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Probability concepts explained:
Bayesian inference for parameter
estimation.

Introduction
In the previous blog post I covered the maximum likelihood method for

parameter estimation in machine learning and statistical models. In

this post we’ll go over another method for parameter estimation using

Bayesian inference. I’ll also show how this method can be viewed as a

generalisation of maximum likelihood and in what case the two

methods are equivalent.

Some fundamental knowledge of probability theory is assumed e.g.

marginal and conditional probability. These concepts are explained in

my �rst post in this series. Additionally, it also helps to have some basic

knowledge of a Gaussian distribution but it’s not necessary.

Bayes’ Theorem
Before introducing Bayesian inference, it is necessary to understand

Bayes’ theorem. Bayes’ theorem is really cool. What makes it useful is

that it allows us to use some knowledge or belief that we already have

(commonly known as the prior) to help us calculate the probability of a
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related event. For example, if we want to �nd the probability of selling

ice cream on a hot and sunny day, Bayes’ theorem gives us the tools to

use prior knowledge about the likelihood of selling ice cream on any

other type of day (rainy, windy, snowy etc.). We’ll talk more about this

later so don’t worry if you don’t understand it just yet.

Mathematical de�nition

Mathematically Bayes’ theorem is de�ned as:

where A and B are events, P(A|B) is the conditional probability that

event A occurs given that event B has already occurred (P(B|A) has the

same meaning but with the roles of A and B reversed) and P(A) and

P(B) are the marginal probabilities of event A and event B occurring

respectively.

Example

Mathematical de�nitions can often feel too abstract and scary so let’s

try to understand this with an example. One of the examples that I gave

in the introductory blog post was about picking a card from a pack of

traditional playing cards. There are 52 cards in the pack, 26 of them are

red and 26 are black. What is the probability of the card being a 4 given

that we know the card is red?

To convert this into the math symbols that we see above we can say that

event A is the event that the card picked is a 4 and event B is the card

being red. Hence, P(A|B) in the equation above is P(4|red) in our

example, and this is what we want to calculate. We previously worked

out that this probability is equal to 1/13 (there 26 red cards and 2 of

those are 4's) but let’s calculate this using Bayes’ theorem.

We need to �nd the probabilities for the terms on the right hand side.

They are:

P(B|A) = P(red|4) = 1/2

P(A) = P(4) = 4/52 = 1/13

P(B) = P(red) = 1/2

1.

2.

3.

https://medium.com/@jonnybrooks04/probability-concepts-explained-introduction-a7c0316de465
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When we substitute these numbers into the equation for Bayes’

theorem above we get 1/13, which is the answer that we were

expecting.

How does Bayes’ Theorem allow us to incorporate
prior beliefs?

Above I mentioned that Bayes’ theorem allows us to incorporate prior

beliefs, but it can be hard to see how it allows us to do this just by

looking at the equation above. So let’s see how we can do that using the

ice cream and weather example above.

Let A represent the event that we sell ice cream and B be the event of

the weather. Then we might ask what is the probability of selling ice

cream on any given day given the type of weather? Mathematically this is

written as P(A=ice cream sale | B = type of weather) which is

equivalent to the left hand side of the equation.

P(A) on the right hand side is the expression that is known as the prior.
In our example this is P(A = ice cream sale), i.e. the (marginal)

probability of selling ice cream regardless of the type of weather

outside. P(A) is known as the prior because we might already know the

marginal probability of the sale of ice cream. For example, I could look

at data that said 30 people out of a potential 100 actually bought ice

cream at some shop somewhere. So my P(A = ice cream sale) =

30/100 = 0.3, prior to me knowing anything about the weather. This is

how Bayes’ Theorem allows us to incorporate prior information.

Caution: I mentioned above that I could �nd data from a shop to get

prior information, but there is nothing stopping me from making up a

completely subjective prior that is not based on any data whatsoever.

It’s possible for someone to come up with a prior that is an informed

guess from personal experience or particular domain knowledge but it’s

important to know that the resulting calculation will be a�ected by this

choice. I’ll go into more detail regarding how the strength of the prior

belief a�ects the outcome later in the post.

Bayesian Inference

De�nition

Now we know what Bayes’ theorem is and how to use it, we can start to

answer the question what is Bayesian inference?
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Firstly, (statistical) inference is the process of deducing properties

about a population or probability distribution from data. We did this in

my previous post on maximum likelihood. From a set of observed data

points we determined the maximum likelihood estimate of the mean.

Bayesian inference is therefore just the process of deducing properties

about a population or probability distribution from data using Bayes’

theorem. That’s it.

Using Bayes’ theorem with distributions

Until now the examples that I’ve given above have used single numbers

for each term in the Bayes’ theorem equation. This meant that the

answers we got were also single numbers. However, there may be times

when single numbers are not appropriate.

In the ice cream example above we saw that the prior probability of

selling ice cream was 0.3. However, what if 0.3 was just my best guess

but I was a bit uncertain about this value. The probability could also be

0.25 or 0.4. In this case a distribution of our prior belief might be more

appropriate (see �gure below). This distribution is known as the prior
distribution.

2 distributions that represent our prior probability of selling ice on any given day. The peak value of

both the blue and gold curves occur around the value of 0.3 which, as we said above, is our best guess

of our prior probability of selling ice cream. The fact that f(x) is non-zero of other values of x shows

that we’re not completely certain that 0.3 is the true value of selling ice cream. The blue curve shows

that it’s likely to be anywhere between 0 and 0.5, whereas the gold curve shows that it’s likely to be

anywhere between 0 and 1. The fact that the gold curve is more spread out and has a smaller peak

than the blue curve means that a prior probability expressed by the gold curve is “less certain” about

the true value than the blue curve.

https://towardsdatascience.com/probability-concepts-explained-maximum-likelihood-estimation-c7b4342fdbb1
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In a similar manner we can represent the other terms in Bayes’

Theorem using distributions. We mostly need to use distributions when

we’re dealing with models.

Model form of Bayes’ Theorem
In the introductory de�nition of Bayes’ Theorem above I’ve used events

A and B but when the model form of Bayes’ theorem is stated in the

literature di�erent symbols are often used. Let’s introduce them.

Instead of event A, we’ll typically see Θ, this symbol is called Theta.

Theta is what we’re interested in, it represents the set of parameters. So

if we’re trying to estimate the parameter values of a Gaussian

distribution then Θ represents both the mean, μ and the standard

deviation, σ (written mathematically as Θ = {μ, σ}).

Instead of event B, we’ll see data or y = {y1, y2, …, yn}. These

represent the data, i.e. the set of observations that we have. I’ll

explicitly use data in the equation to hopefully make the equation a

little less cryptic.

So now Bayes’ theorem in model form is written as:

We‘ve seen that P(Θ) is the prior distribution. It represents our beliefs

about the true value of the parameters, just like we had distributions

representing our belief about the probability of selling ice cream.

P(Θ|data) on the left hand side is known as the posterior
distribution. This is the distribution representing our belief about the

parameter values after we have calculated everything on the right hand

side taking the observed data into account.

P(data| Θ) is something we’ve come across before. If you made it to the

end of my previous post on maximum likelihood then you’ll remember

that we said L(data; μ, σ) is the likelihood distribution (for a Gaussian

distribution). Well P(data| Θ) is exactly this, it’s the likelihood
distribution in disguise. Sometimes it’s written as ℒ(Θ; data) but it’s

the same thing here.
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Therefore we can calculate the posterior distribution of our parameters

using our prior beliefs updated with our likelihood.

This gives us enough information to go through an example of

parameter inference using Bayesian inference. But �rst…

Why did I completely disregard P(data)?

Well, apart from being the marginal distribution of the data it doesn’t

really have a fancy name, although it’s sometimes referred to as the

evidence. Remember, we’re only interested in the parameter values but

P(data) doesn’t have any reference to them. In fact, P(data) doesn’t

even evaluate to a distribution. It’s just a number. we’ve already

observed the data so we can calculate P(data). In general, it turns out

that calculating P(data) is very hard and so many methods exist to

calculate it. This blog post by Prasoon Goyal explains several methods

of doing so.

The reason why P(data) is important is because the number that comes

out is a normalising constant. One of the necessary conditions for a

probability distribution is that the sum of all possible outcomes of an

event is equal to 1 (e.g. the total probability of rolling a 1, 2, 3, 4, 5 or 6

on a 6-sided die is equal to 1). The normalising constant makes sure

that the resulting posterior distribution is a true probability distribution

by ensuring that the sum of the distribution (I should really say integral

because it’s usually a continuous distribution but that’s just being too

pedantic right now) is equal to 1.

In some cases we don’t care about this property of the distribution. We

only care about where the peak of the distribution occurs, regardless of

whether the distribution is normalised or not. In this case many people

write the model form of Bayes’ theorem as

where ∝ means “proportional to”. This makes it explicit that the true

posterior distribution is not equal to the right hand side because we

haven’t accounted for the normalisation constant P(data).

Bayesian inference example
Well done for making it this far. You may need a break after all of that

theory. But let’s plough on with an example where inference might

https://blog.statsbot.co/probabilistic-graphical-models-tutorial-d855ba0107d1
https://medium.com/@prasoongoyal13
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come in handy. The example we’re going to use is to work out the

length of a hydrogen bond. You don’t need to know what a hydrogen

bond is. I’m only using this as an example because it was one that I

came up with to help out a friend during my PhD (we were in the

Biochemistry department which is why it was relevant at the time).

Let’s assume that a hydrogen bond is between 3.2Å — 4.0Å (A quick

check on Google gave me this information. The Ångström, Å, is a unit

of distance where 1Å is equal to 0.1 nanometers, so we’re talking about

very tiny distances). This information will form my prior. In terms of a

probability distribution, I’ll reformulate this as a Gaussian distribution

with mean μ = 3.6Å and standard deviation σ = 0.2Å (see �gure

below).

I’ve included this image because I think it looks nice, helps to break up the dense text and is kind of

related to the example that we’re going to go through. Don’t worry, you don’t need to understand the

�gure to understand what we’re about to go through on Bayesian inference. In case you’re wondering,

I made the �gure with Inkscape.

https://inkscape.org/en/
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Now we’re presented with some data (5 data points generated

randomly from a Gaussian distribution of mean 3Å and standard

deviation 0.4Å to be exact. In real world situations these data will come

from the result of a scienti�c experiment) that gives measured lengths

of hydrogen bonds (gold points in Figure 3). We can derive a likelihood

distribution from the data just like we did in the previous post on

maximum likelihood. Assuming that the data were generated from a

process that can be described by a Gaussian distribution we get a

likelihood distribution represented by the gold curve in the �gure

below. Notice that the maximum likelihood estimate of the mean from

the 5 data points is less than 3 (about 2.8Å)

Our prior probability for the length of a hydrogen bond. This is represented by a Gaussian distribution

with mean μ = 3.6Å and standard deviation σ = 0.2Å.
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Now we have 2 Gaussian distributions, blue representing the prior and

gold representing the likelihood. We don’t care about the normalising

constant so we have everything we need to calculate the unnormalised

posterior distribution. Recall that the equation representing the

probability density for a Gaussian is

So we have to multiply 2 of these. I wont go through the maths here

because it gets very messy. If you’re interested in the maths then you

can see it performed in the �rst 2 pages of this document. The resulting

posterior distribution is shown in pink in the �gure below.

Prior probability for the distance of a hydrogen bond in blue and the likelihood distribution in gold

derived from the 5 gold data points.

http://www.tina-vision.net/docs/memos/2003-003.pdf
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Now we have the posterior distribution for the length of a hydrogen

bond we can derive statistics from it. For example, we could use the

expected value of the distribution to estimate the distance. Or we could

calculate the variance to quantify our uncertainty about our

conclusion. One of the most common statistics calculated from the

posterior distribution is the mode. This is often used as the estimate of

the true value for the parameter of interest and is known as the

Maximum a posteriori probability estimate or simply, the MAP
estimate. In this case the posterior distribution is also a Gaussian

distribution, so the mean is equal to the mode (and the median) and

the MAP estimate for the distance of a hydrogen bond is at the peak of

the distribution at about 3.2Å.

Concluding remarks

Why am I always using Gaussians?

You’ll notice that in all my examples that involve distributions I use

Gaussian distributions. One of the main reasons is that it makes the

maths a lot easier. But for the Bayesian inference example it required

calculating the product of 2 distributions. I said this was messy and so I

didn’t go through the maths. But even without doing the maths myself,

I knew that the posterior was a Gaussian distribution. This is because

the Gaussian distribution has a particular property that makes it easy to

work with. It’s conjugate to itself with respect to a Gaussian likelihood

function. This means that if I multiply a Gaussian prior distribution

with a Gaussian likelihood function, I’ll get a Gaussian posterior

function. The fact that the posterior and prior are both from the same

The posterior distribution in pink generated by multiplying the blue and gold distributions.

https://en.wikipedia.org/wiki/Expected_value
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distribution family (they are both Gaussians) means that they are

called conjugate distributions. In this case the prior distribution is

known as a conjugate prior.

In many inference situations likelihoods and priors are chosen such

that the resulting distributions are conjugate because it makes the

maths easier. An example in data science is Latent Dirichlet Allocation

(LDA) which is an unsupervised learning algorithm for �nding topics in

several text documents (referred to as a corpus). A very good

introduction to LDA is can be found here in Edwin Chen’s blog.

In some cases we can’t just pick the prior or likelihood in such a way to

make it easy to calculate the posterior distribution. Sometimes the

likelihood and/or the prior distribution can look horrendous and

calculating the posterior by hand is not easy or possible. In these cases

we can use di�erent methods to calculate the posterior distribution.

One of the most common ways is by using a technique called Markov

Chain Monte Carlo methods. Ben Shaver has written a brilliant article

called A Zero-Math Introduction to Markov Chain Monte Carlo

Methods that explains this technique in a very accessible manner.

What happens when we get new data?

One of the great things about Bayesian inference is that you don’t need

lots of data to use it. 1 observation is enough to update the prior. In

fact, the Bayesian framework allows you to update your beliefs

iteratively in realtime as data comes in. It works as follows: you have a

prior belief about something (e.g. the value of a parameter) and then

you receive some data. You can update your beliefs by calculating the

posterior distribution like we did above. Afterwards, we get even more

data come in. So our posterior becomes the new prior. We can update

the new prior with the likelihood derived from the new data and again

we get a new posterior. This cycle can continue inde�nitely so you’re

continuously updating your beliefs.

The Kalman �lter (and it’s variants) is a great example of this. It’s used

in many scenarios, but possibly the most high pro�le in data science are

its applications to self driving cars. I used a variant called the

Unscented Kalman �lter during my PhD in mathematical protein

crystallography, and contributed to an open source package

implementing them. For a good visual description of Kalman Filters

check out this blog post: How a Kalman �lter works, in pictures by Tim

Babb.

Using priors as regularisers

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation/
https://medium.com/@benpshaver
https://towardsdatascience.com/a-zero-math-introduction-to-markov-chain-monte-carlo-methods-dcba889e0c50
https://en.wikipedia.org/wiki/Kalman_filter
https://medium.com/udacity/udacity-self-driving-car-nanodegree-project-6-extended-kalman-filter-c3eac16c283d
https://github.com/ElOceanografo/StateSpace.jl
http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/
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The data that we generated in the hydrogen bond length example

above suggested that 2.8Å was the best estimate. However, we may be

at risk of over�tting if we based our estimate solely on the data. This

would be a huge problem if something was wrong with the data

collection process. We can combat this in the Bayesian framework using

priors. In our example using a Gaussian prior centred on 3.6Å resulted

in a posterior distribution that gave a MAP estimate of the hydrogen

bond length as 3.2Å. This demonstrates that our prior can act as a

regulariser when estimating parameter values.

The amount of weight that we put on our prior vs our likelihood

depends on the relative uncertainty between the two distributions. In

the �gure below we can see this graphically. The colours are the same

as above, blue represents the prior distribution, gold the likelihood and

pink the posterior. In the left graph in the �gure you can see that our

prior (blue) is much less spread out than the likelihood (gold).

Therefore the posterior resembles the prior much more that the

likelihood. The opposite is true in the graph on the right.

Therefore if we wish to increase the regularisation of a parameter we

can choose to narrow the prior distribution in relation to the likelihood.

Michael Green has written an article called The truth about Bayesian

priors and over�tting that covers this in more detail and gives advice on

how to set priors.

When is the MAP estimate equal to the maximum
likelihood estimate?

The MAP estimate is equal to the MLE when the prior distribution is

uniform. An example of a uniform distribution is shown below.

https://medium.com/@doktormike
https://towardsdatascience.com/the-truth-about-bayesian-priors-and-overfitting-84e24d3a1153
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What we can see is that the uniform distribution assigns equal weight

to every value on the x-axis (it’s a horizontal line). Intuitively it

represents a lack of any prior knowledge about which values are most

likely. In this case all of the weight is assigned to the likelihood

function, so when we multiply the prior by the likelihood the resulting

posterior exactly resembles the likelihood. Therefore, the maximum

likelihood method can be viewed as a special case of MAP.

. . .

When I started writing this post I didn’t actually think that it would be

anywhere near this long so thank you so much for making it this far. I

really do appreciate it. As always, if there is anything that is unclear or

I’ve made some mistakes in the above feel free to leave a comment. In

the next post in this series I will probably try to cover marginalisation

for working out P(data), the normalising constant that I ignored in this

post. Unless of course there is something else that someone would like

me to go over ;)

Thank you for reading.

Uniform distribution

https://towardsdatascience.com/probability-concepts-explained-marginalisation-2296846344fc
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