the labeled data from seen classes c = 1, ..., S, we
can estimate their class distribution parameters using MLE.
We can then learn the functions fµ and fσ2 using training
data of the form (ac,µc)

S
c=1 and (ac,σ

2
c )
S
c=1. In the lin-

ear regression approach µc = fµ(ac) and σ2
c = fσ(ac),

we assume the functions fµ and fσ to be linear projections
with weight matrices, Wµ and Wσ , making this problem
equivalent to the following regression problem:

µc = Wµac s.t. ac = WT
µµc

ρc = logσ2
c = Wσ2ac s.t. ac = WT

σ2σ2
c

The projection matrices Wµ and Wσ can be easily
learned using a (regularized) least squares regression prob-
lem with training data (ac,µc)

S
c=1 and (ac,σ

2
c )
S
c=1. These

problems have simple closed form solution and we omit the
equations here for brevity. We give details equations for the
nonlinear case, as shown below.

2.0.2 Nonlinear Regression

For the non-linear regression, we first map the attributes
{ac}Sc=1 to the kernel space using the kernel function k
which is defined as a nonlinear mapping φ. Using the Rep-
resenter theorem [[27]], we can re-formulate the regression
problem in kernel space as given in equation 4. Note that in-
stead of computation the φ(ac) explicitly, we have to com-
pute only the dot product φ(ac)Tφ(ac′) = k(c, c′) for the
non-linear mapping of the two class c and c′. Let K be the
kernel matrix of S×S dimension containing pairwise simi-
larities of the attributes of the seen classes, M be the matrix
containing the mean of all seen classes, then the nonlinear
model fµc for cth class is obtained by:

min
Wµ

||M−WµK||2F + λµ||Wµ||22

s.t. K = W∗
µM

(4)

Eq 4 shows our main objective function. Here the first
term can be interpreted as learning an optimal weight matrix
that projects the attribute space to the visual space using the
kernel regression. The second term ensures that we can re-
construct the attribute vector from the visual space and acts
as a regularization term. Experimentally we find that min-
imizing the reconstruction error gives the better generaliz-
ability to the proposed method. Therefore instead of learn-
ing the different weights for the reconstruction, we use the
same shared weights. Therefore we have a new constraint:

W∗
µ = WT

µ



Therefore the complete objective can be written as:

W∗
µ = argmin

Wµ

||M−WµK||2F + λµ||Wµ||22

+λ1||K−WT
µM||2F

(5)

For solving the Eq.[5] we are provide the proper optimiza-
tion method in the below section.

2.0.3 Optimization

Using the trace property, we have Tr(K) = Tr(KT ) and
Tr(WT

µM) = Tr(MTWµ). Therefore equation 5 can be
written as:

W∗
µ = argmin

Wµ

||M−WµK||2F + λµ||Wµ||22

+λ1||KT −MTWµ||2F
(6)

Taking the derivative of eq(6) and equating to zero we have.

MMTWµ+Wµλ1KKT +λµWµ = (1+λ1)MKT (7)

MMTWµ + Wµ(λ1KKT + λµ) = (1 + λ1)MKT (8)

The above equation is in the form of:

AW + WB = C (9)

This is a well known equation in the linear algebra which
can be solved using the Bartels-Stewart algorithm [8] effi-
ciently. Furthermore, a simpleMatlab function is available
for solving this. The above equation is known as Sylvester
equation where:

A = MMT (10)

B = λ1KKT + λµ (11)

C = (1 + λ1)MKT (12)

In similar way, the nonlinear model fσ2
i

is obtained by solv-
ing:

W∗
σ2 = argmin

Wσ2

||R−Wσ2K||2F + λσ2 ||Wσ2 ||22

+λ2||K−WT
σ2R||2F

(13)

RRTWσ2 +Wσ2(λ2KKT +λσ2) = (1+λ2)RKT (14)

The above equation is also in the form of AW + WB = C

A = RRT (15)

B = λ2KKT + λσ2 (16)

C = (1 + λ2)RKT (17)

Given the learned parameters Wµc and Wσ2
c
, the param-

eters of data distribution for unseen classes c = S +
1, . . . , S + U are estimated as:

µc = Wµkc, & σ2
c = exp(ρc) = exp(Wσ2kc) (18)

Where kc = [k(ac,a1), ...,k(ac,aS)] denotes an S × 1
vector of kernel-based similarities of the class attribute vec-
tors of the unseen class c with the class attribute vectors of
all the seen classes.

2.1. Domain Adaptation in Transductive setting

One of the unique advantages of the proposed generative
approach is that unlabeled data from unseen classes can be
used to improve the parameters (µc and σc). In zero-shot
learning, train and test data come from different domains.
Hence it is very likely that parameters learned in the train-
ing, will not work well for the test data. This phenomenon
is called domain shift. An illustrative view of the domain
shift can be seen in figure 2. One way to overcome this is-
sue is to use unlabeled data during test time to further fine
tune the parameters. In the transductive setting, we assume
that all the test data is given at once at the test time. Because
of the availability of this data, we can infer more informa-
tion about the unseen classes. In this work, we handle the
domain shift problem by initializing the parameters µc,σc
using the learned basis vectors, which are then fine-tuned
using the unlabeled data using the EM algorithm. From ex-
tensive experimentation, we show that this approach gives
better performance.

The estimated distribution parameters of unseen classes
(µc,σ

2
c )S+Uc=S+1 can be further improved by using the unla-

beled unseen classes data. In this Transductive setting, we
use Expectation-Maximization(EM) based iterative proce-
dure that updates the estimation of the distribution parame-
ters for unseen classes. This procedure is equivalent to the
GMM model which uses the unlabeled data (xn)Nun=1 from
unseen classes. This GMM has U mixture components,
each corresponding to one unseen class and is initialized by
the estimated parameters of unseen classes (µc,σ

2
c )S+Uc=S+1

in the inductive setting. The procedure for Transductive set-
ting is described stepwise below:

1. Let the initial estimate of the unseen class parameters
be Θ = (µc,σ

2
c )S+Uc=S+1 where µc = Wµac, σ2

c =
exp (Wσ2ac). Here Wµ and Wσ2 are estimated from
seen class data using equations 5, 13.

2. E Step: Infer the probabilities for each example xn be-
longing to each of the unseen classes c = S+1, ..., S+
U as p(yn = c|xn,θ) = N (xn|µc,σ2

c )

3. M Step: Use the inferred class labels to re-estimate
Θ = (µc,σ

2
c )S+Uc=S+1

4. Go to step 2 if not converged.



Figure 2. Domain Adaptation illustrative example: Each class
attribute is projected to the visual space, In the visual space each
class are represented by a distribution. Because the seen and un-
seen class are disjoint, there is a problem of domain shift.

2.2. Extension for Few-shot/one-shot action recog-
nition

In few-shot action recognition, we have a small num-
ber of labeled examples for each of the unseen classes.
Since our method assumes a Gaussian data distribution, we
can extend our zero-shot action recognition method to few-
shot/one-shot action recognition. We assume the initial esti-
mate obtained using the previous approach as the prior. Due
to conjugacy of the Gaussian, we can update the estimates
(µc, σ

2
c )S+Uc=S+1 obtained from zero-shot action recognition

method in a straightforward manner when such labeled data
for unseen classes is provided. Given a small number of la-
beled data (xn)Ncn=1 for unseen class c the parameters of this
class can be directly updated as:

µFSc =
µ +

∑Nc
n=1 xn

1 +Nc
(19)

σ2(FS)
c = (

1

σ2
c

+
Nc
σ2∗ )−1 (20)

where σ2∗ = 1
Nc

∑Nc
n=1(xn −µc)

2 denotes empirical vari-
ance of Nc observations from the unseen class c.

3. Related Work
ZSL can be viewed as an interplay of three subprob-

lems: a visual representation of data instances (feature
representation), semantic representation of all classes such
as word2vec representation [22], and learning a function
which establishes the relationship between visual represen-
tations and semantic representations of each class[16, 17].

For visual (or feature) representation of class instance,
popular hand-crafted features such as HOG [3], HOF [2],
ITF [33] were designed. However, the proven utility of
deep features for many tasks such as Object Recognition
[13, 28, 30], Object Detection [6] etc has made features
from well performing CNNs such as [18], Two-Stream

CNN[21], 3DCNN [9] ubiquitous for Action Recognition
tasks including the zero shot setting. By using 3DCNN fea-
tures in ZSL, a significant boost in accuracy has been ob-
served [34]. Semantic representation of a class provides ad-
ditional, complementary information to the visual features
of the classes. Typically, two types of semantic representa-
tions have been widely used in the ZSL literature: attribute
representations [15] and word vector representations [22].
Attribute representations are manually annotated vectors for
each class based on the gesture and motion appearance of
the objects in the video. Word Vector representations are
automatically learned from a large amount of textual data
(Wikipedia Corpus). Word2vec models have been used suc-
cessfully for extracting semantic word vectors from class
names [34, 10, 38]. The core step in ZSL is to find a func-
tion or projection matrix which can establish a relationship
between visual space and semantic space in such a way that
visual features of classes map close to their semantic fea-
tures and vice versa. For example, we would like to have
visual features of ‘running’ map close to semantic features
of ‘running’ and far away from an unrelated action such as
‘eating’.

Most methods for zero-shot learning are evaluated on
image classification whereas only a few methods have been
proposed for zero-shot action recognition in the literature
[34, 38, 37, 24]. Most methods model either the inductive
or the transductive setting. The most popular approach to
ZSL is learning a linear compatibility between the visual
and semantic space [1]. [26, 12] provide novel regulariza-
tions while learning a linear compatibility function. ESZSL
[26] models the relationship between features and attributes
as a linear compatibility function while explicitly regulariz-
ing the objective. UDA [11] uses a domain adaptation tech-
nique by using unlabeled data of unseen classes for better
estimation of the parameters.

Recently [32] proposed a simple generative approach
for zero-shot learning, without reconstruction regularizer
from visual to attribute space. Their paper assume the
data distributions are Gaussian. [12] proposed a seman-
tic auto-encoder for zero-shot learning which introduced
the reconstructability regularizer. This paper works only
in the inductive setting and their approach is not genera-
tive. The generative approach of our paper is motivated by
[32] with auto-encoder style regularizer proposed by [12].
[38] have proposed a transductive framework for zero-shot
action recognition, which uses unlabeled unseen class data
for training the model. In their work, they introduced a
manifold-regularized regression and a data augmentation
strategy to enhance the performance. They have also intro-
duced a multi-task visual-semantic mapping for zero-shot
action recognition. In addition, they used prioritized auxil-
iary data augmentation for domain adaptation and improved
the mapping between visual and semantic spaces.



Because of the generative nature of our proposed ap-
proach, we can synthesize the data from unseen class based
on attribute and train the classifier. This approach helps
to reduce the baisness in the case of Generalize Zero-Shot
Learning. The efficacy of the proposed approach for the
GZSL as well as ZSL can be seen from the experiment on
three standard datasets. On all standard datasets our ap-
proach has shown the state-of-art result. Here our assump-
tion is data distributions are Gaussian, which can be the hard
assumption. Recently [35] proposed an approach which can
transform any data distribution to a unimodal Gaussian in
the ZSL setup.

4. Experiments

Datasets and Settings: We evaluate our proposed
method in three most challenging video action recognition
data sets, UCF101 [29], HMDB51 [14] and Olympic [20].
In zero-shot action recognition, these three datasets have
been widely used as bench mark. We report mean accu-
racy along with standard deviation on 30 independent test
runs with random train/test class splits.

• UCF101: [29] is human action recognition data set
with 101 different classes of actions and total of 13320
video clips. In our experiments, we split the classes
into 51 seen and 50 unseen class respectively. ‘

• HMDB51: [14] is the one of the most challenging
human action recognition dataset with 51 different
classes of human actions and total number of 6766
video clips. Each class has more than 100 video clips.
For the evaluation of our model, we perform a 26/25
split for seen and unseen classes respectively.

• Olympic: [20] This dataset has 783 videos from 16
different classes. Splits for seen and unseen classes is
8/8.

Dataset #videos #classes seen/unseen Attribute dim
UCF101 13320 101 51/50 115

HMDB51 6676 51 26/25 N/A
Olympic 783 16 8/8 40

Table 1. Dataset details and their train test split on all the three
dataset used in our experiment.

Visual features: The quality of visual features directly af-
fect the efficiency of the model. We use deep features as
they have been shown to be successful in many computer
vision tasks. In our experiments, we use the latest convo-
lutional 3D(C3D) visual features provided by [31]. This
model was pre-trained on the sports-1M dataset. We ex-
tract the outputs of fc6 layer for all segments similar to

[31] and then averaged over the segments to form a 4096-
dimensional video representation which is used as input vi-
sual features in our method.

Semantic representation: Two types of semantic rep-
resentations are widely used : human labeled attributes [15]
and automatically learned distributed semantic representa-
tions such as word vectors [22]. Word vector representation
is learned automatically by a skip-gram model trained on
the google news text corpus provided by Google. Each
word is represented by a 300 dimensional vector. We
experiment on both attribute and word2vec representations.
For HMDB51 dataset, to the best of our knowledge, there
is no publicly available attribute representations of the
classes. Hence only word2vec is used for HMDB51.
However, for UCF101 and Olympic datasets, 115 and 40
dimensional attribute vectors are available respectively
[29, 20].

Hyper-parameters: We investigate the optimal hyper-
parameters while training via grid search. In our proposed
model, there are four hyper-parameters: λµ, λ1 (refer
equation 5) and λσ2 , λ2 (refer equation 13) for estimating
the projection matrix for mean and variance. The optimal
values of hyper-parameters are chosen via cross validation
on the seen classes. For cross validation, we randomly
fix 1/4th of the seen classes as validation classes and
conduct five trials on 30 random splits (same as [34]). For
generalized zero-shot learning setting, generating a number
of examples for unseen classes is also hyper-parameter
which we find using cross-validation and observe best
model performance for 200 examples.

Comparison with State-of-the-art ZSL Methods:
In our first set of experiments, we evaluate our model for
zero-shot action recognition with inductive and transduc-
tive setting and compare with a number of state-of-the-art
methods.

Evaluation Metric: We have evaluated our model
using 30 different splits into seen and unseen classes
provided by [34] for UCF101(51/50), HMDB51(26/25)
datasets. For Olympic dataset we generate 30 random
splits for seen and unseen classes(8/8). We use the average
accuracy for all 30 splits as the evaluation metric. For fair
comparison, we run five such trials for 30 random splits
and present the final accuracy with average and standard
deviation.
For generalized zero-shot setting we have evaluated for
30 different splits as above and calculated the average
accuracy for seen and unseen classes. The final evaluation
of our model is on the harmonic mean of the average
accuracy of seen and unseen classes, which is similar as
[23, 19, 1].



Method Embed Olympic UCF101 HMDB51
HAA [19] A 46.1 ± 12.4 14.9 ± .8 N/A
DAP [16] A 45.4 ± 12.8 14.3 ± 1.3 N/A
IAP [17] A 42.3±12.5 12.8 ± 2 N/A
ST [36] W N/A 13.0±2.7 10.9±1.5
SJE [1] W 28.6±4.9 9.9±1.4 13.3±2.4
SJE [1] A 47.0±14.8 12.0±1.2 N/A

ESZSL [26] W 39.6±9.6 15.0±1.3 18.5±2
UDA [11] A N/A 13.2±1.9 N/A
Bi-dir [34] A N/A 20.5±.5 N/A
Bi-dir [34] W N/A 18.9±.4 18.6±.7

Ours A 50.41±11.2 22.74±1.2 N/A
Ours W 34.12±10.1 17.33+1.1 19.28±2.1

Table 2. Results on inductive setting for standard zero shot learning setting(disjoint setting) for the action recognition. Here A represents
the human annotated attribute vectors and W represents the word2vec embedding.

Inductive setting: In this setting, it is assumed that
only the labeled data from the seen classes is available
during training. Table 2 shows the experimental results in
the inductive setting of the zero-shot action recognition
problem. We assume that the train and test classes are
disjoint. Note that this assumption is made for all the
evaluation settings in this work. In this setting, we obtain
an improvement of 3% on the Olympic dataset. On
the UCF-101 which is the most used dataset for zero
shot action recognition, the proposed model outperforms
state-of-the-art on attribute-based semantic representations.
For HMDB dataset, the attribute vectors are not available.
Hence, we present results only on word2vec embeddings.
Our model outperforms the state-of-the-art for this dataset
also.

Transductive setting: In the transductive setting, it
is assumed that the unlabeled data of the unseen classes is
also available at train time. Table 3 shows the performance
of our model in the transductive setting. This unlabeled data
acts as a source of extra information which helps domain
adaptation to the unseen class. Our model outperforms
the state-of-the-art in the Olympic and HMDB datasets.
The performance on the UCF-101 dataset is slightly
lower, where [34] has the best performance. However, we
outperform them in the inductive setting.

Generalized zero-shot setting

In this setting, the test data may come from both seen
and unseen classes. In this setting, from the seen classes,
we separate 20% of the data for the testing and remaining
80% data is used as training data for calculating Wµ and
Wσ2 which is used to predict the mean(µ) and variance(σ)
for the unseen classes. One way to handle this setting is

Method Embed Olympic UCF101 HMDB51
PST [25] A 48.6±11 15.3 ±2.2 N/A
ST [36] W N/A 15.8±2.3 15.0±3

TZWE [37] A 53.5±11.9 20.2±2.2 N/A
TZWE [37] W 38.6±10.6 18.0±2.7 19.1 ±3.8
Bi-dir [34] A N/A 28.3±1.0 N/A
Bi-dir [34] W N/A 21.4±.8 18.9±1.1
UDA [11] A N/A 13.2±.6 N/A

Ours A 57.88±14.1 24.48±2.9 N/A
Ours W 41.27±11.4 20.25±1.9 20.67±3.1

Table 3. Results on transductive setting for the standard zero shot
learning setting(disjoint setting) for the action recognition

to assign each test data-point to the class whose estimated
distribution gives the highest score. However, we notice
that such an approach is biased towards seen classes since
the model has not seen any unseen class examples. In our
approach, we propose an attractive solution to this issue:
we synthesize class instances of unseen classes using the
µc and σ2

c which are obtained from the transductive setting
approach; these class instances are called pseudo class in-
stances for unseen classes. Here we generate 200 instances
for each unseen classes. Since we now have labelled data
for seen classes and pseudo labelled data for unseen classes,
we train SVM classifier for labelled seen classes data and
pseudo labelled data for unseen classes. We then pass the
test data (unseen class data plus 20% seen class data) to the
trained SVM classifier for classification. Table 4 presents
the performance of our model in the generalized setting for
zero-shot action classification which clearly shows that it
significantly outperforms state-of-art on all the datasets.

Few-shot action recognition: We also experiment our
method for the few shot action recognition and present the
results. Here only a small number of examples for each of
the unseen classes are available during training. Our gener-
ative model provides a simple way to update the parameters
of the class distribution using equation 19, 20 . It is clear



Method Embed Olympic UCF101 HMDB51
HAA [19] A 49.4 ± 10.8 18.7 ± 2.4 N/A

SJE [1] W 32.5±6.7 8.9±2.2 10.5±2.4
ConSE [23] W 37.6 ± 9.9 12.7 ± 2.2 15.4± 2.8

Ours A 52.41±12.2 23.74±1.2 N/A
Ours W 42.23±10.2 17.45±2.2 20.10±2.1

Table 4. Results on the transductive setting for generalized zero-
shot learning setting for the action recognition. Here A repre-
sents the human annotated attribute vectors and W represents the
word2vec embedding.

from the Table 5 that availability of the few data points of
the unseen classes significantly improves the performance
which is now comparable to that of supervised learning.
Note that we do not assume any unlabeled data from the
unseen classes in this setting. We test our model with vary-
ing number of examples of each unseen classes. The plot of
accuracy with respect to the number of samples per class is
shown in Figure 3. To the best of our knowledge, this is the
first work reporting results in this setting on video datasets.

Previous approaches formulate the few shot learning
problem (in the image classification domain) in a purely su-
pervised framework. Whereas, our model takes advantage
of transfer learning from semantic space along with super-
vision.

Dataset 2 points 3 points 4 points 5 points
UCF101 68.78±3.3 73.49±2.2 76.51±2.1 78.68±1.8

HMDB51 42.10±3.6 47.54±3.3 50.34±3.4 52.58±3.1
Olympic 73.20±7.4 75.35±7.3 80.21 ±7.24 83.81±7.11

Table 5. Results on inductive setting for few/one shot learning for
the action recognition

Figure 3. Accuracy vs number of data points for few-shot learning

5. Conclusion
A simple probabilistic framework for the zero-shot ac-

tion recognition problem is presented in this work. The
proposed approach performs well in both the inductive and

transductive setting for the standard (disjoint) and general-
ized zero-shot learning. The unseen data are synthesized
utilizing the generative nature of the proposed approach to
overcome the unbiased learning of classifier. This handles
the problem of GZSL and solves it successfully. In addi-
tion, another approach is proposed for domain shift prob-
lem using domain adaptation in transductive setting. This
approach yields a closed form solution for the parameters
to make it fast and easy to implement. Experimental re-
sults are shown to achieve state-of-the-art performance. The
proposed method also generalizes to few-shot action recog-
nition setting, achieving comparable results to fully super-
vised learning using only few-data.
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