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ABSTRACT
We develop hierarchical Poisson matrix factorization (HPF)
for recommendation. HPF models sparse user behavior data,
large user/item matrices where each user has provided feed-
back on only a small subset of items. HPF handles both ex-
plicit ratings, such as a number of stars, or implicit ratings,
such as views, clicks, or purchases. We develop a variational
algorithm for approximate posterior inference that scales up
to massive data sets, and we demonstrate its performance on
a wide variety of real-world recommendation problems–users
rating movies, users listening to songs, users reading scien-
tific papers, and users reading news articles. Our study re-
veals that hierarchical Poisson factorization definitively out-
performs previous methods, including nonnegative matrix
factorization, topic models, and probabilistic matrix factor-
ization techniques.

1. INTRODUCTION
Recommendation systems are a vital component of the

modern Web. They help readers effectively navigate other-
wise unwieldy archives of information and help websites di-
rect users to items—movies, articles, songs, products—that
they will like. A recommendation system is built from user
behavior data, historical data about which items each user
has consumed, be it clicked, viewed, rated, or purchased.
First, we uncover the behavioral patterns that characterize
various types of users and the kinds of items they tend to
like. Then, we exploit these discovered patterns to recom-
mend future items to its users.

In this paper, we develop Poisson factorization (PF) al-
gorithms for recommendation. Our algorithms easily scale
to massive data and significantly outperform the existing
methods. We show that Poisson factorization for recommen-
dation is tailored to real-world properties of user behavior
data: the heterogenous interests of users, the varied types
of items, and a realistic distribution of the finite resources
that users have to consume items.

Figure 1 illustrates Poisson factorization on data from
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Netflix. The Netflix data contains the ratings of 480,000
users on 17,000 movies, organized in a matrix of 8.16B cells
(and containing 250M ratings). From these data, we extract
the patterns of users’ interests and the movies that are asso-
ciated with those interests. The left panel illustrates some of
those patterns—the algorithm has uncovered action movies,
independent comedies, and 1980s science fiction.

The top panel illustrates how we can use these patterns to
form recommendations for an (imaginary) user. This user
enjoys various types of movies, including fantasy (“Lord of
the Rings”), classic science fiction (“Star Wars: Episode V”),
and independent comedies (“Clerks”, “High Fidelity”). Of
course, she has only seen a handful of the available movies.
PF first uses the movies she has seen to infer what kinds
of movies she is interested in, and then uses these inferred
interests to suggest new movies. The list of movies at the
bottom of the figure was suggested by our algorithm. It
includes other comedies (such as “The Big Lebowski”) and
other science fiction (such as “Star Wars: Episode II”).

In more detail, Poisson factorization is a probabilistic model
of users and items. It associates each user with a latent
vector of preferences, each item with a latent vector of at-
tributes, and constrains both sets of vectors to be sparse and
non-negative. Each cell of the observed behavior matrix is
assumed drawn from a Poisson distribution—an exponen-
tial family distribution over non-negative integers—whose
parameter is a linear combination of the corresponding user
preferences and item attributes. The main computational
problem is posterior inference: given an observed matrix
of user behavior, we discover the latent attributes that de-
scribe the items and the latent preferences of the users. For
example, the components in Figure 1 (left) illustrate the top
items for specific attribute dimensions and the plot in Fig-
ure 1 (middle) illustrates the estimated preference vector for
the given user. A spike in the preference vector implies that
the user tends to like items with the corresponding latent
attribute.

This general procedure is common to many variants of
matrix factorization. We found, however, that PF enjoys
significant quantitative advantages over classical methods
and for a wide variety of data sets, including those with
implicit feedback (a binary matrix indicating which items
users consumed) and those with explicit feedback (a ma-
trix of integer ratings). Figure 4 shows that PF, and its
hierarchical variant HPF, perform significantly better than
existing methods—including the industry standard of ma-
trix factorization with user and item biases (MF)—for large
data sets of Netflix users watching movies, Last.FM users
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Figure 1: The top panel shows the top movies in 3 components for a user from the Netflix data set. The
bottom panel is an illustration showing a subset of the highly rated movies by this user, and the right panel
shows movies recommended to the user by our algorithm. The expected user’s K-vector of weights θu, inferred
by our algorithm is shown in the middle panel.

listening to music, scientists reading papers, and New York
Times readers clicking on articles.

There are two main advantages of Poisson factorization
over traditional methods, both of which contribute to its su-
perior empirical performance. First, it better captures real
consumption data, specifically that users have finite (and
varied) resources with which to view items. To see this, we
can rewrite the model as a two stage process where a user
first decides on a budget of movies to watch and then spends
this budget watching movies that she is interested in. If the
model accurately captures the distribution of budgets then
watched items carry more weight than unwatched items, be-
cause unwatched items can be partially explained by a lack
of resources. We conjecture that classical matrix factoriza-
tion systematically overestimates the users’ budgets, and we
confirm this hypothesis in Section 4 using a posterior pre-
dictive check [9]. This misfit leads to an overweighting of
the zeros, which explains why practitioners require complex
methods for downweighting them [15, 7, 6, 27]. Poisson fac-
torization does not need to be modified in this way.

The second advantage of PF algorithms is that they need
only iterate over the viewed items in the observed matrix of
user behavior, i.e., the non-zero elements, and this is true
even for implicit or “positive only” data sets. (This follows
from the mathematical form of the Poisson distribution.)
Thus, Poisson factorization takes advantage of the natural
sparsity of user behavior data and can easily analyze massive
real-world data. In contrast, classical matrix factorization
based on the Gaussian distribution [30] must iterate over
both positive and negative examples in the implicit setting.
Thus it cannot take advantage of data sparsity, which makes
computation difficult for even modestly sized problems. For
example, one cannot fit to the full Netflix data set (as we
did in Figure 1) without appealing to stochastic optimiza-
tion [24]. We note that our algorithms are also amenable to
stochastic optimization, which we can use to analyze data
sets even larger than those we studied.

We review related work below before discussing details
of the Poisson factorization model, including its statistical
properties and methods for scalable inference.

2. RELATED WORK
The roots of Poisson factorization come from nonnega-

tive matrix factorization [22], where the objective function
is equivalent to a factorized Poisson likelihood. The original
NMF update equations have been shown to be an expectation-
maximization (EM) algorithm for maximum likelihood esti-
mation of a Poisson model via data augmentation [5].

Placing a Gamma prior on the user weights results in the
GaP model [4], which was developed as an alternative text
model to latent Dirichlet allocation (LDA) [3, 16]. The GaP
model is fit using the expectation-maximization algorithm
to obtain point estimates for user preferences and item at-
tributes. The Probabilistic Factor Model (PFM) [23] im-
proves upon GaP by placing a Gamma prior on the item
weights as well, and using multiplicative update rules to in-
fer an approximate maximum a posteriori estimate of the
latent factors. In contrast, as explained below, our model
uses a hierarchical prior structure of Gamma priors on user
and item weights, and Gamma priors over the rate param-
eters from which these weights are drawn. This enables us
to accurately model the skew in user activity and item pop-
ularity, which contributes to good predictive performance.
Furthermore, we approximate the full posterior over all la-
tent factors using a scalable variational inference algorithm.

Independently of GaP and user behavior models, Poisson
factorization has been studied in the context of signal pro-
cessing for source separation [5, 12] and for the purpose of
detecting community structure in network data [1, 11]. This
research includes variational approximations to the poste-
rior, though the issues and details around these data differ
significantly from user data we consider and our derivation
below (based on auxiliary variables) is more direct.

When modeling implicit feedback data sets, researchers
have proposed merging factorization techniques with neigh-
borhood models [20], weighting techniques to adjust the rel-
ative importance of positive examples [15], and sampling-
based approaches to create informative negative examples [7,
6, 27]. In addition to the difficulty in appropriately weight-
ing or sampling negative examples, there is a known selec-
tion bias in provided ratings that causes further complica-



tions [26, 25]. Poisson factorization does not require such
special adjustments and scales linearly with the number of
observed ratings.

We discuss additional related recommendation methods in
Section 4, where we compare a variety of applicable methods
to Poisson factorization empirically.

3. POISSON RECOMMENDATION
In this section we describe the Poisson factorization model

for recommendation, and discuss its statistical properties.
We are given data about users and items, where each user

has consumed and possibly rated a set of items. The obser-
vation yui is the rating that user u gave to item i, or zero
if no rating was given. (In so-called “implicit” consumer
data, yui equals one if user u consumed item i and zero
otherwise.) User behavior data, such as purchases, ratings,
clicks, or views, are typically sparse. Most of the values of
the matrix y are zero.

We model these data with factorized Poisson distribu-
tions [4], where each item i is represented by a vector of
K latent attributes βi and each user u by a vector of K
latent preferences βu. The observations yui are modeled
with a Poisson, parameterized by the inner product of the
user preferences and item attributes, yui ∼ Poisson(θ>u βi).
This is a variant of probabilistic matrix factorization [31]
but where each user and item’s weights are positive [22] and
where the Poisson replaces the Gaussian.

Beyond the basic data generating distribution, we place
Gamma priors on the latent attributes and latent prefer-
ences, which encourage the model towards sparse represen-
tations of the users and items. Furthermore, we place addi-
tional priors on the user and item-specific rate parameter of
those Gammas, which controls the average size of the rep-
resentation. This hierarchical structure allows us to capture
the diversity of users, some tending to consume more than
others, and the diversity of items, some being more popu-
lar than others. The literature on recommendation systems
suggests that a good model must capture such heterogeneity
across users and items [21].

Putting this together, the generative process of the hier-
archical Poisson factorization model (HPF) is as follows:

1. For each user u:

(a) Sample activity ξu ∼ Gamma(a′, a′/b′).
(b) For each component k, sample preference

θuk ∼ Gamma(a, ξu).

2. For each item i:

(a) Sample popularity ηi ∼ Gamma(c′, c′/d′).
(b) For each component k, sample attribute

βik ∼ Gamma(c, ηi).

3. For each user u and item i, sample rating

yui ∼ Poisson(θ>u βi).

This process describes the statistical assumptions behind the
model. Note that we also study a sub-class of HPF where
we fix the rate parameters for all users and items to the
same pair of hyperparameters. We call this model Bayesian
Poisson Factorization (BPF).

The central computational problem is posterior inference,
which is akin to “reversing” the generative process. Given a

user behavior matrix, we want to estimate the conditional
distribution of the latent per-user and per-item structure,
p(θ1:Nβ1:M | y). The posterior is the key to recommenda-
tion. We estimate the posterior expectation of each user’s
preferences, each items attributes and, subsequently, form
predictions about which unconsumed items each user will
like. We discuss posterior inference in Section 3.2.

Once the posterior is fit, we use HPF to recommend items
to users by predicting which of the unconsumed items each
will like. We rank each user’s unconsumed items by their
posterior expected Poisson parameters,

scoreui = E[θ>u βi | y]. (1)

This amounts to asking the model to rank by probability
which of the presently unconsumed items each user will likely
consume in the future.

3.1 Properties of HPF
With the modeling details in place, we highlight several

statistical properties of hierarchical Poisson factorization.
These properties provide advantages over classical (Gaus-
sian) matrix factorization.1

HPF captures sparse factors. As we mentioned above,
the Gamma priors on preferences and attributes encourages
sparse representations of users and items. Specifically, by
setting the shape parameter to be small, most of the weights
will be close to zero and only a few will be large.

HPF models the long-tail of users and items. One
statistical characteristic of real-world user behavior data is
the distribution of user activity (i.e., how many items a user
consumed) and item popularity (i.e., how many users con-
sumed an item). These distributions tend to be long-tailed:
while most users consume a handful few items, a few “tail
users” consume thousands of items. A question we can ask
of a statistical model of user behavior data is how well it
captures these distributions. We found that HPF captures
them very well, while classical matrix factorization does not.

To check this, we implemented a posterior predictive check
(PPC) [29, 9], a technique for model assessment from the
Bayesian statistics literature. The idea behind a PPC is to
simulate a complete data set from the posterior predictive
distribution—the distribution over data that the posterior
induces—and then compare the generated data set to the
true observations. A good model will produce data that
captures the important characteristics of the observed data.

We developed a PPC for matrix factorization algorithms
on user behavior data. First, we formed posterior estimates
of user preferences and item attributes for both classical MF
and HPF. Then, from these estimates, we simulated user
behavior by drawing values for each user and item. (For
classical matrix factorization, we truncated these values at
zero and rounded to one in order to generate a plausible
matrix.) Finally, we compared the matrix generated by the
posterior predictive distribution to the true observations.

Figure 2 illustrates our PPC for the Netflix data. In this
figure, we illustrate three distributions over user activity:
the observed distribution (squares), the distribution from a

1Specifically, by classical matrix factorization we mean
L2 regularized matrix factorization with bias terms for
users and items, fit using stochastic gradient descent [21].
Without the bias terms, this corresponds to maximum a-
posteriori inference under Probabilistic Matrix Factoriza-
tion [31].
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Figure 2: A posterior predictive check of the dis-
tribution of total ratings for the Netflix data set.
The pink curve shows the empirical count of the
number of users who have rated a given number
of items, while the green and blue curves show the
simulated totals from fitted Poisson and traditional
matrix factorization models, respectively. The Pois-
son marginal closely matches the empirical, whereas
classical matrix factorization fits a large mean to ac-
count for skew in the distribution and the missing
ratings.

data set replicated by HPF (red line), and a distribution
from a data set replicated by classical MF (blue line). HPF
captures the truth much more closely than classical MF,
which badly overestimates the distribution of user activity.
(We note that this is true for the item popularities as well,
and for the other data sets.) This indicates that HPF better
represents real data when measured by its ability to capture
distributions of user activity and item popularity.

HPF downweights the effect of zeros. Another ad-
vantage of HPF is that it implicitly down-weights the con-
tribution of the items that each user did not consume. With
an appropriate fit to user activity, the model has two ways
of explaining an unconsumed item: either the user is not
interested in it or she would be interested in it but is likely
to not be further active. In contrast, a user that consumes
an item must be interested in it. Thus, the model benefits
more from making a consumed user/item pair more similar
than making an unconsumed user/item pair less similar.

Classical MF is based on Gaussian likelihoods (i.e., squared
loss), which gives equal weight to consumed and uncon-
sumed items. Consequently, when faced with a sparse ma-
trix and implicit feedback, i.e., binary consumption data,
matrix factorization places more total emphasis on the un-
consumed user/item pairs. (This too can be seen to stem
from classical MF’s overestimation of the distribution of user
activity.) To address this, researchers have patched MF
in complex ways, for example, by including per-observation
confidences [21] or considering all zeroes to be hidden vari-
ables [27]. Poisson factorization more naturally solves this
problem by better capturing user activity.

As an example, consider two similar science fiction movies,
“Star Wars” and “The Empire Strikes Back”, and consider
a user who has seen one of them. The Gaussian model
pays an equal penalty for making the user similar to these
items as it does for making the user different from them—

with quadratic loss, seeing “Star Wars” is evidence for liking
science fiction, but not seeing “The Empire Strikes Back”
is evidence for disliking it. The Poisson model, however,
will prefer to bring the user’s latent weights closer to the
movies’ weights because it favors the information from the
user watching “Star Wars”. Further, because the movies are
similar, this increases the Poisson model’s predictive score
that a user who watches “Star Wars” will also watch “The
Empire Strikes Back”.

Fast inference with sparse matrices. Finally, the like-
lihood of the observed data under HPF (and BPF) depends
only on the consumed items, that is, the non-zero elements
of the user/item matrix y. This facilates computation for
the kind of sparse matrices we observe in real-world data.

We can see this property from the form of the Poisson
distribution. Given the latent preferences θu and latent at-
tributes βi, the Poisson distribution of the rating yui is

p(yui | θu, βi) =
(
θ>u βi

)y
exp

{
−θ>u βi

}
/yui! (2)

Recall the elementary fact that 0! = 1. The log probability
of the complete matrix y is

log p(y | θ, β) =
(∑

{yui>0} yui log(θ>u βi)− log yui!
)

(3)

−
(∑

u θu
)> (∑

i βi
)
.

Classical MF does not enjoy this property. These meth-
ods, especially when applied to massive data sets of implicit
feedback, must (in theory) iterate over all the cells of the ma-
trix. Practitioners require solutions such as sub-sampling [6]
approximation [15], or stochastic optimization [24].

3.2 Inference with variational methods
Using HPF for recommendation hinges on solving the pos-

terior inference problem. Given a set of observed ratings, we
would like to infer the user preferences and item attributes
that explain these ratings, and then use these inferences to
recommend new content to the users. In this section we dis-
cuss the details and practical challenges of posterior infer-
ence for HPF, and present a mean-field variational inference
algorithm as a practical and scalable approach. Our algo-
rithm easily accommodates data sets with millions of users
and hundreds of thousands of items on a single CPU.

Given a matrix of user behavior, we would like to compute
the posterior distribution of user preferences θuk, item at-
tributes βik, user activity ξu and item popularity ηi. As for
many Bayesian models, however, the exact posterior is com-
putationally intractable. We show how to efficiently approx-
imate the posterior with mean-field variational inference.

Variational inference is an optimization-based strategy for
approximating posterior distributions in complex probabilis-
tic models [19, 32]. Variational algorithms posit a family of
distributions over the hidden variables, indexed by free“vari-
ational” parameters, and then find the member of that fam-
ily that is closest in Kullback-Liebler (KL) divergence to the
true posterior. (The form of the family is chosen to make this
optimization possible.) Thus, variational inference turns the
inference problem into an optimization problem. Variational
inference tends to scale better than alternative sampling-
based approaches, like Monte Carlo Markov chain sampling,
and has been deployed to solve many applied problems with
complex models, including large-scale recommendation [27].

We will describe a simple variational inference algorithm



for HPF. To do so, however, we first give an alternative for-
mulation of the model in which we add an additional layer of
latent variables. These auxiliary variables facilitate deriva-
tion and description of the algorithm [10, 14].

For each user and item we add K latent variables zuik ∼
Poisson(θukβik), which are integers that sum to the user/item
value yui. A sum of Poisson random variables is itself a
Poisson with rate equal to the sum of the rates. Thus, these
new latent variables preserve the marginal distribution of
the observation, yui ∼ Poisson(θ>u βi). These variables can
be thought of as the contribution from component k to the
total observation yui. Note that when yui = 0, these aux-
iliary variables are not random—the posterior distribution
of zui will place all its mass on the zero vector. Conse-
quently, our inference procedure need only consider zui for
those user/item pairs where yui > 0.

For all users and items, initialize the user parameters
γu, κrte

u and item parameters λi, τ
rte
i to the prior with

a small random offset. Set the user activity and item
popularity shape parameters:

κshp
u = a′ +Ka; τ shpi = c′ +Kc

Repeat until convergence:

1. For each user/item such that yui > 0, update the
multinomial:

φui ∝ exp{Ψ(γshp
uk )− log γrte

uk + Ψ(λshp
ik )− log λrte

ik }.

2. For each user, update the user weight and activity
parameters:

γshp
uk = a+

∑
i yuiφuik

γrte
uk =

κshp
u

κrte
u

+
∑

i λ
shp
ik /λrte

ik

κrte
u =

a′

b′
+
∑
k

γshp
uk

γrte
uk

3. For each item, update the item weight and popu-
larity parameters:

λshp
ik = c+

∑
u yuiφuik

λrte
ik =

τ shpi

τ rtei

+
∑

u γ
shp
uk /γ

rte
uk

τ rtei =
c′

d′
+
∑
k

λshp
ik

λrte
ik

Figure 3: Variational inference for Poisson factor-
ization. Each iteration only needs to consider the
non-zero elements of the user/item matrix.

With these latent variables in place, we now describe the
algorithm. First, we posit the variational family over the
hidden variables. Then we show how to optimize its param-
eters to find the member close to the posterior of interest.

The latent variables in the model are user weights θuk,
item weights βik, and user-item contributions zuik, which
we represent as a K-vector of counts zui. The mean-field
family considers these variables to be independent and each

governed by its own distribution,

q(β, θ, ξ, η, z) =
∏

i,k q(βik |λik)
∏

u,k q(θuk | γuk)∏
u q(ξu |κu)

∏
i q(ηi | τi)

∏
u,i q(zui |φui).

Though the variables are independent, this is a flexible fam-
ily of distributions because each variable is governed by its
own free parameter. The variational factors for preferences
θuk, attributes βik, activity ξu, and popularity ηi are all
Gamma distributions, with freely set scale and rate varia-
tional parameters. The variational factor for zui is a free
multinomial, i.e., φui is a K-vector that sums to one. This
form stems from zui being a bank of Poisson variables con-
ditional on a fixed sum yui, and the property that such con-
ditional Poissons are distributed as a multinomial [18, 5].

After specifying the family, we fit the variational param-
eters ν = {λ, γ, κ, τ, φ} to minimize the KL divergence to
the posterior, and then use the corresponding variational
distribution q(· | ν∗) as its proxy. The mean-field factoriza-
tion facilitates both optimizing the variational objective and
downstream computations with the approximate posterior,
such as the recommendation score of Equation 1.

We optimize the variational parameters with a coordi-
nate ascent algorithm, iteratively optimizing each parameter
while holding the others fixed. The algorithm is illustrated
in Figure 3. We denote shape with the superscript “shp”
and rate with the superscript “rte”. (We omit a detailed
derivation due to space constraints.)

Note that our algorithm is very efficient on sparse matri-
ces. In step 1, we need only update variational multinomials
for the non-zero user/item observations yui. In steps 2 and
3, the sums over users and items need only to consider non-
zero observations. This efficiency is thanks the likelihood of
the full matrix only depending on the non-zero observations,
as we discussed in the previous section.

We terminate the algorithm when the variational distribu-
tion converges. Convergence is measured by computing the
prediction accuracy on a validation set. Specifically, we ap-
proximate the probability that a user consumed an item us-
ing the variational approximations to posterior expectations
of θu and βi, and compute the average predictive log like-
lihood of the validation ratings. The HPF algorithm stops
when the change in log likelihood is less than 0.0001%. For
the HPF and the BPF we find that the algorithm is largely
insensitive to small changes in the hyper-parameters. To
enforce sparsity, we set the shape hyperparameters a′, a, c
and c′ to provide exponentially shaped prior Gamma distri-
butions. We fixed each hyperparameter at 0.3. We set the
hyperparameters b′ and d′ to 1, fixing the prior mean at 1.

4. EMPIRICAL STUDY
We evaluate the performance of the Hierarchical Poisson

factorization (HPF) algorithm and its non-hierarchical vari-
ant (BPF) on a variety of large-scale user behavior data sets:
users listening to music, users watching movies, users read-
ing scientific articles, and users reading the newspaper. We
find that HPF and BPF give significantly better recommen-
dations than competing methods.

We first discuss the details of each data set and of the
competing recommendation methods. We then describe our
study, noting the superior performance and computational
efficiency of HPF. We conclude with an exploratory analysis
of preferences and attributes on several of the data sets.



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

Mendeley New York Times Echo Nest Netflix (implicit) Netflix (explicit)

0%

1%

2%

6%

8%

10%

4%

5%

6%

7%

8%

15%

20%

25%

10%

15%

20%

25%

30%

M
ea

n 
no

rm
al

iz
ed

 p
re

ci
si

on

HPF

BPF

LDA

MF

NMF

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

Mendeley New York Times Echo Nest Netflix (implicit) Netflix (explicit)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

4%

5%

6%

7%

8%

4%

5%

6%

7%

8%

9%

12%

15%

18%

5%

10%

15%

20%

M
ea

n 
re

ca
ll HPF

BPF

LDA

MF

NMF

Figure 4: Predictive performance on data sets. The top and bottom plots show normalized mean precision
and mean recall at 20 recommendations, respectively. While competing method performance varies across
data sets, HPF and BPF consistently outperform competing methods.

Data Sets. We study the HPF algorithm in Figure 3 on
several data sets of user behavior, including both implicit
and explicit feedback:

• The Mendeley data set [17] of scientific articles is
a binary matrix of 80,000 users and 260,000 articles,
with 5 million observations. Each cell corresponds to
the presence or absence of an article in a scientist’s
online library.

• The Echo Nest music data set [2] is a matrix of 1
million users and 385,000 songs, with 48 million ob-
servations. Each observation is the number of times a
user played a song.

• The New York Times data set is a matrix of 1,615,675
users and 103,390 articles, with 80 million observa-
tions. Each observation is the number of times a user
viewed an article.

• The Netflix data set [21] contains 480,000 users and
17,770 movies, with 100 million observations. Each
observation is the rating (from 1 to 5 stars) that a
user provided for a movie.

The scale and diversity of these data sets enables a robust
evaluation of our algorithm. The Mendeley, Echo Nest, and
New York Times data are sparse compared to Netflix. For
example, we observe only 0.001% of all possible user-item
ratings in Mendeley, while 1% of the ratings are non-zero
in the Netflix data. This is partially a reflection of large
number of items relative to number users in these data sets.

Furthermore, the intent signaled by an observed rating
varies significantly across these data sets. For instance, the
Netflix data set gives the most direct measure of stated pref-
erences for items, as users provide an explicit star rating for

movies they have watched. In contrast, article click counts
in the New York Times data are a less clear measure of how
much a user likes a given article—most articles are read
only once, and a click through is only a weak indicator of
whether the article was fully read, let alone liked. Ratings in
the Echo Nest data presumably fall somewhere in between,
as the number of times a user listens to a song likely reveals
some indirect information about their preferences.

As such, we treat each data set as a source of implicit
feedback, where an observed positive rating indicates that
a user likes a particular item, but the rating value itself
is ignored. The Mendeley data are already of this simple
binary form. For the Echo Nest and New York Times data,
we consider any song play or article click as a positive rating,
regardless of the play or click count. We also consider two
versions of the Netflix data—the original, explicit ratings,
and an implicit version in which only 4 and 5 star ratings
are retained as observations [27].

Competing methods. We compare Poisson factoriza-
tion against an array of competing methods:

• NMF: Non-negative Matrix Factorization [22]. In NMF,
user preferences and item attributes are modeled as
non-negative vectors in a low-dimensional space. These
latent vectors are randomly initialized and modified
via an alternating multiplicative update rule to mini-
mize the Kullback-Leibler divergence between the ac-
tual and modeled rating matrices.

• LDA: Latent Dirichlet Allocation [3]. LDA is a Bayesian
probabilistic generative model where user preferences
are represented by a distribution over different topics,
and each topic is a distribution over items. Interest
and topic distributions are randomly initialized and



updated using stochastic variational inference [14] to
approximate these intractable posteriors.

• MF: Probabilistic Matrix Factorization with user and
item biases. We use a variant of matrix factorization
popularized through the Netflix Prize [21], where a lin-
ear predictor—comprised of a constant term, user ac-
tivity and item popularity biases, and a low-rank inter-
action term—is fit to minimize the mean squared error
between the predicted and observed rating values, sub-
ject to L2 regularization to avoid overfitting. Weights
are randomly initialized and updated via stochastic
gradient descent using the Vowpal Wabbit package [34].
This corresponds to maximum a-posteriori inference
under Probabilistic Matrix Factorization [31].

We note that while HPF, BPF, and LDA take only the
non-zero observed ratings as input, traditional matrix fac-
torization requires that we provide explicit zeros in the rat-
ings matrix as negative examples for the implicit feedback
setting. In practice, this amounts to either treating all miss-
ing ratings as zeros (as in NMF) and down-weighting to
balance the relative importance of observed and missing rat-
ings [15], or generating negatives by randomly sampling from
missing ratings in the training set [7, 6, 27]. We take the
latter approach for computational convenience, employing
a popularity-based sampling scheme: we sample users by
activity—the number of items rated in the training set—
and items by popularity—the number of training ratings an
item received to generate negative examples.2

Finally, we note a couple of candidate algorithms that
failed to scale to our data sets. The fully Bayesian treat-
ment of the Probabilistic Matrix Factorization [30], uses a
MCMC algorithm for inference. The authors [30] report
that a single Gibbs iteration on the Netflix data set with
60 latent factors, requires 30 minutes, and that they throw
away the first 800 samples. This implies at least 16 days
of training, while the HPF variational inference algorithm
converges within 13 hours on the Netflix data. Another
alternative, Bayesian Personalized Ranking (BPR) [28, 7],
optimizes a ranking-based criteria using stochastic gradient
descent. The algorithm performs an expensive bootstrap
sampling step at each iteration to generate negative exam-
ples from the vast set of unobserved. We found time and
space constraints to be prohibitive when attempting to use
BPR with the data sets considered here.

Evaluation. Prior to training any models, we randomly
select 20% of ratings in each data set to be used as a held-
out test set comprised of items that the user has consumed.
Additionally, we set aside 1% of the training ratings as a
validation set and use it to determine algorithm convergence
and to tune free parameters. We used the BPF and HPF
settings described in Section 3.2 across all data sets, and set
the number of latent components K to 100.

During testing, we generate the top M recommendations
for each user as those items with the highest predictive score
under each method. For each user, we compute a variant of
precision-at-M that measures the fraction of relevant items
in the user’s top-M recommendations. So as not to artifi-
cially deflate this measurement for lightly active users who

2We also compared this to a uniform random sampling
of negative examples, but found that the popularity-based
sampling performed better.

have consumed fewer than M items, we compute normal-
ized precision-at-M , which adjusts the denominator to be at
most the number of items the user has in the test set. Like-
wise, we compute recall-at-M , which captures the fraction of
items in the test set present in the top M recommendations.

Figure 4 shows the normalized mean precision at 20 rec-
ommendations for each method and data sets. We see that
HPF and BPF outperform other methods on all data sets
by a sizeable margin—as much as 8 percentage points. Pois-
son factorization provides high-quality recommendations—a
relatively high fraction of items recommended by HPF are
found to be relevant, and many relevant items are recom-
mended. While not shown in these plots, the relative per-
formance of methods within a data set is consistent as we
vary the number of recommendations shown to users. We
also note that while Poisson factorization dominates across
all of these data sets, the relative quality of recommenda-
tions from competing methods varies substantially from one
data set to the next. For instance, LDA performs quite well
on the Echo Nest data, but fails to beat classical matrix
factorization for the implicit Netflix data set.

We also study precision and recall as a function of user
activity to investigate how performance varies across users
of different types. In particular, Figure 5 shows the mean
difference in precision and recall to HPF, at 20 recommenda-
tions, as we look at performance for users of varying activity,
measured by percentile. For example, the 10% mark shows
mean performance across the bottom 10% of users, who are
least active; the 90% mark shows the mean performance for
all but the top 10% of most active users. Here we see that
Poisson factorization outperforms other methods for users of
all activity levels—both the “light” users who constitute the
majority, and the relatively few “heavy” users who consume
more—for all data sets.

Exploratory analysis. The fitted model can be explored
to discover latent structure among items and users and to
confirm that the model is capturing the components in the
data in a reasonable way. For example, in Figure 6 we il-
lustrate the components discovered by our algorithm on the
scientific articles in Mendeley and news articles in the New
York Times. For each data set, the illustration shows the
top items—items sorted in decreasing order of their expected
weight βi—from three of the 100 components discovered by
our algorithm. From these, we see that learned components
both cut across and differentiate between conventional top-
ics and categories. For instance, in the New York Times
data, we find that multiple business-related topics (e.g., self
help and personal finance) comprise separate components,
whereas other articles that appear across different sections
of the newspaper (e.g., business and regional news) are uni-
fied by their content (e.g., airplanes).

5. CONCLUSION
We have demonstrated that Poisson factorization is an ef-

ficient and effective means of generating high quality recom-
mendations across a variety of data sets ranging from movie
views to scientific article libraries. It significantly outper-
forms existing recommendation methods on both explicit
rating data and implicit behavior data, without the need
for ad hoc modifications. Poisson factorization algorithms
scale to massive data and differ from traditional methods
in their ability to capture the heterogeneity amongst users
and items, accounting for the wide range of activity and
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Figure 5: Predictive performance across users. The top and bottom plots show the mean difference in
precision and recall to HPF at 20 recommendations, respectively, by user activity.

popularity amongst them, respectively.
Future work includes extensions to HPF, to provide cold-

start recommendations using text data [33], and to infer the
number of latent components using Bayesian nonparametric
assumptions [35]; and stochastic variational inference [14],
to analyze data sets larger than those we studied.
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APPENDIX
Given an observed matrix of user behavior y, we would like
to compute the posterior distribution of user preferences θuk,
item attributes βik, user activity ξu and item popularity ηi,
p(θ, β, ξ, η | y). Our derivation of the variational algorithm
for HPF makes use of general results about the class of con-
ditionally conjugate models [10, 14]. We define the class,
show that HPF is in the class, and then derive the varia-
tional inference algorithm.

Complete conditionals. Variational inference fits the
variational parameters to minimize their KL divergence to
the posterior. For the large class of conditionally conju-
gate models, we can easily perform this optimization with a
coordinate-ascent algorithm, one in which we iteratively op-
timize each variational parameter while holding the others



fixed. A complete conditional is the conditional distribution
of a latent variable given the observations and the other la-
tent variables in the model. A conditionally conjugate model
is one where each complete conditional is in an exponential
family.

HPF, with the zui variables described in Section 3.2, is
a conditionally conjugate model. (Without the auxiliary
variables, it is not conditionally conjugate.) For the user
weights θuk, the complete conditional is a Gamma,

θuk |β, ξ, z, y ∼ Gamma(a+
∑

i zuik, ξu +
∑

i βik). (4)

The complete conditional for item weights βik is symmetric,

βik | θ, η, z, y ∼ Gamma(a+
∑

u zuik, ηi +
∑

i θuk). (5)

These distributions stem from conjugacy properties between
the Gamma and Poisson. In the user weight distribution, for
example, the item weights βik act as“exposure”variables [8].
(The roles are reversed in the item weight distribution.) We
can similarly write down the complete conditionals for the
user activity ξu and the item popularity ηi.

ξu | θ ∼ Gamma(a′ +Ka, b′ +
∑

k θuk).

ηi |β ∼ Gamma(c′ +Kc, d′ +
∑

k βik).

The final latent variables are the auxiliary variables. Recall
that each zui is a K-vector of Poisson counts that sum to the
observation yui. The complete conditional for this vector is

zui |β, θ, y ∼ Mult

(
yui,

θuβi∑
k θukβik

)
. (6)

Though these variables are Poisson in the model, their com-
plete conditional is multinomial. The reason is that the
conditional distribution of a set of Poisson variables, given
their sum, is a multinomial for which the parameter is their
normalized set of rates. (See [18, 5].)

Deriving the algorithm. We now derive variational in-
ference for HPF. First, we set each factor in the mean-field
family (Equation 4) to be the same type of distribution as
its complete conditional. The complete conditionals for the
item weights βik and user weights θuk are Gamma distribu-
tions (Equations 4 and 5); thus the variational parameters
λik and γuk are Gamma parameters, each containing a shape
and a rate. Similarly, the variational user activity param-
eters κu and the variational item popularity parameter τi
are Gamma parameters, each containing a shape and a rate.
The complete conditional of the auxiliary variables zuik is
a multinomial (Equation 6); thus the variational parameter
φui is a multinomial parameter, a point on the K-simplex,
and the variational distribution for zui is Mult(yui, φui).

In coordinate ascent we iteratively optimize each varia-
tional parameter while holding the others fixed. In condi-
tionally conjugate models, this amounts to setting each vari-
ational parameter equal to the expected parameter (under
q) of the complete conditional. 3 The parameter to each
complete conditional is a function of the other latent vari-
ables and the mean-field family sets all the variables to be
independent. These facts guarantee that the parameter we
are optimizing will not appear in the expected parameter.

3It is a little more complex then this. For details, see [14].

For the user and item weights, we update the variational
shape and rate parameters. The updates are

γuk = 〈a+
∑

i yuiφuik, b+
∑

i λ
shp
ik /λrte

ik 〉 (7)

λik = 〈c+
∑

u yuiφuik, d+
∑

u γ
shp
ik /γrte

ik 〉. (8)

These are expectations of the complete conditionals in Equa-
tions 4 and 5. In the shape parameter, we use that the ex-
pected count of the kth item in the multinomial is Eq[zuik] =
yuiφuik. In the rate parameter, we use that the expectation
of a Gamma variable is the shape divided by the rate.

For the variational multinomial the update is

φui ∝ exp{Ψ(γshp
uk )− log γrte

uk + Ψ(λshp
ik )− log λrte

ik }, (9)

where Ψ(·) is the digamma function (the first derivative of
the log Γ function). This update comes from the expectation
of the log of a Gamma variable, for example Eq[log θuk] =

Ψ(γshp
nk )− log γrte

nk .
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