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ABSTRACT

Markov chain Monte Carlo (MCMC) algorithms are generally regarded as the gold standard technique for
Bayesian inference. They are theoretically well-understood and conceptually simple to apply in practice.
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The drawback of MCMC is that performing exact inference generally requires all of the data to be processed

at each iteration of the algorithm. For large datasets, the computational cost of MCMC can be prohibitive,
which has led to recent developments in scalable Monte Carlo algorithms that have a significantly lower
computational cost than standard MCMC. In this article, we focus on a particular class of scalable Monte
Carlo algorithms, stochastic gradient Markov chain Monte Carlo (SGMCMC) which utilizes data subsampling
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techniques to reduce the per-iteration cost of MCMC. We provide an introduction to some popular SGMCMC
algorithms and review the supporting theoretical results, as well as comparing the efficiency of SGMCMC
algorithms against MCMC on benchmark examples. The supporting R code is available online at https://

github.com/chris-nemeth/sgmcmc-review-paper.

1. Introduction

The Bayesian approach to modeling data provides a flexi-
ble mathematical framework for incorporating uncertainty of
unknown quantities within complex statistical models. The
Bayesian posterior distribution encodes the probabilistic uncer-
tainty in the model parameters and can be used, for exam-
ple, to make predictions for new unobserved data. In gen-
eral, the posterior distribution cannot be integrated analyti-
cally and it is therefore necessary to approximate it. Deter-
ministic approximations, such as the Laplace approximation
(see Bishop 2006, sec. 4.4), variational Bayes (Blei, Kucukel-
bir, and McAuliffe 2017), and expectation-propagation (Minka
2001), aim to approximate the posterior with a simpler tractable
distribution (e.g., a normal distribution). These determinis-
tic approximations are often fit using fast optimization tech-
niques and trade-off exact posterior inference for computational
efficiency.

Markov chain Monte Carlo (MCMC) algorithms (Brooks
et al. 2011) approximate the posterior distribution with a
discrete set of samples generated from a Markov chain
whose invariant distribution is the posterior distribution.
Simple MCMC algorithms, such as random-walk Metropolis
(Metropolis et al. 1953), are easy to apply and only require
that the unnormalized density of the posterior can be evaluated
point-wise. More efficient MCMC algorithms, which offer faster
exploration of the posterior, utilize gradients of the posterior
density within the proposal mechanism (Roberts and Tweedie
1996; Girolami and Calderhead 2011; Neal 2011). Under mild
conditions, the samples generated from the Markov chain con-
verge to the posterior distribution (Roberts and Rosenthal 2004)

and for many popular MCMC algorithms, rates of conver-
gence based on geometric ergodicity have been established
(see Meyn and Tweedie 1994; Roberts and Rosenthal 1997, for
details).

While MCMC algorithms have the advantage of provid-
ing asymptotically exact posterior samples, this comes at the
expense of being computationally slow to apply in practice.
This issue is further exacerbated by the demand to store and
analyze large-scale datasets and to fit increasingly sophisti-
cated and complex models to these high-dimensional data.
For example, scientific fields, such as population genetics (Raj,
Stephens, and Pritchard 2014), brain imaging (Andersen et al.
2018), and natural language processing (Yogatama et al. 2014),
commonly use a Bayesian approach to data analysis, but the
continual growth in the size of the datasets in these fields pre-
vents the use of traditional MCMC methods. Computational
challenges such as these have led to recent research interest
in scalable Monte Carlo algorithms. Broadly speaking, these
new Monte Carlo techniques achieve computational efficiency
by either parallelizing the MCMC scheme, or by subsampling
the data.

If the data can be split across multiple computer cores then
the computational challenge of inference can be parallelized,
with an MCMC algorithm run on each core to draw samples
from a partial posterior that is conditional on only a subset
of the full data. The challenge is then to merge these poste-
rior samples from each computer to generate an approxima-
tion to the full posterior distribution. It is possible to con-
struct methods to merge samples that are exact if the par-
tial posteriors are Gaussian (Scott et al. 2016); for example,
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with update rules that just depend on the mean and vari-
ance for each partial posterior. However, it is hard to quan-
tify the level of approximation such rules introduce due to
non-Gaussianity of the partial posteriors. Alternative merging
procedures, that aim to be more robust to non-Gaussianity,
have also been proposed (Neiswanger, Wang, and Xing 2014;
Rabinovich, Angelino, and Jordan 2015; Minsker et al. 2017;
Nemeth and Sherlock 2018; Srivastava, Li, and Dunson 2018),
but it is hard to quantify the level of approximation accuracy
such merging procedures have in general. Bespoke methods
are also needed when interest in the joint posterior of the
parameters relates to subsets of the data, or individual data
points, for example, when inferring clusters (Zuanetti et al.
2019)

Alternatively, rather than using multiple computer cores, a
single MCMC algorithm can be used, where only a subsample
of the data is evaluated at each iteration (Bardenet, Doucet,
and Holmes 2017). For example, in the Metropolis—Hastings
algorithm, the accept-reject step can be approximated with a
subset of the full data (Bardenet, Doucet, and Holmes 2014;
Korattikara, Chen, and Welling 2014; Quiroz et al. 2019). Again
these methods introduce a trade-off between computational
speed-up and accuracy. For some models, it is possible to use
subsamples of the data at each iteration with the guarantee
of sampling from the true posterior; for example, continuous-
time MCMC methods (Bouchard-Coété, Vollmer, and Doucet
2018; Fearnhead et al. 2018; Bierkens, Fearnhead, and Roberts
2019). These exact methods can only be applied if the posterior
satisfies strong conditions, for example, the derivative of the
log-posterior density can be globally bounded. To date, these
methods have only been successfully applied to relatively simple
models, such as logistic regression.

Perhaps the most general and popular class of scalable,
subsampling-based algorithms are stochastic gradient MCMC
(SGMCMC) methods. These algorithms are derived from dif-
fusion processes which admit the posterior as their invariant
distribution. A discrete-time Euler approximation of the dif-
fusion is used for Monte Carlo sampling. Many such meth-
ods have been based on the over-damped Langevin diffusion
(Roberts and Tweedie 1996). Simulating from the Euler approx-
imation gives the unadjusted Langevin algorithm. Due to the
discretization error, the invariant distribution of unadjusted
Langevin algorithm is only an approximation to the poste-
rior; though adding a Metropolis-type correction produces an
MCMC sampler with the correct invariant distribution (Besag
1994). Even without the Metropolis correction, the unadjusted
Langevin algorithm can be computationally expensive as it
involves calculating the gradient of the log-posterior density
at each iteration and this involves a sum over the full data.
Inspired by stochastic gradient descent (SGD, Robbins and
Monro 1951), Welling and Teh (2011) proposed the stochastic
gradient Langevin algorithm, where the gradient component of
the unadjusted Langevin algorithm is replaced by a stochastic
approximation calculated on a subsample of the full data. An
advantage of SGMCMC over other subsampling-based MCMC
techniques, such as piece-wise deterministic MCMC (Fearn-
head et al. 2018), is that it can be applied to a broad class of
models and, in the simplest case, only requires that the first-
order gradient of the log-posterior density can be evaluated

point-wise. A drawback of these algorithms is that, while pro-
ducing consistent estimates (Teh, Thiery, and Vollmer 2016),
they converge at a slower rate than traditional MCMC algo-
rithms. In recent years, SGMCMC algorithms have become a
popular tool for scalable Bayesian inference, particularly in the
machine learning community, and there have been numerous
methodological (Chen, Fox, and Guestrin 2014; Ma, Chen, and
Fox 2015; Dubey et al. 2016; Baker et al. 2019a) and theo-
retical developments (Teh, Thiery, and Vollmer 2016; Vollmer,
Zygalakis, and Teh 2016; Durmus and Moulines 2017; Dalalyan
and Karagulyan 2019) along with new application areas for these
algorithms (Balan et al. 2015; Gan et al. 2015; Wang, Fienberg,
and Smola 2015). This article presents a review of some of the
key developments in SGMCMC and highlights some of the
opportunities for future research.

This article is organized as follows. Section 2 introduces
the Langevin diffusion and its discrete-time approximation as
the basis for SGMCMC. This section also presents theoretical
error bounds on the posterior approximation and an illustrative
example of stochastic gradient Langevin dynamics (SGLD) on
a tractable Gaussian example. In Section 3, we show how the
SGMCMC framework has been extended beyond the Langevin
diffusion, with many popular SGMCMC algorithms given as
special cases. Like many MCMC algorithms, SGMCMC has
tuning parameters which affect the efficiency of the algorithm.
Standard diagnostics for tuning traditional MCMC algorithms
are not appropriate for SGMCMC and Section 4 introduces the
kernel Stein discrepancy as a metric for both tuning and assess-
ing convergence of SGMCMC algorithms. Section 5 reviews
some of the recent work on extending SGMCMC to new settings
beyond the case where data are independent and the model
parameters are continuous on the real space. A simulation study
is given in Section 6, where several SGMCMC algorithms are
compared against traditional MCMC methods to illustrate the
trade-off between speed and accuracy. Finally, Section 7 con-
cludes with a discussion of the main points in the article and
highlights some areas for future research.

2. Langevin-Based Stochastic Gradient MCMC
2.1. The Langevin Diffusion

We are interested in sampling from a target density 7 (9), where
we assume 0 € R and the unnormalized density is of the form,

7(0) o exp{—U(®)}, (1)

and defined in terms of a potential function U(#). We will
assume that U(#) is continuous and differentiable almost every-
where, which are necessary requirements for the methods we
discuss in this article. In our motivating applications from
Bayesian analysis for big data, the potential will be defined as
a sum over data points. For example, if we have independent
data, y1,...,yn then 7(0) o p(6) ]_[filf(yiw), where p(0)
is the prior density and f(y;|@) is the likelihood for the ith
observation. In this setting, we can define U(f) = Zfil U;(0),
where U;(0) = —logf(yi|0) — (1/N) log p(6).

One way to generate samples from 7 (@) is to simulate a
stochastic process that has 7 as its stationary distribution. If we
sample from such a process for a long time period and throw



away the samples we generate during an initial burn-in period,
then the remaining samples will be approximately distributed as
7. The quality of the approximation will depend on how fast the
stochastic process converges to its stationary distribution from
the initial point, relative to the length of the burn-in period.
The most common example of such an approach to sampling
is MCMC (Hastings 1970; Dunson and Johndrow 2020).

Under mild regularity conditions (Roberts and Tweedie
1996; Pillai, Stuart, and Thiéry 2012), the Langevin diffusion,
defined by the stochastic differential equation

do() = —%VU(0(t))dt + dBy, 2)

where VU (0(t)) is the drift term and B; denotes d-dimensional
Brownian motion, has 7 as its stationary distribution. This
equation can be interpreted as defining the dynamics of a
continuous-time Markov process over infinitesimally small time
intervals. That is, for a small time-interval & > 0, the Langevin
diffusion has approximate dynamics given by

0t +h) ~0(t) — gvuw(t)) +VhZ, k=0,....K, (3)
where Z is a vector of d independent standard Gaussian random
variables.

The dynamics implied by (3) give a simple recipe to approxi-
mately sample from the Langevin diffusion. To do so over a time
period of length T = Kh, for some integer K, we just set f¢ to
be the initial state of the process and repeatedly simulate from
(3) to obtain values of the process at times h, 2h, . .., Kh. In the
following, when using such a scheme we will use the notation
0} to denote the state at time kh. If we are interested in sampling
from the Langevin diffusion at some fixed time T, then the Euler
discretization will become more accurate as we decrease h; and
we can achieve any required degree of accuracy if we choose h
small enough. However, it is often difficult in practice to know
when h is small enough, see Section 4 for more discussion of
this.

2.2. Approximate MCMC Using the Langevin Diffusion

As the Langevin diffusion has 7 as its stationary distribution,
it is natural to consider this stochastic process as a basis for
an MCMC algorithm. In fact, if it were possible to simulate
exactly the dynamics of the Langevin diffusion, then we could
use the resulting realizations at a set of discrete time-points as
our MCMC output. However, for general (@) the Langevin
dynamics are intractable, and in practice people often resort to
using samples generated by the Euler approximation (3).

This is most commonly seen with the Metropolis-adjusted
Langevin algorithm, or MALA (Roberts and Tweedie 1996).
This algorithm uses the Euler approximation (3) over an appro-
priately chosen time-interval, 4, to define the proposal distri-
bution of a standard Metropolis—-Hastings algorithm. The sim-
ulated value is then either accepted or rejected based on the
Metropolis-Hastings acceptance probability. Such an algorithm
has good theoretical properties, and in particular, can scale
better to high-dimensional problems than the simpler random
walk MCMC algorithm (Roberts and Rosenthal 1998, 2001).
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A simpler algorithm is the unadjusted Langevin algorithm,
also known as ULA (Ermak 1975; Parisi 1981), which simulates
from the Euler approximation but does not use a Metropolis
accept-reject step and so the MCMC output produces a biased
approximation of m. Computationally, such an algorithm is
quicker per-iteration, but often this saving is small, as the O(N)
cost of calculating VU (@), which is required for one step of the
Euler approximation, is often at least as expensive as the cost
of the accept-reject step. Furthermore, the optimal step size for
MALA is generally large, resulting in a poor Euler approxima-
tion to the Langevin dynamics—and so ULA requires a smaller
step size, and potentially many more iterations. One advantage
that ULA has is that its performance is more robust to poor
initializations; by comparison a well-tuned MALA algorithm
often has a high rejection probability if initialized in the tail of
the posterior.

The computational bottleneck for ULA is in calculating
VU(8), particularly if we have a large sample size, N, as U(#) =
Zf\il Ui(0). A solution to this problem is to use SGLD (Welling
and Teh 2011), which avoids calculating VU(#), and instead
uses an unbiased estimate at each iteration. It is trivial to obtain
an unbiased estimate using a random subsample of the terms in
the sum. The simplest implementation is to choose n <« N and
estimate VU(#) with

vue) = > vuie), (4)
n i€eSy

where S, is a random sample, without replacement, from
{1,...,N}. We call this the simple estimator of the gradients,
and use the superscript (n) to denote the subsample size used
in constructing our estimator. The resulting SGLD is given in
Algorithm 1, and allows for the setting where the step size of the
Euler discretization depends on iteration number. Welling and
Teh (2011) justified the SGLD algorithm by giving an informal
argument that if the step size decreases to zero with iteration
number, then it will converge to the true Langevin dynamics,
and hence be exact; see Section 2.4 for a formal justification of
this.

Algorithm 1: SGLD
Input: 6, {ho,...,hx}.
forkel,...,Kdo
Draw S, C {1,..., N} without replacement
Estimate @U(O)(") using (4)
Draw & ~ N(0, hiI)
Update Oy < 0 — %@U(Gk)(”) + &
end

The advantage of SGLD is that, if n <« N, the per-iteration
cost of the algorithm can be much smaller than either MALA
or ULA. For large data applications, SGLD has been empirically
shown to perform better than standard MCMC when there is
a fixed computational budget (Ahn et al. 2015; Li, Ahn, and
Welling 2016). In challenging examples, performance has been
based on measures of predictive accuracy on held-out test data,
rather than based on how accurately the samples approximate
the true posterior. Furthermore, the conclusions from such
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studies will clearly depend on the computational budget, with
larger budgets favoring exact methods such as MALA—see the
theoretical results in Section 2.4.

The SGLD algorithm is closely related to SGD (Robbins and
Monro 1951), an efficient algorithm for finding local maxima
of a function. The only difference is the inclusion of the additive
Gaussian noise at each iteration of SGLD. Without the noise, but
with a suitably decreasing step size, SGD would converge to a
local maxima of the density 77 (). Again, SGLD has been shown
empirically to out-perform SGD (Chen, Fox, and Guestrin
2014) at least in terms of prediction accuracy—intuitively this
is because SGLD will give samples around the estimate obtained
by SGD and thus can average over the uncertainty in the param-
eters. This strong link between SGLD and SGD, and the good
performance the SGD often has for prediction, may also explain
why the former performs well when compared to exact MCMC
methods in terms of prediction accuracy.

2.3. Estimating the Gradient

A key part of SGLD is replacing the true gradient with an
estimate. The more accurate this estimator is, the better we
would expect SGLD to perform, and thus it is natural to consider
alternatives to the simple estimator (4).

One way of reducing the variance of a Monte Carlo estimator
is to use control variates (Ripley 1987), which in our setting
involves choosing a set of simple functions u;, i = 1,...,N,
whose sum Zfil u;(0) is known for any . As

N N N
D VU®) =) w)+ ) (VU(B) — ui9)),
i=1

i=1 i=1

we can obtain the wunbiased estimator Zfil ui(0) +
(N/n) Ziesn (VUi(@) — u;(0)), where again S, is a random
sample, without replacement, from {1,...,N}. The intuition
behind this idea is that if each u;(#) ~ VU;(#), then this
estimator can have a much smaller variance.

Recent works—for example, Baker et al. (2019a) and Hug-
gins and Zou (2017) (see Bardenet, Doucet, and Holmes 2017;
Bierkens, Fearnhead, and Roberts 2019; Pollock et al. 2020, for
similar ideas used in different Monte Carlo procedures)—have
implemented this control variate technique with each u;(#) set
asa constant. These approaches propose (i) using SGD to find an
approximation to the mode of the distribution we are sampling
from, which we denote as 8; and (ii) set u;(0) = VUi(é). This
leads to the following control variate estimator,

N
CaU@O)® = 3 VU@ + 3 (VUi®) - VU®))

i=1 i€S,

Implementing such an estimator involves an up-front of cost
of finding a suitable # and calculating, storing and summing
VU,-(@) fori = 1,...,N. Of these, the main cost is finding
a suitable 6. Though we can then use 0 asa starting value for
the SGLD algorithm, replacing 8 with 6 in Algorithm 1, which
can significantly reduce the burn-in phase (see Figure 2 for an
illustration).

The advantage of using this estimator can be seen if we com-
pare bounds on the variance of this and the simple estimator. If
VU;(#) and its derivatives are bounded for all i and 6, then there
are constants C; and C, such that

S U0 N? : () 52N

var [YU®)™ ] = &=, var [V, U@) "] < Collo—-817=,
n n

where || - || denotes Euclidean distance. Thus, when 6 is close

to 8, we would expect the latter variance to be smaller. Further-
more, in many settings when N is large we would expect a value
of @ drawn from the target to be of distance O(N —1/2) thus
using control variates will reduce the variance from O(N 2 /n) to
O(N/n). This simple argument suggests that, for the same level
of accuracy, we can reduce the computational cost of SGLD by
O(N) if we use control variates. This is supported by a number of
theoretical results (e.g., Nagapetyan et al. 2017; Brosse, Durmus,
and Moulines 2018; Baker et al. 2019a) which show that, if we
ignore the preprocessing cost of finding 0, the computational
cost per-effective sample size of SGLD with control variates has
a computational cost that is O(1), rather than the O(N) for SGLD
with the simple gradient estimator (4).

A further consequence of these bounds on the variance is that
they suggest that if 0 is far from 9 then the variance of using
control variates can be larger, potentially substantially larger,
than that of the simple estimator. Two ways have been suggested
to deal with this. One is to only use the control variate estimator
when 8 is close enough to # (Fearnhead et al. 2018), though it is
up to the user to define what “close enough” is in practice. The
second is to update 0 during SGLD. This can be done efficiently
by using u;(0) = VU;(0,), where 0y, is the value of 6 at the
most recent iteration of the SGLD algorithm where VU;(0) was
evaluated (Dubey et al. 2016). This involves updating the storage
of 4;(#) and its sum at each iteration; importantly the latter can
be done with an O(n) calculation. A further possibility, which
we are not aware has yet been tried, is to use u;(#) that are
nonconstant, and thus try to accurately estimate VU;(6) for a
wide range of 8 values.

Another possibility for reducing the variance of the estimate
of VU(0) is to use preferential sampling. If we generate a sample,
Sy, such that the expected number of times i appears is w;, then
we could use the unbiased estimator

N VU;(0
ieS, !

The simple estimator (4) is a special case of this estimator
where w; = n/N for all i. This weighted estimator can have
a lower variance if we choose larger w; for VU;(#) values that
are further from the mean value. A natural situation where
such an estimator would make sense would be if we have data
from a small number of cases and many more controls, where
giving larger weights to the cases is likely to reduce the variance.
Similarly, if we have observations that vary in their informa-
tion about the parameters, then giving larger weights to more
informative observations would make sense. Note that using
weighted sampling can be combined with the control variate
estimator—with a natural choice of weights that are increasing
with the size of the derivative of VU;(#) at 6. We can also use
stratified sampling ideas, which try to ensure each subsample is



representative of the full data (Sen et al. 2020), or adapt ideas
from stochastic optimization that uses multi-arm bandits to
learn a good sampling distribution (Salehi, Celis, and Thiran
2017).

Regardless of the choice of gradient estimator, an important
question is how large should the subsample size be? A simple
intuitive rule, which has some theoretical support (e.g., Vollmer,
Zygalakis, and Teh 2016; Nagapetyan et al. 2017), is to choose
the subsample size such that if we consider one iteration of
SGLD, the variance of the noise from the gradient term is
dominated by the variance of the injected noise. As the former
scales like h? and the latter like & then this suggests that as we
reduce the step size, h, smaller subsample sizes could be used—
see Section 2.5 for more details.

2.4. Theory for SGLD

As described so far, SGLD is a simple and computationally effi-
cient approach to approximately sample from a stochastic pro-
cess whose asymptotic distribution is r; but how well do sam-
ples from SGLD actually approximate 7 ? In particular, whilst
for small step sizes the approximation within one iteration of
SGLD may be good, do the errors from these approximations
accumulate over many iterations? There is now a body of theory
addressing these questions. Here we give a brief, and informal
overview of this theory. We stress that all results assume a range
of technical conditions on (), some of which are strong—
see the original references for details. In particular, most results
assume that the drift of the underlying Langevin diffusion will
push @ toward the center of the distribution, an assumption
which means that the underlying Langevin diffusion will be
geometrically ergodic, and an assumption that is key to avoid
the accumulation of error within SGLD.

There are various ways of measuring accuracy of SGLD, but
current theory focuses on two approaches. The first considers
estimating the expectation of a suitable test function ¢ (@), that
is, E; [¢(0)] = fn(0)¢(0)d0, using an average over the
output from K iterations of SGLD, (1/K) Zle ¢ (). In this
setting, we can measure the accuracy of the SGLD algorithm
through the mean square error of this estimator. Teh, Thiery,
and Vollmer (2016) considered this in the case where the SGLD
step size hy decreases with k. The mean square error of the
estimator can be partitioned into a square bias term and a
variance term. For large K, the bias term increases with the
step size, whereas the variance term is decreasing. Teh, Thiery,
and Vollmer (2016) showed that in terms of minimizing the
asymptotic mean square error, the optimal choice of step size
should decrease as k~1/3, with the resulting mean square error of
the estimator decaying as K~2/3. This is slower than for standard
Monte Carlo procedures, where a Monte Carlo average based
on K samples will have mean square error that decays as K~*.
The slower rate comes from needing to control the bias as well
as the variance, and is similar to rates seen for other Monte
Carlo problems where there are biases that need to be controlled
(e.g., Fearnhead, Papaspiliopoulos, and Roberts 2008, sec. 3.3).
In practice, SGLD is often implemented with a fixed step size
h. Vollmer, Zygalakis, and Teh (2016) give similar results on the
bias-variance trade-off for SGLD with a fixed step size, with a
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mean square error for K iterations and a step size of h being
O(h? + 1/(hK)). The h* term comes from the squared bias
and 1/hK from the variance term. The rate-optimal choice of
h as a function of K is K~1/3, which again gives an asymptotic
mean square error that is O(K~2/3); the same asymptotic rate
as for the decreasing step size. This result also shows that with
larger computational budgets we should use smaller step sizes.
Furthermore, if we have a large enough computational resource
then we should prefer exact MCMC methods over SGLD: as
computing budget increases, exact MCMC methods will even-
tually be more accurate.

The second class of results consider the distribution that
SGLD samples from at iteration K with a given initial distri-
bution and step size. Denoting the density of @x by 7x(8),
one can the measure an appropriate distance between 7x ()
and 7(0). The most common distance used is the Wasserstein
distance (Gibbs and Su 2002), primarily because it is particularly
amenable to analysis. Care must be taken when interpreting the
Wasserstein distance, as it is not scale invariant—so changing
the units of our parameters will result in a corresponding scaling
of the Wasserstein distance between the true posterior and the
approximation we sample from. Furthermore, as we increase the
dimension of the parameters, d, and maintain the same accuracy
for the marginal posterior of each component, the Wasserstein
distance will scale like d'/2.

There are a series of results for both ULA and SGLD in the
literature (Dalalyan 2017; Durmus and Moulines 2017; Brosse,
Durmus, and Moulines 2018; Chatterji et al. 2018; Dalalyan and
Karagulyan 2019). Most of this theory assumes strong-convexity
of the log-target density (see Raginsky, Rakhlin, and Telgarsky
2017; Majka, Mijatovi¢, and Szpruch 2020, for similar theory
under different assumptions), which means that there exists
strictly positive constants, 0 < m < M, such that for all 0,
and 0/,

IVU®) — VU®')|]> < M||0 — 8'|]2,
U®) — U@)—vU®) @ —0)> %no —01%

and

where || - ||, denotes the Euclidean norm. If U(f) is twice
continuously differentiable, these conditions are equivalent to
assuming upper and lower bounds on all possible directional
derivatives of U(#). The first bound governs how much the drift
of the Langevin diffusion can change, and is important in the
theory for specifying appropriate step-lengths, which should be
less than 1/M, to avoid instability of the Euler discretization;
it also ensures that the target density is unimodal. The second
bound ensures that the drift of the Langevin will push 6 toward
the center of the distribution, an assumption which means that
the underlying Langevin diffusion will be geometrically ergodic,
and consequently is key to avoiding the accumulation of error
within SGLD.

For simplicity, we will only informally present results from
Dalalyan and Karagulyan (2019), as these convey the main ideas
in the literature. These show that, for h < 1/(M + m), the
Wasserstein-2 distance between 7x(0) and (@), denoted by
W, (g, ) can be bounded as

Wh(ftk, ) < (1 —mh)S Wy (79, ) 4 C1 (hd)/? + Cro (hd) /2,
(6)
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where m, Cy, and C, are constants, d is the dimension of 6,
and o2 is a bound on the variance of the estimate for the
gradient. Setting 62 = 0 gives a Wasserstein bound for the ULA
approximation. The first term on the right-hand side measures
the bias due to starting the SGLD algorithm from a distribution
that is not m, and is akin to the bias due to finite burn-in of
the MCMC chain. Providing h is small enough, this will decay
exponentially with K. The other two terms are, respectively, the
effects of the approximations from using an Euler discretization
of the Langevin diffusion and an unbiased estimate of VU ().

A natural question is, what do we learn from results such as
(6)? These results give theoretical justification for using SGLD,
and show we can sample from an arbitrarily good approximation
to our posterior distribution if we choose K large enough, and
h small enough. They have also been used to show the benefits
of using control variates when estimating the gradient, which
results in a computational cost that is O(1), rather than O(N),
per effective sample size (Chatterji et al. 2018; Baker et al.
2019a). Perhaps the main benefit of results such as (6) is that
they enable us to compare the properties of the different variants
of SGLD that we will introduce in Section 3, and in particular
how different algorithms scale with dimension, d (see Section 3
for details). However, they only tell us how these hyperparam-
eters need to scale with different factors (e.g., smoothness and
dimension), with no specific guidance on the constants in front
of those factors.

Perhaps more importantly than having a quantitative mea-
sure of approximation error is to have an idea as to the form of
the error that the approximations in SGLD induce. Results from
Vollmer, Zygalakis, and Teh (2016) and Brosse, Durmus, and
Moulines (2018), either for specific examples or for the limiting
case of large N, give insights into this. For an appropriately
implemented SGLD algorithm, and for large data size N, these
results show that the distribution we sample from will asymp-
totically have the correct mode but will inflate the variance.
We discuss ways to alleviate this in the next section when we
consider a specific example.

2.5. A Gaussian Example

To gain insight into the properties of SGLD, it is helpful to
consider a simple tractable example where we sample from a
Gaussian target. We will consider a two-dimensional Gaussian,
with variance ¥ and, without loss of generality, mean zero.
The variance matrix can be written as P DP for some rotation
matrix P and diagonal matrix D, whose entries satisfy the con-
dition 012 > 022. For this model, the drift term of the Langevin
diffusion is

VU@)=—-%"'¢ = —P D 'Po.
The kth iteration of the SGLD algorithm is
h
O =0k + VU@ + Vhz 7)
h
=05 — EPTD‘IPok_l + hvy + \/ﬁzk,

where Zj is a vector of two independent standard normal ran-
dom variables and vy, is the error in our estimate of VU (0_1).

The entries of D™! correspond to the constants that appear in
condition (5), with m = 1/012 and M = 1/022.

To simplify the exposition, it is helpful to study the SGLD
algorithm for the transformed state 0 = P, for which we have

L hoo
0, =01 — ED_lak_l + hPv + vVhPZ

_ (1 —h/Q03) 0

0 1— h/(2622)) 0i_1 + hPvy + «/ﬁPZk.

As P is a rotation matrix, the variance of PZy is still the identity.

In this case, the SGLD update is a vector autoregressive pro-
cess. This process will have a stationary distribution provided
h < 403 = 4/M, otherwise the process will have trajectories
that will go to infinity in at least one component. This links to
the requirement of a bound on the step size that is required in
the theory for convex target distributions described above.

Now assume h < 207, and write ; = h/ (20j2) < 1. We have
the following dynamics for each component, j =1, 2

6 = (1 =148y + =2 (m@vp? + VrPZ) ),

i=1

| (8)
where é,((]) is the jth component of 6, and similar notation is
used for v; and Z;. From this, we immediately see that SGLD
forgets its initial condition exponentially quickly. However, the
rate of exponential decay is slower for the component with
larger marginal variance, 0. Furthermore, as the size of h is
constrained by the smaller marginal variance o7, this rate will
necessarily be slow if 07 <« o7; this suggests that there are
benefits of rescaling the target so that marginal variances of
different components are roughly equal.

Taking the expectation of (8) with respect to v and Z, and
letting k — o0, results in SGLD dynamics that have the correct
limiting mean but with an inflated variance. This is most easily
seen if we assume that the variance of Py is independent of
position, V say. In this case, the stationary distribution of SGLD
will have variance

=1 (A= =2aH7! 0
varz [0] = < 0 (1—(1=2)%! )
x (h*V + hl),

where I is the identity matrix. The marginal variance for com-
ponent j is thus

1+ hVj h

afT@;’jz) =07 (1+hVy) + 1t o(h?).

The inflation in variance comes both from the noise in the
estimate of VU(#), which is the hVj; factor, and the Euler
approximation, through the additive constant, h/4. For more
general target distributions, the mean of the stationary distri-
bution of SGLD will not necessarily be correct, but we would
expect the mean to be more accurate than the variance, with the
variance of SGLD being greater than that of the true target. The
above analysis further suggests that, for targets that are close to
Gaussian, it may be possible to perform a better correction to
compensate for the inflation of the variance. Vollmer, Zygalakis,
and Teh (2016) suggested reducing the driving Brownian noise



(see also Chen, Fox, and Guestrin 2014). That is, we replace
Z by Gaussian random variables with a covariance matrix so
that the covariance matrix of hvy + ~/hZ is the identity. If
the variance of vy is known, then Vollmer, Zygalakis, and Teh
(2016) showed that this can substantially improve the accuracy
of SGLD. In practice, however, it is necessary to estimate this
variance and it is an open problem as to how one can estimate
this accurately enough to make the idea work well in practice
(Vollmer, Zygalakis, and Teh 2016). As suggested by a reviewer,
an alternative is to estimate the rough size of the variance of vy
and use this to guide the choice of 4 so that the impact of the
stochastic gradient would be below some acceptable tolerance.

3. A General Framework for Stochastic Gradient
MCMC

So far we have considered SGMCMC based on approximating
the dynamics of the Langevin diffusion. However, we can write
down other diffusion processes that have 7 as their stationary
distribution, and use similar ideas to approximately simulate
from one of these. A general approach to doing this was sug-
gested by Ma, Chen, and Fox (2015) and leads to a much wider
class of SGMCMC algorithms, including stochastic gradient
versions of popular MCMC algorithms such as Hamiltonian
Monte Carlo (Neal 2011; Carpenter et al. 2017).

The class of diffusions we will consider may include a set of
auxiliary variables. As such, we let £ be a general state, with
the assumption that this state contains 6. For example, for the
Langevin diffusion { = 6; but we could mimic Hamiltonian
MCMC and introduce an auxiliary velocity component, p, in
which case ¢ = (0, p). We start by considering a general
stochastic differential equation for ¢,

1
d¢ = Eb(é’)dt + vD(£)dB;, €

where the vector b(¢) is the drift component, D(¢) is a positive
semidefinite diffusion matrix, and /D(Z) is any square-root of
D(¢). Ma, Chen, and Fox (2015) showed how to choose b(¢)
and D(¢) such that (9) has a specific stationary distribution. We
define the function H(¢) such that exp{—H(¢)} is intergrable

and let Q(¢) be a skew-symmetric curl matrix, so Q" = —Q.
Then the choice
b(¢) = —[D() + QI VH(E) +T'(¢) and
d
0
Ti(¢) = ]:21 a—cj(Dij@) + Q;i(2)), (10)

ensures that the stationary distribution of (9) is proportional
to exp{—H(¢)}. Ma, Chen, and Fox (2015) showed that any
diffusion process with a stationary distribution proportional to
exp{—H (&)} is of the form (9) with the drift and diffusion matrix
satistying (10). To approximately sample from our diffusion,
we can employ the same discretization of the continuous-time
dynamics that we used for the Langevin diffusion (3),

h
Coon ™ &= 5 [(DE) + QUE)IVHE) + T (¢)] + VhZ,

t>0, (11)
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where Z ~ N(0,D(¢,)). The diffusions we are interested in have
a stationary distribution where the #-marginal distribution is
. If £ = 0 then this requires H(¢) = U(#). If, however, ¢
also includes some auxiliary variables, say p, then this is most
easily satisfied by setting H(¢) = U(0)+ K(p) for some suitable
function K(p). This choice leads to a stationary distribution
under which @ and p are independent.

We can derive a general class of SGMCMC algorithms, where
we simply replace the gradient estimate VH(¢,) with an unbi-
ased estimate VH(Z,), based on data subsampling. Ma, Chen,
and Fox (2015) suggested that one should also correct for the
variance of the estimate of the gradient, as illustrated in the
example from Section 2.5, to avoid the inflation of variance
in the approximate target distribution. If the variance of our
estimator VH (¢&,) is V(0;), then this inflates the conditional
variance of £, j, given ¢, in (11) by h*B(¢,) where

1
B(Z) = (D) +QE))VE)DE) + Q)"

Given an estimate B(¢ +), we can correct for the inflated variance
by simulating Z ~ N(0,D(¢,) — hﬁ(;‘t)). Obviously, this
requires that D(¢,) — hB(¢,) is positive semidefinite. In many
cases this can be enforced if / is small enough. If this is not
possible, then that suggests the resulting SGMCMC algorithm
will be unstable; see below for an example.

The diffusion D(¢) and curl Q(¢) matrices can take various
forms and the choice of matrices will affect the rate of con-
vergence of the MCMC samplers. The diffusion matrix D(¢)
controls the level of noise introduced into the dynamics of (11).
When [|D(¢)|| is large, there is a greater chance that the sampler
can escape local modes of the target, and setting ||D(&)|| to be
small increases the accuracy of the sampler within a local mode.
Between modes of the target, the remainder of the parameter
space is represented by regions of low probability mass where we
would want our MCMC sampler to quickly pass through. The
curl matrix Q(¢) controls the sampler’s nonreversible dynamics
which allows the sampler to quickly traverse low-probability
regions, this is particularly efficient when the curl matrix adapts
to the geometry of the target.

In Table 1, we define H(¢), D(¢), and Q(¢) for several
gradient-based MCMC algorithms. The two most common
are SGLD, which we introduced in the previous section, and
SGHMC (Chen, Fox, and Guestrin 2014). This latter process
introduces a velocity component that can help improve mixing,
as is seen in more standard Hamiltonian MCMC methods. The
closest link with the dynamics used in Hamiltonian MCMC
is when D(¢) is set to be the zero-matrix. However, Chen,
Fox, and Guestrin (2014) showed that this leads to an unstable
process that diverges as a result of the accumulation of noise
in the estimate of the gradient; a property linked to the fact
that D(¢) — hﬁ(c) is not positive semidefinite for any h. The
choice of D(¢) given in Table 1 avoids this problem, with the
resulting stochastic differential equation being the so-called
under-damped Langevin diffusion.

As discussed in Section 2.5 with regard to SGLD, reparam-
eterizing the target distribution so that the components of 6
are roughly uncorrelated and have similar marginal variances,
can improve mixing. An extension of this idea is to adapt the
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Table 1. Alist of popular SGMCMC algorithms highlighting how they fit within the general stochastic differential equation framework (9) and (10).

Algorithm ¢ H(©&) D) )
SGLD 0 u®) I 0
SGRLD 0 u@®) G ! 0
1. T 0 0 0 -l
SGHMC ®,p) U@ +zp ' p <o c) <I 0)
SGRHMC 0,p) U@)+3p" 0 0 0 GO~
@, p 0P 0 6(0)71 G(a)—1/2 0
1T 0 0 0 0 -l 0
SGNHT ®, p1) Ve + e o 0 Al 0 I 0 pT/d
+9g(1—A) 0 0 O 0 —p'/d O

NOTE: Most of the terms are defined in the text, except: C = hV(#), which is a positive semidefinite matrix; G(6) is the Fisher information metric; A is a tuning parameter

for SGNHT.

dynamics locally to the curvature of the target distribution—
and this is the idea behind Riemannian versions of SGLD and
SGHMC, denoted by SGRLD (Patterson and Teh 2013) and
SGRHMC (Ma, Chen, and Fox 2015) in Table 1. The challenge
with implementing either of these algorithms is obtaining an
accurate, yet easy to compute, estimate of the local curvature.
A simpler approach is the stochastic gradient Nose-Hoover
thermostat (SGNHT) (Ding et al. 2014) algorithm, which intro-
duces state dependence into the curl matrix. This can be viewed
as an extension of SGHMC which adaptively controls for the
excess noise in the gradients. Naturally, there are many other
algorithms that could be derived from this general framework.

3.1. Theory for SGHMC

It is natural to ask which of the algorithms presented in Table 1
is most accurate. We will study this question empirically in
Section 6, but here we briefly present some theoretical results
that compare SGHMC with SGLD for smooth and strongly log-
concave target densities. These results are for bounds on the
Wasserstein distance between the target distribution and the
distribution of the SGMCMC algorithm samples at iteration
k, for an optimally chosen step size (Cheng et al. 2018). The
simplest comparison of the efficiencies of the two algorithms is
for the case where the gradients are estimated without error. For
a given level of accuracy, €, measured in terms of Wasserstein
distance, SGLD requires O(d?/€?) iterations, whereas SGHMC
requires O(d/¢) iterations. This suggests that SGHMC is to be
preferred, and the benefits of SGHMC will be greater in higher
dimensions. Similar results are obtained when using noisy esti-
mates of the gradients, providing the variance of the estimates is
small enough. However, Cheng et al. (2018) showed that there is
a phase-transition in the behavior of SGHMC as the variance of
the gradient estimates increases: if it is too large, the SGHMC
behaves like SGLD and needs a similar order of iterations to
achieve a given level of accuracy.

4. Diagnostic Tests

When using an MCMC algorithm the practitioner wants to
know if the algorithm has converged to the stationary distri-
bution, and how to tune the MCMC algorithm to maximize
the efficiency of the sampler. In the case of SGMCMC, the

target distribution is not the stationary distribution and there-
fore our posterior samples represent an asymptotically biased
approximation of the posterior. Standard MCMC diagnostic
tests (Brooks and Gelman 1998) do not account for this bias and
therefore are not appropriate for either assessing convergence or
tuning SGMCMC algorithms. The design of appropriate diag-
nostic tests for SGMCMC is a relatively new area of research, and
currently methods based on Stein’s discrepancy (Gorham and
Mackey 2015, 2017; Gorham et al. 2019) are the most popular
approach. These methods provide a general way of assessing
how accurately a sample of values approximate a distribution.
Assume we have a sample, say from an SGMCMC algorithm,
01,0,,...,0) € R9, and denote the empirical distribution
that this sample defines as 7. We can define a measure of
how well this sample approximates our target distribution of
interest, 7, by comparing how close expectations under 7 are
to the expectations under 7. If they are close for a broad class
of functions, #, then this suggests the approximation error is
small. This motivates the following measure of discrepancy,

dy (7, ) == sup |Ez [1(0)] — Ex [(0)] ], (12)
heH

where E; [h(0)] = %Zle h(#x) is an approximation of
E, [7(0)]. For appropriate choices of H, it can be shown that
if we denote the approximation from a sample of size K by 7k,
then dy (7, m) — 0 if and only if 7x converges weakly to .
Moreover, even if this is not the case, if functions of interest
are in H then a small value of dy (77, 7) would mean that we
can accurately estimate posterior expectations of functions of
interest.

Unfortunately, (12) is in general intractable as it depends
on the unknown E; [7(0)]. The Stein discrepancy approach
circumvents this problem by using a class, #, that only con-
tains functions whose expectation under 7 are zero. We can
construct such functions from stochastic processes, such as the
Langevin diffusion, whose invariant distribution is 7. If the
initial distribution of such a process is chosen to be 7 then
the expectation of the state of the process will be constant over
time. Moreover, the rate of change of expectations can be written
in terms of the expectation of the generator of the process
applied to the function: which means that functions that can be
written in terms of the generator applied to a function will have
expectation zero under 7.

In our experience, the computationally most feasible
approach, and easiest to implement, is the kernel Stein set



approach of Gorham and Mackey (2017), which enables the
discrepancy to be calculated as a sum of some kernel evaluated
at all pairs of points in the sample. As with all methods based
on Stein discrepancies, it also requires the gradient of the
target at each sample point—though we can use unbiased noisy
estimates for these (Gorham and Mackey 2017). The kernel
Stein discrepancy is defined as

d K K0k 01)
KSD(7tg, ) := Z Z ]T, (13)
j=1 \ kk'=1
where the Stein kernel for j € {1,.. ., d} is given by

kJO(B, 0 =(Vag) U(0)V9,(j> U@')k®,0') + Va(/) U(O)Varg) k(6,0")
+ Ve/(j) U(0/)V9(,-) k@0, 0/) + Vo(j) V(,,(j)k(ﬂ, 0/)

The kernel k has to be carefully chosen, particularly when d >
3, as some kernel choices, for example, Gaussian and Matern,
result in a kernel Stein discrepancy which does not detect non-
convergence to the target distribution. Gorham and Mackey
(2017) recommend using the inverse multi-quadratic kernel,
k(,0') = (c>+1|0 —0'||3)#, which they prove detects noncon-
vergence when ¢ > 0and 8 € (—1,0). A drawback of most Stein
discrepancy measures, including the kernel Stein method, is that
the computational cost scales quadratically with the sample size.
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This is more computationally expensive than standard MCMC
metrics (e.g., effective sample size), however, the computation
can be easily parallelized to give faster calculations.

We illustrate the kernel Stein discrepancy on the Gaussian
target introduced in Section 2.5, where we choose diagonal and

rotation matrices
2 0 cosZ sinZ
D= and P = L4 4.
0 1 —sin7 cosg

We iterate the Langevin dynamics (7) for 10,000 iterations,
starting from @ = (0,0) and with noisy gradients simulated
as the true gradient plus noise, v ~ N(0,0.01). We test the
efficiency of the Langevin algorithm in terms of the step size
parameter h and use the kernel Stein discrepancy metric (13)
to select a step size parameter which produces samples that
most closely approximate the target distribution. We consider
a range of step size parameters h = {1073,1072,1071,10°}
which satisfy the requirement that h < 403 to prevent divergent
chains. In Figure 1, we plot the samples generated from the
Langevin algorithm for each of the step size parameters. We also
calculate the kernel Stein discrepancy (13) and effective sample
size for each Markov chain. Visually, it is clear from Figure 1 that
h=0.1 produces samples which most closely represent the target
distribution. A large value for 4 leads to over-dispersed samples
and a small & prevents the sampler from exploring the whole

h=10"" h=107°

' ' ' ' '
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Figure 1. Top: Samples generated from the Langevin dynamics (7) are plotted over the bivariate Gaussian target. The samples are thinned to 1000 for the ease of
visualization. Bottom: The kernel Stein discrepancy (log10) and effective sample size are calculated for each Markov chain with varying step size parameter h.



442 C. NEMETH AND P. FEARNHEAD

target space within the fixed number of iterations. Setting h =
0.1 also gives the lowest kernel Stein discrepancy, whereas h =1
maximizes the effective sample size. This supports the view that
effective sample size and other standard MCMC metrics, which
do not account for sample bias, are not appropriate diagnostic
tools for SGMCMC.

5. Extending the SGMCMC Framework

Under the general SGMCMC framework outlined in Section 3,
it is possible to extend the SGLD algorithm beyond Langevin
dynamics and consider a larger class of MCMC algorithms,
which aim to improve the mixing of the Markov chain. In this
section, we will focus on ways to extend the applicability of
SGMCMC algorithms to a wider class of models. Given our
choice of target (1), we have made two key assumptions, (i) the
parameters exist in 6 € R9 and (ii) the potential function U(6)
is a summation over independent terms. The first assumption
implies that SGMCMC cannot be used to estimate # on a con-
strained space (e.g., @ € [0, 1]) and the second assumption that
our data yi, ..., yN are independent or have only certain-types
of dependence structure, which means that SGMCMC cannot
be applied to many time series or spatial models. We will give a
short overview of some of the current research in this area.

5.1. SGMCMC Sampling From Constrained Spaces

Many models contain parameters which are constrained, for
example, the variance parameter t2 in a Gaussian distribution
(r € R*), or the success probability p in a Bernoulli model
(p € [0,1]). Simulating these constrained parameters using
the Langevin dynamics (3) will produce samples which violate
their constraints, for example, if th = 0, % 0, then with
high probability, 7% ; < 0. One solution would be to let h —
0 when 72 — 0, however, this would lead to poor mixing
of the Markov chain near the boundary of the constrained
space. A natural solution to this problem is to transform the
Langevin dynamics in such a way that sampling can take place
on the unconstrained space, but care is needed as the choice of
transformation can impact the mixing of the process near the
boundary. Alternatively we can project the Langevin dynamics
into a constrained space (Brosse et al. 2017; Bubeck, Eldan,
and Lehec 2018), however, these approaches lead to poorer
nonasymptotic convergence rates than in the unconstrained
setting. Recently, a mirrored Langevin algorithm (Hsieh et al.
2018) has been proposed, which builds on the mirrored descent
algorithm (Beck and Teboulle 2003), to transform the problem
of constrained sampling to an unconstrained space via a mirror
mapping. Unlike previous works, the mirrored Langevin algo-
rithm has convergence rates comparable with unconstrained
SGLD (Dalalyan and Karagulyan 2019).

The structure of some models naturally leads to bespoke
sampling strategies. A popular model in the machine learning
literature is the latent Dirichlet allocation (LDA) model (Blei,
Ng, and Jordan 2003), where the model parameters are con-
strained to the probability simplex, meaning 8% > 0, j =

1,...,d and Z;lzl 0" = 1. Patterson and Teh (2013) pro-
posed the first SGLD algorithm for sampling from the proba-
bility simplex. Their algorithm, stochastic gradient Riemannian
Langevin dynamics (see Table 1) allows for several transforma-
tion schemes which transform 0 to R?. However, this approach
can result in asymptotic biases which dominate in the boundary
regions of the constrained space. An alternative approach is
to use the fact that the posterior for the LDA can be written
as a transformation of independent gamma random variables.
Using an alternative stochastic process instead of the Langevin
diffusion, in this case the Cox-Ingersoll-Ross (CIR) process,
we take advantage of the fact that its invariant distribution is a
gamma distribution. We can apply this in the large data setting
by using data subsampling on the CIR process rather than on
the Langevin diffusion (Baker et al. 2018).

5.2, SGMCMC Sampling With Dependent Data

Key to developing SGMCMC algorithms is the ability to gen-
erate unbiased estimates of VU(#) using data subsampling, as
in (4). Under the assumption that data y;, i = 1,...,N are
independent, the potential function U() = Zfil U;(0), and
its derivative, are a sum of independent terms (see Section 2.1)
and therefore, a random subsample of these terms leads to an
unbiased estimate of the potential function, and its derivative.
For some dependence structures, we can still write the potential
as a sum of terms each of which has an O(1) cost to evaluate.
However for many models used for network data, time series
and spatial data, using the same random subsampling approach
will result in biased estimates for U(0) and VU (). To the best
of our knowledge, the challenge of subsampling spatial data,
such that both short and long term dependency is captured,
has not been addressed in the SGMCMC setting. For network
data, an SGMCMC algorithm has been developed (Li, Ahn, and
Welling 2016) for the mixed-member stochastic block model,
which uses both the block structure of the model, and stratified
subsampling techniques, to give unbiased gradient estimates.

In the time series setting, hidden Markov models are chal-
lenging for SGMCMC as the temporal dependence in the latent
process precludes simple random data subsampling. However,
such dependencies are often short range and so data points y;
and y; will be approximately independent if they are sufficiently
distant (i.e., j > 1i). These properties were used by Ma, Foti,
and Fox (2017), who proposed using SGMCMC with gradients
estimated using nonoverlapping, subsequences of length 2s +
L, Yis = {¥iess---sYi>---»Yits}). To ensure that the subse-
quences are independent, Ma, Foti, and Fox (2017) extended the
length of each subsequence by adding a buffer of size B, to either
side, that is, {y7B,Vis YrB}> where yig = {yi—s—B,...,yi—s—1}
and YR = {Vi+s+1>- - - » Vi+s+B}. Nonoverlapping buffered sub-
sequences are sampled, but only y;, data are used to estimate
@U(O). These methods introduce a bias, but one that can be
controlled, with the bias often decreasing exponentially with
the buffer size. This approach has also been applied to linear
(Aicher et al. 2019) and nonlinear (Aicher et al. 2019) state-
space models, where in the case of log-concave models, the bias
decays geometrically with buffer size.



6. Simulation Study

We compare empirically the accuracy and efficiency of the
SGMCMC algorithms described in Section 3. We consider three
popular models. First, a logistic regression model for binary
data classification tested on simulated data. Second, a Bayesian
neural network (Neal 2012) applied to image classification on a
popular dataset from the machine learning literature. Finally, we
consider the Bayesian probabilistic matrix factorization (BPMF)
model (Salakhutdinov and Mnih 2008) for predicting movie
recommendations based on the MovieLens dataset. We compare
the various SGMCMC algorithms against the STAN software
(Carpenter et al. 2017), which by default implements the NUTS
algorithm (Hoffman and Gelman 2014) as a method for auto-
matically tuning the Hamiltonian MCMC sampler. We treat
the STAN output as the ground truth posterior distribution
and assess the accuracy and computational advantages of SGM-
CMC against this benchmark. Additionally, using STAN, we
can sample from a variational approximation to the posterior
using the automatic differentiation variational inference (ADVI)
algorithm (Kucukelbir et al. 2015), which selects an appropriate
variational family and optimizes the corresponding variational
objective. All of the SGMCMC algorithms are implemented
using the R package sgmcmc (Baker et al. 2019b) with supporting
code available online.!

6.1. Logistic Regression Model

Consider a binary regression model wherey = {y;}}¥ | isavector

of N binary responses and X isa N x d matrix of covariates.
If 0 is a d-dimensional vector of model parameters, then the
likelihood function for the logistic regression model is,

0 - 1 i 1 i
X|0) = - ’
PO-X10) l_[ [1 + exp(—eTXi)] [ 1+ exP(_eTX")]

i=1
where x; is a d-dimensional vector for the ith observation. The
prior distribution for 6 is a zero-mean Gaussian with covariance
matrix X9 = 10I; where I; is a d X d identity matrix.
We can verify that the model satisfies the strong-convexity
assumptions from Section 2.4, where m = A1 (Xg) and M =

IV XX+ Aty (Z6), and Amin(Zg) and Amax(Tg) are the
minimum and maximum eigenvalues of Xg.

We compare the various SGMCMC algorithms where we
vary the dimension of 8, d = {10, 50, 100}. We simulate N =
10° data points and fix the subsample size n = 0.01N for all
test cases. We simulated data under the model described above,
with x; ~ N(0, ¥x) and simulated a matrix with ZQ’]) =
Unif[—p, p]" 7 and p = 0.4. We tune the step size h for each
algorithm using the kernel Stein discrepancy metric outlined in
Section 4 and set the number of leapfrog steps in SGHMC to
five. We initialize each sampler by randomly sampling the first
iteration 8¢ ~ N(0, 1).

For our simulations, we ran STAN for 2000 iterations and
discarded the first 1000 iterations as burn-in, as these iterations
are part of the algorithms tuning phase. For the SGMCMC algo-
rithms, we ran each algorithm for 20,000 iterations except in the

Vhttps://github.com/***
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case of the control variate implementations, where we ran the
SGMCMC algorithm for 10,000 iterations after iterating a SGD

algorithm for 10,000 iterations to find the posterior mode 6.
Combining the optimization and sampling steps of the control
variate method results in an equal number of iterations for all
SGMCMC algorithms. Figure 2 gives the trace plots for MCMC
output of each algorithm for the case where d =10 and N = 10°.
Each of the SGMCMC algorithms is initialized with the same
0 and we see that some components of 8, where the posterior
is not concentrated around 6, take several thousand iterations
to converge. Most notably SGLD, ULA, SGHMC, and SGNHT.
Of these algorithms, SGHMC and SGNHT converge faster than
SGLD, which reflects the theoretical results discussed in Sec-
tion 3.1, but these algorithms also have a higher computational
cost due to the leap frog steps (see Table 2 for computational
timings). The ULA algorithm, which uses exact gradients, also
converges faster than SGLD in terms of the number of iterations,
but is less efficient in terms of overall computational time.
The control variate SGMCMC algorithms, SGLD-CV, SGHMC-
CV, and SGNHT-CV are all more efficient than their noncon-
trol variate counterparts in terms of the number of iterations
required for convergence. The control variate algorithms have
the advantage that their sampling phase is initialized at a § that
is close to the posterior mode. In essence, the optimization phase
required to find the control variate point 0 replaces the burn-in
phase of the Markov chain for the SGMCMC algorithm.

The results from Figure 2 are shown for a fixed number of
iterations, however, the computational cost per iteration varies
between the algorithms. In Figure 3, we run STAN, SGLD,
SGLD-CV, and ULA for 10 min, treating the first minute as the
burn-in phase and a longer 1-hr run of STAN as the truth. We
can see in this experiment that over short time-periods SGLD
performs well, whereas STAN underestimates the posterior vari-
ance due to fewer iterations, which results in less time for the
chain to mix. SGLD and SGLD-CV produce good estimates of
the mean, but as discussed in Section 2.5, SGLD and SGLD-CV
over-estimate the variance. Using exact gradients with ULA per-
forms poorly as it does not have the same gains in computational
efficiency of SGLD and still has an approximation error.

As well as the visual comparisons (Figure 2), we can compare
the algorithms using diagnostic metrics. We use the kernel Stein
discrepancy as one of the metrics to assess the quality of the pos-
terior approximation for each of the algorithms. Additionally,
the log-loss is also a popular metric for measuring the predictive
accuracy of a classifier on a held-out test dataset T. In the case
of predicted binary responses, the log-loss is

1
Z yxlog p(xy,0)

(}/*)X*)ET*
+ (1 =y log(1 — p(x4,9)),

where p(x.,0) = (1 + exp(—6 "x,))~! is the probability that
ys = 1 given covariate X.

Table 2 gives the diagnostic metrics for each algorithm, where
the log-loss and kernel Stein discrepancy metrics are calculated
on the final 1000 posterior samples from each algorithm. We
also include a variational Bayes approximation using STAN’s
ADVTalgorithm. The variational Bayes approaches are generally
faster than MCMC as they use optimization techniques rather

16,T,) =—

| T
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Figure 2. Trace plots for the STAN output and each SGMCMC algorithm with d = 10and N = 10°.

Table 2. Diagnostic metrics for each SGMCMC algorithm, plus STAN, with varying dimension of § where N = 10°.

d STAN SGLD SGLDCV SGHMC SGHMCCV SGNHT SGNHTCV ULA ADVI

10 21.64 1.74 1.46 11.24 6.53 2.56 1.54 8.05 0.76

Time (min) 50 157.24 2.55 2.06 13.43 7.76 333 1.93 29.21 237
100 229.76 342 2.60 16.01 9.63 4.38 236 51.25 4.15

10 0.10 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Log-loss 50 0.04 0.06 0.05 0.06 0.05 0.05 0.05 0.05 0.07
100 0.04 0.06 0.05 0.06 0.05 0.05 0.05 0.06 0.07

10 6.12 6.26 6.24 6.18 6.25 6.21 6.23 6.19 6.97

KSD 50 9.24 11.73 11.05 11.59 11 11.00 11.33 11.30 11.66
100 11.62 15.70 15.53 15.64 15.07 15.14 15.07 15.97 13.61

than sampling to approximate the posterior. These variational to its approximating family of distributions, which are usually
techniques work particularly well when the posterior is close  assumed to be Gaussian. The most notable difference between
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Figure 3. The mean and variance of the first parameter calculated at each second over 600 sec, where d = 10 and N = 10°.

the algorithms is the computational time. Compared to STAN,
all SGMCMC algorithms, and ADVI, are between 10 to 100
times faster when d = 100. As expected, given that STAN pro-
duces exact posterior samples, it has the lowest log-loss and
kernel Stein discrepancy results. However, these results are only
slightly better than the SGMCMC results and the computa-
tional cost of STAN is significantly higher. All of the SGMCMC
results are similar, showing that this class of algorithms can
perform well, with significant computational savings, if they are
well-tuned. Similarly, we note that the variational approxima-
tions produce accuracy results similar to SGMCMC and are
significantly computationally cheaper than STAN. One of the
advantages of STAN, is that the NUTS algorithm (Hoffman and
Gelman 2014) allows the HMC sampler to be automatically
tuned, whereas the SGMCMC algorithms have to be tuned using
a pilot run over a grid of step size values. As the step size h
is a scalar value, the SGMCMC samplers give an equal step
size to each dimension. As discussed in Section 2.5, a scalar
step size parameter will mean that the SGMCMC algorithms
are constrained by the § component with the smallest variance.
This could be improved if either the gradients were precondi-
tioned (Ahn, Korattikara, and Welling 2012), or the geometry
of the posterior space were accounted for in the sampler (e.g.,
SGRHMC), which would result in different step sizes for each
component of #, thus improving the overall efficiency of the
sampler.
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Figure 4. Sample of images from the MNIST dataset taken from https:/en.
wikipedia.org/wiki/MNIST_database.

6.2. Bayesian Neural Network

We consider the problem of multi-class classification on the
popular MNIST dataset (LeCun, Cortes, and Burges 2010). The
MNIST dataset consists of a collection of images of handwritten
digits from zero to nine, where each image is represented as
28 x 28 pixels (a sample of images is shown in Figure 4). We
model the data using a two layer Bayesian neural network with
100 hidden variables (using the same setup as Chen, Fox, and
Guestrin (2014)). We fit the neural network to a training dataset
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Figure 5. Log-loss calculated on a held-out test dataset for each SGMCMC algorithm and its control variate version.

containing 55,000 images and the goal is to classify new images
as belonging to one of the ten categories. The test set contains
10,000 handwritten images, with corresponding labels.

Let y; be the image label taking values y; €
{0,1,2,3,4,5,6,7,8,9} and x; is the vector of pixels which
has been flattened from a 28 x 28 image to a one-dimensional
vector of length 784. If there are N training images, then X is
a N x 784 matrix representing the full dataset of pixels. We
model the data as categorical variables with the probability
mass function,

P()’z =k | oaxi) = ﬂk(o’xi))

where fr(0,x;) is the kth element of B(0,x;) =
o (U (XlTB + b) A+ a) and o (x;) = exp (xi)/(zli1 exp (x;))
is the softmax function, a generalization of the logistic link
function. The parameters § = (A, B, a,b) will be estimated
using SGMCMC, where A, B, a, and b are matrices of dimension:
100 x 10,784 x 100, 1 x 10, and 1 x 100, respectively. We set
normal priors for each element of these parameters

(14)

Aptlra ~ N©O, 2D,
ajlhg ~ N(0, 27 1),

Bjls ~ N(0,A5h),
bildp ~ N(0,4;1),

j = 1,...,784 k = 1,...,100; I = 1,...,10; where
Ad>AB> Aa> Ap ~ Gamma(l, 1) are hyperparameters.

Similar to the logistic regression example (see Section 6.1),
we use the log-loss as a test function. We need to update the
definition of the log-loss function from a binary classification
problem to the multi-class setting. Given a test set T, of pairs
(¥x>X4), where now y, can take values {0 — 9}. The log-loss
function in the multi-class setting is now

1
| T

9
Z Z 1, —klog B(0,x,),  (15)

(y+:X4)€Ts k=0

16, T,) = —

where 14 is the indicator function, and B(0,x,) is the kth
element of (0, x,).

As in Section 6.1, we compare the efficacy of the SGLD,
SGHMC, and SGNHT algorithms, as well as their control variate
counterparts. We ran each of the SGMCMC algorithms for 10*
iterations and calculated the log-loss (14) for each algorithm.
The standard algorithms have 10* iterations of burn-in while the
control variate algorithms have no burn-in, but 10* iterations

in the initial optimization step. Note that due to the trajectory
parameter L = 5 of SGHMC and SGHMC-CYV, these algorithms
will have approximately five times greater computational cost.
To balance the computational cost, we ran these algorithms
for 2000 iterations to produce comparisons with approximately
equal computational time. The results are plotted in Figure 5. As
with the logistic regression example, we note that there is some
indication of improved predictive performance of the control
variate methods. Among the standard methods, SGHMC and
SGNHT have the best predictive performance, which is to be
expected given the apparent trade-off between accuracy and
exploration.

6.3. Bayesian Probabilistic Matrix Factorization

Collaborative filtering is a technique used in recommendation
systems to make predictions about a user’s interests based on
their tastes and preferences. We can represent these preferences
with a matrix where the (4, j)th entry is the score that user i
gives to item j. This matrix is naturally sparse as not all users
provide scores for all items. We can model these data using
BPMF (Salakhutdinov and Mnih 2008), where the preference
matrix of user-item ratings is factorized into lower-dimensional
matrices representing the users’ and items’ latent features. A
popular application of BPMF is movie recommendations, where
the preference matrix contains the ratings for each movie given
by each user. This model has been successfully applied to the
Netflix dataset to extract the latent user-item features from the
historical data to make movie recommendations for a held-out
test set of users. In this example, we will consider the Movie-
Lens dataset’ which contains 100,000 ratings (taking values
{1,2,3,4,5}) of 1682 movies by 943 users, where each user
has provided at least 20 ratings. The data are already split into
5 training and test sets (80%/20% split) for a 5-fold cross-
validation experiment.

Let R € RV*M be a matrix of observed ratings for N users
and M movies where R;; is the rating user i gave to movie j. We
introduce matrices U and V for users and movies, respectively,
where U; € R and V; € R are d-dimensional latent feature
vectors for user i and movie j. The likelihood for the rating

2https://grouplens.org/datasets/movielens/ 100k/
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matrix is

N M I
p@®UV.0) =[]]] [N(Rij|UlTVj,a—1)] ’

i=1 j=1

where I;; is an indicator variable which equals 1 if user i gave
a rating for movie j. The prior distributions for the users and
movies are

N
p(Ulpy, Av) = [ [N(Uilny, Ag')  and

i=1

M
p(Viny, Av) = [ [N(Vjluv, AV,
j=1

with prior distributions on the hyperparameters (where W = U
or V) given by,

uw ~ N(uwluo, Aw) and  Aw ~ Gammal(ao, bp).

The parameters of interest in our model are then # =
(U, uu, Au, V, uv, Av) and the hyperparameters for the exper-
iments are T = («, 1o, do,bo) = (3,0,1,5). We are free to
choose the size of the latent dimension and for these experi-
ments we set d = 20.

The predictive distribution for an unknown rating R}; given
to movie j by user i, is found by marginalizing over the latent
feature parameters

P(R}IR, T) = /p(R:;-|Ui,Vj,ot)n(0|R,r)d0.

We can approximate the predictive density using Monte Carlo
integration, where the posterior samples, conditional on the
training data, are generated using the SGMCMC algorithms.
The held-out test data can be used to assess the predictive
accuracy of each of the SGMCMC algorithms, where we use
the root mean square error (RMSE) between the predicted and
actual rating as an accuracy metric.

We ran each of the SGMCMC algorithms for 10° itera-
tions, where for SGLD-CV and SGHMC-CV we applied a SGD
algorithm for 50,000 iterations to find the posterior mode and
used this as the fixed point for the control variate, as well as
initializing these SGMCMC samplers from the control variate
point (ie, 89 = 0). Given the size of the parameter space,
we increase the subsample size to n = 0.1N per iteration and
tune the step size parameter for each SGMCMC algorithm using
diagnostic tests (see Section 4) on a pilot run with 10* iterations.
As abaseline to assess the accuracy of the SGMCMC algorithms
we applied the NUTS sampler from the STAN software to the
full dataset and ran this for 10* iterations, discarding the first
half as burn-in. We also tested a fast variational approximation
using STAN’s ADVT algorithm. Figure 6 gives the RMSE for
STAN, ADVI, SGLD, and SGHMC along with their control
variate versions. The results show that SGHMC produces a
lower RMSE than SGLD on the test data with equally improved
results for their control variate implementations. ADVI, SGLD,
and SGHMC quickly converge to a stable RMSE after a few thou-
sand iterations with SGLD-CV and SGHMC-CV producing an
overall lower RMSE immediately as they are both initialized
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Figure 6. Root mean square error on the predictive performance of each SGMCMC
algorithm averaged over five cross-validation experiments.

from the posterior mode, which removes the burn-in phase.
Most notable from these results is that all of the SGMCMC
algorithms, and ADVI, outperform the STAN baseline RMSE.
The poorer performance of STAN is attributable to running the
algorithm for fewer iterations than the SGMCMC algorithms
which could mean that the MCMC sampler has not converged.
Running STAN for 10% of the iterations of the SGMCMC
algorithms took 3.5 days, whereas SGLD, SGLD-CV, SGHMC,
and SGHMC-CV took 3.1, 1.9, 16.4, and 14.8 hr, respectively.
The ADVI algorithm has a similar computational time to the
SGMCMC algorithms, but as it is an optimization rather than
sampling routine, the algorithm stops after it has converged,
which in this example occurs after approximately 1000 itera-
tions. Overall, while SGMCMC algorithms produce biased pos-
terior approximations compared to exact MCMC algorithms,
such as STAN’s NUTS sampler, they can produce accurate esti-
mates of quantities of interest at significantly reduced computa-
tional cost.

7. Discussion

In this article, we have provided a review of the growing liter-
ature on SGMCMC algorithms. These algorithms utilize data
subsampling to significantly reduce the computational cost of
MCMC. As shown in this article, these algorithms are theo-
retically well-understood and provide parameter inference at
levels of accuracy that are comparable to traditional MCMC
algorithms. SGMCMC is still a relatively new class of Monte
Carlo algorithms compared to traditional MCMC methods and
there remain many open problems and opportunities for further
research in this area.

Some key areas for future development in SGMCMC
include:

o New algorithms—as discussed in Section 3.1, SGMCMC
represents a general class of scalable MCMC algorithms with
many popular algorithms given as special cases, therefore, it
is possible to derive new algorithms from this general setting
which may be more applicable for certain types of target
distribution.
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o General theoretical results—most of the current theoreti-
cal results which bound the error of SGMCMC algorithms
assume that the target distribution is log-concave. Relaxing
this assumption is nontrivial and may need completely differ-
ent arguments to show similar nonasymptotic error bounds
for a broader class of models.

o Tuning techniques—as outlined in Section 4, the efficacy of
SGMCMC is dependent on how well the step size parameter
is tuned. Standard MCMC tuning rules, such as those based
on acceptance rates, are not applicable and new techniques,
such as the Stein discrepancy metrics, can be computa-
tionally expensive to apply. Developing robust tuning rules,
which can be applied in an automated fashion, would make
it easier for nonexperts to use SGMCMC methods in the
same way that adaptive HMC has been applied in the STAN
software.

A major success of traditional MCMC algorithms, and their
broad appeal in a range of application areas, is partly a result of
freely available software, such as WinBUGS (Lunn et al. 2000),
JAGS (Plummer 2003), NIMBLE (de Valpine et al. 2017), and
STAN (Carpenter et al. 2017). Open-source MCMC software,
which may utilize specials features of the target distribution, or
provide automatic techniques to adapt the tuning parameters,
make MCMC methods more user-friendly to general practition-
ers. Similar levels of development for SGMCMC, which pro-
vide automatic differentiation and adaptive step size parameter
tuning, would help lower the entry level for nonexperts. Some
recent developments in this area include sgmcmc in R (Baker
etal. 2019b) and Edward in Python (Tran etal. 2016), but further
development is required to fully utilize the general SGMCMC
framework.

Supplementary Materials

Supplementary materials are available, which include the R code from
Section 6. Code can also be found online at https://github.com/chris-
nemeth/sgmcmc-review-paper.
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