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ABSTRACT
One of the core problems of modern statistics is to approximate difficult-to-compute probability densities.
This problem is especially important in Bayesian statistics, which frames all inference about unknown quan-
tities as a calculation involving the posterior density. In this article, we review variational inference (VI), a
method frommachine learning that approximates probability densities through optimization. VI has been
used inmany applications and tends to be faster than classical methods, such as Markov chain Monte Carlo
sampling. The idea behind VI is to first posit a family of densities and then to find a member of that family
which is close to the target density. Closeness is measured by Kullback–Leibler divergence. We review the
ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family
models, present a full example with a Bayesianmixture of Gaussians, and derive a variant that uses stochas-
tic optimization to scale up to massive data. We discuss modern research in VI and highlight important
open problems. VI is powerful, but it is not yet well understood. Our hope in writing this article is to catalyze
statistical research on this class of algorithms. Supplementary materials for this article are available online.

1. Introduction

One of the core problems of modern statistics is to approximate
difficult-to-compute probability densities. This problem is espe-
cially important in Bayesian statistics, which frames all inference
about unknown quantities as a calculation about the posterior.
Modern Bayesian statistics relies on models for which the pos-
terior is not easy to compute and corresponding algorithms for
approximating them.

In this article, we review variational inference (VI), a method
from machine learning for approximating probability densities
(Jordan et al. 1999; Wainwright and Jordan 2008). Variational
inference is widely used to approximate posterior densities for
Bayesianmodels, an alternative strategy toMarkov chainMonte
Carlo (MCMC) sampling. Compared to MCMC, variational
inference tends to be faster and easier to scale to large data—it
has been applied to problems such as large-scale document
analysis, computational neuroscience, and computer vision.
But variational inference has been studied less rigorously than
MCMC, and its statistical properties are less well understood.
In writing this article, our hope is to catalyze statistical research
on variational inference.

First, we set up the general problem. Consider a joint density
of latent variables z = z1:m and observations x = x1:n,

p(z, x) = p(z)p(x | z).
In Bayesian models, the latent variables help govern the
distribution of the data. A Bayesian model draws the
latent variables from a prior density p(z) and then relates
them to the observations through the likelihood p(x | z).

CONTACT Alp Kucukelbir alp@cs.columbia.edu Department of Computer Science, Columbia University, New York, NY .
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

Inference in a Bayesian model amounts to conditioning
on data and computing the posterior p(z | x). In complex
Bayesian models, this computation often requires approximate
inference.

For decades, the dominant paradigm for approximate infer-
ence has beenMCMC (Hastings 1970; Gelfand and Smith 1990).
In MCMC, we first construct an ergodic Markov chain on z
whose stationary distribution is the posterior p(z | x). Then,
we sample from the chain to collect samples from the station-
ary distribution. Finally, we approximate the posterior with an
empirical estimate constructed from (a subset of) the collected
samples.

MCMC sampling has evolved into an indispensable tool
to the modern Bayesian statistician. Landmark developments
include the Metropolis–Hastings algorithm (Metropolis et al.
1953; Hastings 1970), the Gibbs sampler (Geman and Geman
1984), and its application to Bayesian statistics (Gelfand and
Smith 1990). MCMC algorithms are under active investiga-
tion. They have been widely studied, extended, and applied; see
Robert and Casella (2004) for a perspective.

However, there are problems for which we cannot easily use
this approach. These arise particularly whenwe need an approx-
imate conditional faster than a simple MCMC algorithm can
produce, such as when datasets are large or models are very
complex. In these settings, variational inference provides a good
alternative approach to Bayesian inference.

Rather than use sampling, the main idea behind variational
inference is to use optimization. First, we posit a family of
approximate densitiesQ. This is a set of densities over the latent
variables. Then, we try to find the member of that family that
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minimizes the Kullback-Leibler (KL) divergence to the exact
posterior,

q∗(z) = argmin
q(z)∈Q

kl
(
q(z)‖p(z | x)) . (1)

Finally, we approximate the posterior with the optimized mem-
ber of the family q∗(·).

Variational inference thus turns the inference problem into
an optimization problem, and the reach of the family Q man-
ages the complexity of this optimization. One of the key ideas
behind variational inference is to chooseQ to be flexible enough
to capture a density close to p(z | x), but simple enough for effi-
cient optimization.1

We emphasize that MCMC and variational inference are dif-
ferent approaches to solving the same problem. MCMC algo-
rithms sample a Markov chain; variational algorithms solve
an optimization problem. MCMC algorithms approximate the
posterior with samples from the chain; variational algorithms
approximate the posterior with the result of the optimization.

Comparing variational inference and MCMC. When should
a statistician use MCMC and when should she use variational
inference? We will offer some guidance. MCMC methods tend
to be more computationally intensive than variational inference
but they also provide guarantees of producing (asymptotically)
exact samples from the target density (Robert and Casella 2004).
Variational inference does not enjoy such guarantees—it can
only find a density close to the target—but tends to be faster than
MCMC. Because it rests on optimization, variational inference
easily takes advantage of methods like stochastic optimization
(Robbins and Monro 1951; Kushner and Yin 1997) and dis-
tributed optimization. Some MCMC methods can also exploit
these innovations (Welling and Teh 2011; Ahmed et al. 2012).

Thus, variational inference is suited to large datasets and sce-
narios where we want to quickly explore many models; MCMC
is suited to smaller datasets and scenarioswherewe happily pay a
heavier computational cost for more precise samples. For exam-
ple, we might use MCMC in a setting where we spent 20 years
collecting a small but expensive dataset, where we are confi-
dent that our model is appropriate, and where we require pre-
cise inferences. We might use variational inference when fitting
a probabilistic model of text to one billion text documents and
where the inferences will be used to serve search results to a
large population of users. In this scenario, we can use distributed
computation and stochastic optimization to scale and speed up
inference, and we can easily explore many different models of
the data.

Dataset size is not the only consideration. Another factor
is the geometry of the posterior distribution. For example,
the posterior of a mixture model has multiple modes, each
corresponding to a label permutation of the components. Gibbs
sampling, if the model permits, is a powerful approach to
sampling from such target distributions; it quickly focuses on
one of the modes. For mixture models where Gibbs sampling
is not an option, variational inference may perform better

 We focus here on KL(q||p)-based optimization, also called Kullback–Leibler varia-
tional inference (Barber ).Wainwright and Jordan () emphasized that any
procedure that uses optimization to approximate a density can be termed “vari-
ational inference.” This includes methods like expectation propagation (Minka
), belief propagation (Yedidia, Freeman, and Weiss ), or even the Laplace
approximation. We briefly discuss alternative divergence measures in Section .

than a more general MCMC technique (e.g., Hamiltonian
Monte Carlo), even for small datasets (Kucukelbir et al. 2015).
Exploring the interplay between model complexity and infer-
ence (and between variational inference and MCMC) is an
exciting avenue for future research (see Section 5.4).

The relative accuracy of variational inference and MCMC is
still unknown. We do know that variational inference generally
underestimates the variance of the posterior density; this is a
consequence of its objective function. But, depending on the
task at hand, underestimating the variance may be acceptable.
Several lines of empirical research have shown that variational
inference does not necessarily suffer in accuracy, for exam-
ple, in terms of posterior predictive densities (Blei and Jordan
2006; Braun and McAuliffe 2010; Kucukelbir et al. 2017); other
research focuses on where variational inference falls short, espe-
cially around the posterior variance, and tries to more closely
match the inferences made by MCMC (Giordano, Broderick,
and Jordan 2015). In general, a statistical theory and under-
standing around variational inference is an important open area
of research (see Section 5.2). We can envision future results that
outline which classes of models are particularly suited to each
algorithm and perhaps even theory that bounds their accuracy.
More broadly, variational inference is a valuable tool, alongside
MCMC, in the statistician’s toolbox.

It might appear to the reader that variational inference is only
relevant to Bayesian analysis. Indeed, both variational inference
and MCMC have had a significant impact on applied Bayesian
computation and we will be focusing on latent variable Bayesian
models here.We emphasize, however, that these techniques also
applymore generally to computation about intractable densities.
MCMC is a tool for simulating from densities and variational
inference is a tool for approximating densities. One need not be
a Bayesian to have use for variational inference.

Research on variational inference. The development of vari-
ational techniques for Bayesian inference followed two parallel,
yet separate, tracks. Peterson and Anderson (1987) is arguably
the first variational procedure for a particular model: a neu-
ral network. This article, along with insights from statistical
mechanics (Parisi 1988), led to a flurry of variational inference
procedures for a wide class ofmodels (Saul, Jaakkola, and Jordan
1996; Jaakkola and Jordan 1996, 1997; Ghahramani and Jordan
1997; Jordan et al. 1999). In parallel, Hinton and Van Camp
(1993) proposed a variational algorithm for a similar neural
network model. Neal and Hinton (1998, first published in 1993)
made important connections to the expectation maximization
(EM) algorithm (Dempster, Laird, and Rubin 1977), which then
led to a variety of variational inference algorithms for other
types of models (Waterhouse, MacKay, and Robinson 1996;
MacKay 1997; Barber and Bishop 1998).

Modern research on variational inference focuses on sev-
eral aspects: tackling Bayesian inference problems that involve
massive data; using improved optimization methods for solving
Equation (1) (which is usually subject to local minima); devel-
oping generic variational inference algorithms that are easy to
apply to a wide class of models; and increasing the accuracy of
variational inference, for example, by stretching the boundaries
ofQ while managing complexity in optimization.

Organization of this article. Section 2 describes the basic ideas
behind the simplest approach to variational inference: mean-
field inference and coordinate-ascent optimization. Section 3
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works out the details for a Bayesian mixture of Gaussians, an
example model familiar to many readers. Sections 4.1 and 4.2
describe variational inference for the class of models where
the joint density of the latent and observed variables is in
the exponential family—this includes many intractable models
from modern Bayesian statistics and reveals deep connections
between variational inference and the Gibbs sampler by Gelfand
and Smith (1990). Section 4.3 expands on this algorithm to
describe stochastic variational inference (Hoffman et al. 2013),
which scales variational inference tomassive data using stochas-
tic optimization (Robbins and Monro 1951). Finally, with these
foundations in place, Section 5 gives a perspective on the field—
applications in the research literature, a survey of theoretical
results, and an overview of some open problems.

2. Variational Inference

The goal of variational inference is to approximate a conditional
density of latent variables given observed variables. The key idea
is to solve this problem with optimization. We use a family of
densities over the latent variables, parameterized by free “vari-
ational parameters.” The optimization finds the member of this
family, that is, the setting of the parameters, which is closest in
KL divergence to the conditional of interest. The fitted varia-
tional density then serves as a proxy for the exact conditional
density. (All vectors defined below are column vectors, unless
stated otherwise.)

2.1. The Problem of Approximate Inference

Let x = x1:n be a set of observed variables and z = z1:m be a set
of latent variables, with joint density p(z, x). We omit constants,
such as hyperparameters, from the notation.

The inference problem is to compute the conditional density
of the latent variables given the observations, p(z | x). This con-
ditional can be used to produce point or interval estimates of the
latent variables, form predictive densities of new data, andmore.

We can write the conditional density as

p(z | x) = p(z, x)
p(x)

. (2)

The denominator contains the marginal density of the observa-
tions, also called the evidence. We calculate it by marginalizing
out the latent variables from the joint density,

p(x) =
∫

p(z, x) dz. (3)

For many models, this evidence integral is unavailable in closed
form or requires exponential time to compute. The evidence is
what we need to compute the conditional from the joint; this is
why inference in such models is hard.

Note we assume that all unknown quantities of interest are
represented as latent random variables. This includes parame-
ters that might govern all the data, as found in Bayesian models,
and latent variables that are “local” to individual data points.

Bayesian mixture of Gaussians. Consider a Bayesian mixture
of unit-variance univariateGaussians. There areKmixture com-
ponents, corresponding toK Gaussian distributions withmeans

μ = {μ1, . . . , μK}. The mean parameters are drawn indepen-
dently from a common prior p(μk), which we assume to be
a Gaussian N (0, σ 2); the prior variance σ 2 is a hyperparam-
eter. To generate an observation xi from the model, we first
choose a cluster assignment ci. It indicates which latent clus-
ter xi comes from and is drawn from a categorical distribution
over {1, . . . ,K}. (We encode ci as an indicatorK-vector, all zeros
except for a one in the position corresponding to xi’s cluster.)We
then draw xi from the corresponding GaussianN (c�i μ, 1).

The full hierarchical model is

μk ∼ N (0, σ 2), k = 1, . . . ,K, (4)
ci ∼ categorical(1/K, . . . , 1/K), i = 1, . . . , n, (5)

xi | ci,μ ∼ N (c�i μ, 1
)

i = 1, . . . , n. (6)

For a sample of size n, the joint density of latent and observed
variables is

p(μ, c, x) = p(μ)

n∏
i=1

p(ci)p(xi | ci,μ). (7)

The latent variables are z = {μ, c}, theK class means and n class
assignments.

Here, the evidence is

p(x) =
∫

p(μ)

n∏
i=1

∑
ci

p(ci)p(xi | ci,μ) dμ. (8)

The integrand in Equation (8) does not contain a separate fac-
tor for each μk. (Indeed, each μk appears in all n factors of the
integrand.) Thus, the integral in Equation (8) does not reduce to
a product of one-dimensional integrals over the μk’s. The time
complexity of numerically evaluating the K-dimensional inte-
gral isO(Kn).

If we distribute the product over the sum in (8) and rearrange,
we can write the evidence as a sum over all possible configura-
tions c of cluster assignments,

p(x) =
∑
c

p(c)
∫

p(μ)

n∏
i=1

p(xi | ci,μ) dμ. (9)

Here, each individual integral is computable, thanks to the con-
jugacy between the Gaussian prior on the components and the
Gaussian likelihood. But there areKn of them, one for each con-
figuration of the cluster assignments. Computing the evidence
remains exponential in K, hence intractable.

2.2. The Evidence Lower Bound

In variational inference, we specify a familyQ of densities over
the latent variables. Each q(z) ∈ Q is a candidate approxima-
tion to the exact conditional. Our goal is to find the best candi-
date, the one closest in KL divergence to the exact conditional.2
Inference now amounts to solving the following optimization
problem,

q∗(z) = argmin
q(z)∈Q

kl
(
q(z)‖p(z | x)) . (10)

 The KL divergence is an information-theoretical measure of proximity between
two densities. It is asymmetric—that is, KL(q‖p) �= KL(p‖q)—and nonnegative.
It is minimized when q(·) = p(·).
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Once found, q∗(·) is the best approximation of the conditional,
within the family Q. The complexity of the family determines
the complexity of this optimization.

However, this objective is not computable because it requires
computing the logarithm of the evidence, log p(x) in Equation
(3). (That the evidence is hard to compute is why we appeal to
approximate inference in the first place.) To see why, recall that
KL divergence is

kl
(
q(z)‖p(z | x)) = E

[
log q(z)

]− E
[
log p(z | x)] , (11)

where all expectations are taken with respect to q(z). Expanding
the conditional,

kl
(
q(z)‖p(z | x)) = E[log q(z)] − E[log p(z, x)]

+ log p(x). (12)

This reveals its dependence on log p(x).
Because we cannot compute the KL, we optimize an alter-

native objective that is equivalent to the KL up to an added
constant,

elbo(q) = E
[
log p(z, x)

]− E
[
log q(z)

]
. (13)

This function is called the evidence lower bound (ELBO) (for
reasons explained in the text following). The ELBO is the neg-
ative KL divergence of Equation (12) plus log p(x), which is a
constant with respect to q(z). Maximizing the ELBO is equiva-
lent to minimizing the KL divergence.

Examining the ELBO gives intuitions about the optimal vari-
ational density. We rewrite the ELBO as a sum of the expected
log-likelihood of the data and the KL divergence between the
prior p(z) and q(z),

elbo(q) = E
[
log p(z)

]+ E
[
log p(x | z)]− E

[
log q(z)

]
= E

[
log p(x | z)]− kl

(
q(z)‖p(z)) .

Which values of z will this objective encourage q(z) to place its
mass on? The first term is an expected likelihood; it encourages
densities that place their mass on configurations of the latent
variables that explain the observed data. The second term is
the negative divergence between the variational density and the
prior; it encourages densities close to the prior. Thus, the vari-
ational objective mirrors the usual balance between likelihood
and prior.

Another property of the ELBO is that it lower-bounds the
(log) evidence, log p(x) ≥ elbo(q) for any q(z). This explains
the name. To see this notice that Equations (12) and (13) give
the following expression of the evidence,

log p(x) = kl
(
q(z)‖p(z | x))+ elbo(q). (14)

The bound then follows from the fact that kl (·) ≥ 0 (Kullback
and Leibler 1951). In the original literature on variational infer-
ence, this was derived through Jensen’s inequality (Jordan et al.
1999).

The relationship between the ELBO and log p(x) has led to
using the variational bound as a model selection criterion. This
has been explored for mixture models (Ueda and Ghahramani
2002; McGrory and Titterington 2007) and more generally
(Beal and Ghahramani 2003). The premise is that the bound is a
good approximation of the marginal likelihood, which provides

a basis for selecting a model. Though this sometimes works in
practice, selecting based on a bound is not justified in theory.
Other research has used variational approximations in the log
predictive density to use VI in cross-validation-based model
selection (Nott et al. 2012).

Finally, many readers will notice that the first term of the
ELBO in Equation (13) is the expected complete log-likelihood,
which is optimized by the EM algorithm (Dempster, Laird, and
Rubin 1977). The EM algorithm was designed for finding maxi-
mum likelihood estimates inmodels with latent variables. It uses
the fact that the ELBO is equal to the log-marginal-likelihood
log p(x) (i.e., the log evidence) when q(z) = p(z | x). EM alter-
nates between computing the expected complete log-likelihood
according to p(z | x) (the E step) and optimizing it with respect
to the model parameters (the M step). Unlike variational infer-
ence, EM assumes the expectation under p(z | x) is computable
and uses it in otherwise difficult parameter estimation problems.
Unlike EM, variational inference does not estimate fixed model
parameters—it is often used in a Bayesian setting where classical
parameters are treated as latent variables. Variational inference
applies to models where we cannot compute the exact condi-
tional of the latent variables.3

2.3. TheMean-Field Variational Family

Wedescribed the ELBO, the variational objective function in the
optimization of Equation (10). We now describe a variational
familyQ, to complete the specification of the optimization prob-
lem. The complexity of the family determines the complexity of
the optimization; it is more difficult to optimize over a complex
family than a simple family.

In this review, we focus on the mean-field variational family,
where the latent variables are mutually independent and each
governed by a distinct factor in the variational density. A generic
member of the mean-field variational family is

q(z) =
m∏
j=1

q j(z j). (15)

Each latent variable z j is governed by its own variational factor,
the density q j(z j). In optimization, these variational factors are
chosen to maximize the ELBO of Equation (13).

We emphasize that the variational family is not amodel of the
observed data—indeed, the data x does not appear in Equation
(15). Instead, it is the ELBO, and the corresponding KL mini-
mization problem, which connects the fitted variational density
to the data and model.

Notice we have not specified the parametric form of the indi-
vidual variational factors. In principle, each can take on any
parametric form appropriate to the corresponding random vari-
able. For example, a continuous variable might have a Gaussian
factor; a categorical variable will typically have a categorical fac-
tor. We will see in Sections 4, 4.1, and 4.2 that there are many

 Twonotes: (a) Variational EM is the EMalgorithmwith a variational E-step, that is, a
computation of an approximate conditional. (b) The coordinate ascent algorithm
of Section . resembles the EM algorithm. The “E step” computes approximate
conditionals of local latent variables; the “M step” computes a conditional of the
global latent variables.
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models for which properties of the model determine optimal
forms of the mean-field variational factors q j(z j).

Finally, though we focus on mean-field inference in this
review, researchers have also studied more complex families.
One way to expand the family is to add dependencies between
the variables (Saul and Jordan 1996; Barber and Wiegerinck
1999); this is called structured variational inference. Another
way to expand the family is to consider mixtures of variational
densities, that is, additional latent variables within the varia-
tional family (Bishop et al. 1998). Both of these methods poten-
tially improve the fidelity of the approximation, but there is
a trade off. Structured and mixture-based variational families
come with a more difficult-to-solve variational optimization
problem.

Bayesian mixture of Gaussians (continued). Consider again
the Bayesian mixture of Gaussians. The mean-field variational
family contains approximate posterior densities of the form

q(μ, c) =
K∏

k=1
q
(
μk;mk, s2k

) n∏
i=1

q(ci;ϕi). (16)

Following themean-field recipe, each latent variable is governed
by its own variational factor. The factor q(μk;mk, s2k) is a Gaus-
sian distribution on the kth mixture component’s mean param-
eter; its mean is mk and its variance is s2k. The factor q(ci;ϕi) is
a distribution on the ith observation’s mixture assignment; its
assignment probabilities are a K-vector ϕi.

Here, we have asserted parametric forms for these factors:
the mixture components are Gaussian with variational param-
eters (mean and variance) specific to the kth cluster; the cluster
assignments are categorical with variational parameters (cluster
probabilities) specific to the ith data point. In fact, these are the
optimal forms of the mean-field variational density for the mix-
ture of Gaussians.

With the variational family in place, we have completely
specified the variational inference problem for the mixture of
Gaussians. The ELBO is defined by the model definition in
Equation (7) and the mean-field family in Equation (16). The
corresponding variational optimization problem maximizes
the ELBO with respect to the variational parameters, that is,
the Gaussian parameters for each mixture component and the
categorical parameters for each cluster assignment. We will see
this example through in Section 3.

Visualizing the mean-field approximation. The mean-field
family is expressive because it can capture any marginal density
of the latent variables. However, it cannot capture correlation
between them. Seeing this in action reveals some of the intu-
itions and limitations of mean-field variational inference.

Consider a two-dimensional Gaussian distribution, shown in
violet in Figure 1. This density is highly correlated, which defines
its elongated shape.

The optimal mean-field variational approximation to this
posterior is a product of two Gaussian distributions. Figure 1
shows the mean-field variational density after maximizing the
ELBO. While the variational approximation has the same mean
as the original density, its covariance structure is, by construc-
tion, decoupled.

Further, the marginal variances of the approximation under-
represent those of the target density. This is a common effect

Figure . Visualizing the mean-field approximation to a two-dimensional Gaussian
posterior. The ellipses show the effect of mean-field factorization. (The ellipses are
2σ contours of the Gaussian distributions.)

in mean-field variational inference and, with this example, we
can see why. The KL divergence from the approximation to the
posterior is in Equation (11). It penalizes placingmass in q(·) on
areas where p(·) has little mass, but penalizes less the reverse. In
this example, to successfully match the marginal variances, the
circular q(·) would have to expand into territory where p(·) has
little mass.

2.4. Coordinate AscentMean-Field Variational Inference

Using the ELBO and themean-field family, we have cast approx-
imate conditional inference as an optimization problem. In this
section, we describe one of themost commonly used algorithms
for solving this optimization problem, coordinate ascent vari-
ational inference (CAVI) (Bishop 2006). CAVI iteratively opti-
mizes each factor of the mean-field variational density, while
holding the others fixed. It climbs the ELBO to a local optimum.

The algorithm.We first state a result. Consider the jth latent
variable z j. The complete conditional of z j is its conditional den-
sity given all of the other latent variables in the model and
the observations, p(z j | z− j, x). Fix the other variational factors
q�(z�), � �= j. The optimal q j(z j) is then proportional to the
exponentiated expected log of the complete conditional,

q∗j (z j) ∝ exp{E− j[log p(z j | z− j, x)]}. (17)

The expectation inEquation (17) iswith respect to the (currently
fixed) variational density over z− j , that is,

∏
� �= j q�(z�). Equiva-

lently, Equation (17) is proportional to the exponentiated log of
the joint,

q∗j (z j) ∝ exp{E− j[log p(z j, z− j, x)]}. (18)

Because of the mean-field property—all the latent variables are
independent—the expectations on the right-hand side do not
involve the jth variational factor. Thus, this is a valid coordinate
update.

These equations underlie the CAVI algorithm, presented as
Algorithm 1. We maintain a set of variational factors q�(z�).
We iterate through them, updating q j(z j) using Equation (18).
CAVI goes uphill on the ELBOof Equation (13), eventually find-
ing a local optimum. As examples we show CAVI for a mixture
of Gaussians in Section 3 and for a nonconjugate linear regres-
sion in Appendix A (in the online supplementary materials).

CAVI can also be seen as a “message passing” algorithm
(Winn and Bishop 2005), iteratively updating each random vari-
able’s variational parameters based on the variational param-
eters of the variables in its Markov blanket. This perspective
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enabled the design of automated software for a large class of
models (Wand et al. 2011; Minka et al. 2014). Variational mes-
sage passing connects variational inference to the classical theo-
ries of graphical models and probabilistic inference (Pearl 1988;
Lauritzen and Spiegelhalter 1988). It has been extended to non-
conjugate models (Knowles and Minka 2011) and generalized
via factor graphs (Minka 2005).

Algorithm 1: Coordinate ascent variational inference
(CAVI)
Input: A model p(x, z), a data set x
Output: A variational density q(z) =∏m

j=1 q j(z j)
Initialize: Variational factors q j(z j)
while the ELBO has not converged do

for j ∈ {1, . . . ,m} do
Set q j(z j) ∝ exp{E− j[log p(z j | z− j, x)]}

end
Compute elbo(q) = E[log p(z, x)]+ E[log q(z)]

end
return q(z)

Finally, CAVI is closely related to Gibbs sampling (Geman
and Geman 1984; Gelfand and Smith 1990), the classical
workhorse of approximate inference. The Gibbs sampler main-
tains a realization of the latent variables and iteratively sam-
ples from each variable’s complete conditional. Equation (18)
uses the same complete conditional. It takes the expected log,
and uses this quantity to iteratively set each variable’s variational
factor.4

Derivation.Wenowderive the coordinate update in Equation
(18). The idea appears in Bishop (2006), but the argument there
uses gradients, which we do not. Rewrite the ELBO of Equation
(13) as a function of the jth variational factor q j(z j), absorbing
into a constant the terms that do not depend on it,

elbo(q j) = E j[E− j[log p(z j, z− j, x)]]−E j[log q j(z j)]+
const. (19)

We have rewritten the first term of the ELBO using iterated
expectation. The second term we have decomposed, using the
independence of the variables (i.e., the mean-field assumption)
and retaining only the term that depends on q j(z j).

Up to an added constant, the objective function in Equation
(19) is equal to the negative KL divergence between q j(z j) and
q∗j (z j) from Equation (18). Thus, we maximize the ELBO with
respect to q j when we set q j(z j) = q∗j (z j).

2.5. Practicalities

Here, we highlight a few things to keep in mind when imple-
menting and using variational inference in practice.

Initialization. The ELBO is (generally) a nonconvex objec-
tive function. CAVI only guarantees convergence to a local opti-
mum, which can be sensitive to initialization. Figure 2 shows
the ELBO trajectory for 10 random initializations using the

 Many readers will know that we can significantly speed up the Gibbs sampler
by marginalizing out some of the latent variables; this is called collapsed Gibbs
sampling. We can speed up variational inference with similar reasoning; this is
called collapsed variational inference. It has been developed for the same class
of models described here (Sung, Ghahramani, and Bang ; Hensman, Rattray,
and Lawrence ). These ideas are outside the scope of our review.

Figure . Different initializations may lead CAVI to find different local optima of the
ELBO.

Gaussian mixture model. The means of the variational factors
were randomly initialized by drawing from a factorized Gaus-
sian calibrated to the empiricalmean and variance of the dataset.
(This inference is on images; see Section 3.4.) Each initialization
reaches a different value, indicating the presence of many local
optima in the ELBO. In terms of KL(q||p), better local optima
give variational densities that are closer to the exact posterior.

This is not always a disadvantage. Some models, such as
the mixture of Gaussians (Section 3 and Appendix B, in
the online supplementary materials) and mixed-membership
model (Appendix C, in the online supplementary materials),
exhibit many posterior modes due to label switching: swap-
ping cluster assignment labels induces many symmetric poste-
rior modes. Representing one of these modes is sufficient for
exploring latent clusters or predicting new observations.

Assessing convergence. Monitoring the ELBO in CAVI is
simple; we typically declare convergence once the change in
ELBO falls below some small threshold. However, computing
the ELBO of the full dataset may be undesirable. Instead, we
suggest computing the average log predictive of a small held-
out dataset. Monitoring changes here is a proxy to monitoring
the ELBO of the full data. (Unlike the full ELBO, held-out pre-
dictive probability is not guaranteed to monotonically increase
across iterations of CAVI.)

Numerical stability. Probabilities are constrained to live
within [0, 1]. Preciselymanipulating and performing arithmetic
on small numbers requires additional care. When possible, we
recommend working with logarithms of probabilities. One use-
ful identity is the “log-sum-exp” trick,

log
[∑

i

exp(xi)
]
= α + log

[∑
i

exp(xi − α)

]
. (20)

The constant α is typically set to maxi xi. This provides numer-
ical stability to common computations in variational inference
procedures.

3. A Complete Example: BayesianMixture
of Gaussians

As an example, we return to the simple mixture of Gaussians
model of Section 2.1. To review, consider K mixture compo-
nents and n real-valued data points x1:n. The latent variables
are K real-valued mean parameters μ = μ1:K and n latent-class
assignments c = c1:n. The assignment ci indicates which latent
cluster xi comes from. In detail, ci is an indicator K-vector,
all zeros except for a one in the position corresponding to
xi’s cluster. There is a fixed hyperparameter σ 2, the variance
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of the normal prior on the μk’s. We assume the observation
variance is one and take a uniform prior over the mixture
components.

The joint density of the latent and observed variables is in
Equation (7). The variational family is in Equation (16). Recall
that there are two types of variational parameters—categorical
parameters ϕi for approximating the posterior cluster assign-
ment of the ith data point and Gaussian parameters mk and s2k
for approximating the posterior of the kth mixture component.

We combine the joint and the mean-field family to form the
ELBO for the mixture of Gaussians. It is a function of the varia-
tional parametersm, s2, and ϕ,

elbo(m, s2,ϕ) =
K∑

k=1
E
[
log p(μk);mk, s2k

]

+
n∑

i=1

(
E
[
log p(ci);ϕi

]+ E
[
log p(xi | ci,μ);ϕi,m, s2

])

−
n∑

i=1
E
[
log q

(
ci;ϕi

)]− K∑
k=1

E
[
log q(μk;mk, s2k)

]
. (21)

In each term, we havemade explicit the dependence on the vari-
ational parameters. Each expectation can be computed in closed
form.

The CAVI algorithm updates each variational parameter in
turn.We first derive the update for the variational cluster assign-
ment factor; we then derive the update for the variational mix-
ture component factor.

3.1. The Variational Density of theMixture Assignments

We first derive the variational update for the cluster assignment
ci. Using Equation (18),

q∗(ci;ϕi) ∝ exp{log p(ci)+ E[log p(xi | ci,μ);m, s2]}.
(22)

The terms in the exponent are the components of the joint den-
sity that depend on ci. The expectation in the second term is over
the mixture components μ.

The first term of Equation (22) is the log prior of ci. It is the
same for all possible values of ci, log p(ci) = − logK. The sec-
ond term is the expected log of the cith Gaussian density. Recall-
ing that ci is an indicator vector, we can write

p(xi | ci,μ) =
K∏

k=1
p(xi |μk)

cik .

We use this to compute the expected log probability,

E
[
log p(xi | ci,μ)

]
=
∑
k

cikE
[
log p(xi |μk);mk, s2k

]
(23)

=
∑
k

cikE
[− (xi − μk)

2/2;mk, s2k
]+ const. (24)

=
∑
k

cik
(
E
[
μk;mk, s2k

]
xi − E

[
μ2
k;mk, s2k

] /
2
)+ const.

(25)

In each line we remove terms that are constant with respect to
ci. This calculation requires E [μk] and E[μ2

k] for each mixture
component, both computable from the variational Gaussian on
the kth mixture component.

Thus, the variational update for the ith cluster assignment is

ϕik ∝ exp
{
E
[
μk;mk, s2k

]
xi − E

[
μ2
k;mk, s2k

] /
2
}
. (26)

Notice it is only a function of the variational parameters for the
mixture components.

3.2. The Variational Density of the
Mixture-ComponentMeans

We turn to the variational density q(μk;mk, s2k) of the kth mix-
ture component. Again we use Equation (18) and write down
the joint density up to a normalizing constant,

q(μk) ∝ exp

{
log p(μk)+

n∑
i=1

E
[
log p(xi | ci, μ);ϕi,m−k, s2−k

]}
.

(27)

We now calculate the unnormalized logarithm of this
coordinate-optimal q(μk). Recall ϕik is the probability that
the ith observation comes from the kth cluster. Because ci is an
indicator vector, we see that ϕik = E [cik;ϕi]. Now

log q(μk)

= log p(μk)+
∑
i

E
[
log p(xi|ci,μ);ϕi,m−k, s2−k

]+const.
(28)

= log p(μk)+
∑
i

E
[
cik log p(xi |μk);ϕi

]+ const. (29)

= −μ2
k/2σ

2 +
∑
i

E [cik;ϕi] log p(xi |μk)+ const. (30)

= −μ2
k/2σ

2 +
∑
i

ϕik
(−(xi − μk)

2/2
)+ const. (31)

= −μ2
k/2σ

2 +
∑
i

ϕikxiμk − ϕikμ
2
k/2+ const. (32)

=
(∑

i

ϕikxi
)

μk −
(
1/2σ 2 +

∑
i

ϕik/2
)

μ2
k + const. (33)

This calculation reveals that the coordinate-optimal variational
density of μk is an exponential family with sufficient statis-
tics {μk, μ

2
k} and natural parameters {∑n

i=1 ϕikxi,−1/2σ 2 −∑n
i=1 ϕik/2}, that is, a Gaussian. Expressed in terms of the vari-

ational mean and variance, the updates for q(μk) are

mk =
∑

i ϕikxi
1/σ 2 +∑i ϕik

, s2k =
1

1/σ 2 +∑i ϕik
. (34)

These updates relate closely to the complete conditional
density of the kth component in the mixture model. The com-
plete conditional is a posterior Gaussian given the data assigned
to the kth component. The variational update is a weighted
complete conditional, where each data point is weighted by its
variational probability of being assigned to component k.
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Algorithm 2: CAVI for a Gaussian mixture model
Input: Data x1:n, number of components K, prior variance

of component means σ 2

Output: Variational densities q(μk;mk, s2k) (Gaussian)
and q(zi;ϕi) (K-categorical)

Initialize: Variational parametersm = m1:K , s2 = s21:K ,
and ϕ = ϕ1:n
while the ELBO has not converged do

for i ∈ {1, . . . , n} do
Set ϕik ∝ exp{E[μk;mk, s2k]xi − E[μ2

k;mk, s2k]/2}
end
for k ∈ {1, . . . ,K} do

Setmk←−
∑

i ϕikxi
1/σ 2 +∑i ϕik

Set s2k ←−
1

1/σ 2 +∑i ϕik

end
Compute elbo(m, s2,ϕ)

end
return q(m, s2,ϕ)

3.3. CAVI for theMixture of Gaussians

Algorithm 2 presents coordinate-ascent variational inference
for the Bayesian mixture of Gaussians. It combines the varia-
tional updates in Equation (22) and Equation (34). The algo-
rithm requires computing the ELBO of Equation (21). We use
the ELBO to track the progress of the algorithm and assess when
it has converged.

Once we have a fitted variational density, we can use it as we
would use the posterior. For example, we can obtain a poste-
rior decomposition of the data. We assign points to their most
likely mixture assignment ĉi = argmaxk ϕik and estimate cluster
means with their variational meansmk.

We can also use the fitted variational density to approximate
the predictive density of new data. This approximate predictive
is a mixture of Gaussians,

p(xnew | x1:n) ≈ 1
K

K∑
k=1

p(xnew |mk), (35)

where p(xnew |mk) is a Gaussian with mean mk and unit
variance.

3.4. Empirical Study

We present two analyses to demonstrate the mixture of Gaus-
sians algorithm in action. The first is a simulation study; the
second is an analysis of a dataset of natural images.

Simulation study.Consider two-dimensional real-valued data
x. We simulate K = 5 Gaussians with random means, covari-
ances, and mixture assignments. Figure 3 shows the data;
each point is colored according to its true cluster. Figure 3
also illustrates the initial variational density of the mixture
components—each is a Gaussian, nearly centered, and with a
wide variance; the subpanels plot the variational density of the
components as the CAVI algorithm progresses.

The progression of the ELBO tells a story. We highlight key
points where the ELBO develops “elbows,” phases of the maxi-
mizationwhere the variational approximation changes its shape.
These “elbows” arise because the ELBO is not a convex function
in terms of the variational parameters; CAVI iteratively reaches
better plateaus.

Finally, we plot the logarithm of the Bayesian predictive den-
sity as approximated by the variational density. Here, we report
the average across held-out data. Note this plot is smoother than
the ELBO.

Image analysis. We now turn to an experimental study.
Consider the task of grouping images according to their color
profiles. One approach is to compute the color histogram of
the images. Figure 4 shows the red, green, and blue channel
histograms of two images from the imageclef data (Villegas,
Paredes, and Thomee 2013). Each histogram is a vector of
length 192; concatenating the three color histograms gives a
576-dimensional representation of each image, regardless of its
original size in pixel-space.

We use CAVI to fit a Gaussianmixturemodel with 30 clusters
to image histograms. We randomly select two sets of 10,000
images from the imageclef collection to serve as training
and testing datasets. Figure 5 shows similarly colored images
assigned to four randomly chosen clusters. Figure 6 shows the
average log predictive accuracy of the testing set as a function
of time. We compare CAVI to an implementation in Stan (Stan
Development Team 2015), which uses a Hamiltonian Monte
Carlo-based sampler (Hoffman and Gelman 2014). (Details are
in Appendix B.) CAVI is orders of magnitude faster than this
sampling algorithm.5

4. Variational Inference with Exponential Families

We described mean-field variational inference and derived
CAVI, a general coordinate-ascent algorithm for optimizing the
ELBO. We demonstrated this approach on a simple mixture of
Gaussians, where each coordinate update was available in closed
form.

The mixture of Gaussians is one member of the important
class of models where each complete conditional is in the expo-
nential family. This includes a number of widely used mod-
els, such as Bayesian mixtures of exponential families, factorial
mixture models, matrix factorization models, certain hierarchi-
cal regression models (e.g., linear regression, probit regression,
Poisson regression), stochastic blockmodels of networks, hierar-
chical mixtures of experts, and a variety of mixed-membership
models (which we will discuss below).

Working in this family simplifies variational inference: it
is easier to derive the corresponding CAVI algorithm, and it
enables variational inference to scale up to massive data. In
Section 4.1, we develop the general case. In Section 4.2, we
discuss conditionally conjugate models, that is, the common
Bayesian application where some latent variables are “local” to
a data point and others, usually identified with parameters, are
“global” to the entire dataset. Finally, in Section 4.3, we describe

 This is not a definitive comparison between variational inference and MCMC.
Other samplers, such as a collapsed Gibbs sampler, may perform better than
Hamiltonian Monte Carlo sampling.
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Figure . A simulation study of a two-dimensional Gaussian mixture model. The ellipses are 2σ contours of the variational approximating factors.

stochastic variational inference (Hoffman et al. 2013), a stochas-
tic optimization algorithm that scales up variational inference in
this setting.

4.1. Complete Conditionals in the Exponential Family

Consider the generic model p(z, x) of Section 2.1 and suppose
each complete conditional is in the exponential family:

p(z j | z− j, x) = h(z j) exp{η j(z− j, x)�z j − a(η j(z− j, x))},
(36)

where z j is its own sufficient statistic, h(·) is a base measure,
and a(·) is the log normalizer (Brown 1986). Because this is a

conditional density, the parameter η j(z− j, x) is a function of the
conditioning set.

Consider mean-field variational inference for this class of
models, where we fit q(z) =∏ j q j(z j). The exponential family
assumption simplifies the coordinate update of Equation (17),

q(z j) ∝ exp
{
E
[
log p(z j | z− j, x)

]}
(37)

= exp
{
log h(z j)+ E

[
η j(z− j, x)

]� z j
−E [a(η j(z− j, x))

] }
(38)

∝ h(z j) exp
{
E
[
η j(z− j, x)

]� z j}. (39)

This update reveals the parametric form of the optimal varia-
tional factors. Each one is in the same exponential family as its
corresponding complete conditional. Its parameter has the same
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Figure . Red, green, and blue channel image histograms for two images from the imageCLEF dataset. The top image lacks blue hues, which is reflected in its blue channel
histogram. The bottom image has a few dominant shades of blue and green, as seen in the peaks of its histogram.

Figure . Example clusters from the Gaussian mixture model. We assign each image to its most likely mixture cluster. The subfigures show nine randomly sampled images
from four clusters; their namings are subjective.

dimension and it has the same base measure h(·) and log nor-
malizer a(·).

Having established their parametric forms, let ν j denote the
variational parameter for the jth variational factor. When we
update each factor, we set its parameter equal to the expected
parameter of the complete conditional,

ν j = E
[
η j(z− j, x)

]
. (40)

Figure . Comparison of CAVI to a Hamiltonian Monte Carlo-based sampling tech-
nique. CAVI fits a Gaussian mixture model to , images in less than a minute.

This expression facilitates deriving CAVI algorithms for many
complex models.

4.2. Conditional Conjugacy and BayesianModels

One important special case of exponential family models are
conditionally conjugate models with local and global variables.
Models like this come up frequently in Bayesian statistics and
statistical machine learning, where the global variables are the
“parameters” and the local variables are per-data-point latent
variables.

Conditionally conjugate models. Let β be a vector of global
latent variables, which potentially govern any of the data. Let z
be a vector of local latent variables, whose ith component only
governs data in the ith “context.” The joint density is

p(β, z, x) = p(β)

n∏
i=1

p(zi, xi |β). (41)
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The mixture of Gaussians of Section 3 is an example. The global
variables are the mixture components; the ith local variable is
the cluster assignment for data point xi.

We will assume that the modeling terms of Equation (41) are
chosen to ensure each complete conditional is in the exponential
family. In detail, we first assume the joint density of each (xi, zi)
pair, conditional on β , has an exponential family form,

p(zi, xi |β) = h(zi, xi) exp{β�t(zi, xi)− a(β)}, (42)

where t(·, ·) is the sufficient statistic.
Next, we take the prior on the global variables to be the cor-

responding conjugate prior (Diaconis et al. 1979; Bernardo and
Smith 1994),

p(β) = h(β) exp{α�[β,−a(β)]− a(α)}. (43)

This prior has natural (hyper)parameter α = [α1, α2]�, a col-
umn vector, and sufficient statistics that concatenate the global
variable and its log normalizer in the density of the local
variables.

With the conjugate prior, the complete conditional of the
global variables is in the same family. Its natural parameter is

α̂ =
[
α1 +

n∑
i=1

t(zi, xi), α2 + n
]�

. (44)

Turn now to the complete conditional of the local variable zi.
Given β and xi, the local variable zi is conditionally independent
of the other local variables z−i and other data x−i. This follows
from the form of the joint density in Equation (41). Thus,

p(zi | xi, β, z−i, x−i) = p(zi | xi, β). (45)

We further assume that this density is in an exponential family,

p(zi | xi, β) = h(zi) exp
{
η(β, xi)�zi − a(η(β, xi))

}
. (46)

This is a property of the local likelihood term p(zi, xi |β) from
Equation (42). For example, in the mixture of Gaussians, the
complete conditional of the local variable is a categorical.

Variational inference in conditionally conjugate models. We
now describe CAVI for this general class of models. Write
q(β | λ) for the variational posterior approximation onβ ; we call
λ the “global variational parameter.” It indexes the same expo-
nential family density as the prior. Similarly, let the variational
posterior q(zi |ϕi) on each local variable zi be governed by a
“local variational parameter” ϕi. It indexes the same exponential
family density as the local complete conditional. CAVI iterates
between updating each local variational parameter and updating
the global variational parameter.

The local variational update is

ϕi = Eλ [η(β, xi)] . (47)

This is an application of Equation (40), where we take the expec-
tation of the natural parameter of the complete conditional in
Equation (45).

The global variational update applies the same technique.
It is

λ =
[
α1 +

n∑
i=1

Eϕi [t(zi, xi)] , α2 + n
]�

. (48)

Here, we take the expectation of the natural parameter in
Equation (44).

CAVI optimizes the ELBO by iterating between local updates
of each local parameter and global updates of the global param-
eters. To assess convergence, we can compute the ELBO at each
iteration (or at some lag), up to a constant that does not depend
on the variational parameters,

elbo =
(

α1 +
n∑

i=1
Eϕi [t(zi, xi)]

)�
Eλ [β]

− (α2 + n)Eλ [a(β)]− E
[
log q(β, z)

]
. (49)

This is the ELBO in Equation (13) applied to the joint in Equa-
tion (41) and the corresponding mean-field variational density;
we have omitted terms that do not depend on the variational
parameters. The last term is

E
[
log q(β, z)

] = λ�Eλ [t(β)]

−a(λ)+
n∑

i=1
ϕ�i Eϕi [zi]− a(ϕi). (50)

CAVI for the mixture of Gaussians model (Algorithm 2) is an
instance of this method. Appendix C in the online supplement
presents another example of CAVI for latent Dirichlet allocation
(LDA), a probabilistic topic model.

4.3. Stochastic Variational Inference

Modern applications of probabilitymodels often require analyz-
ing massive data. However, most posterior inference algorithms
do not easily scale. CAVI is no exception, particularly in the con-
ditionally conjugate setting of Section 4.2. The reason is that the
coordinate ascent structure of the algorithm requires iterating
through the entire dataset at each iteration. As the dataset size
grows, each iteration becomes more computationally expensive.

An alternative to coordinate ascent is gradient-based opti-
mization, which climbs the ELBO by computing and follow-
ing its gradient at each iteration. This perspective is the key
to scaling up variational inference using stochastic variational
inference (SVI) (Hoffman et al. 2013), a method that combines
natural gradients (Amari 1998) and stochastic optimization
(Robbins and Monro 1951).

SVI focuses on optimizing the global variational parameters
λ of a conditionally conjugatemodel. The flow of computation is
simple. The algorithmmaintains a current estimate of the global
variational parameters. It repeatedly (a) subsamples a data point
from the full dataset; (b) uses the current global parameters to
compute the optimal local parameters for the subsampled data
point; and (c) adjusts the current global parameters in an appro-
priate way. SVI is detailed in Algorithm 3. We now show why it
is a valid algorithm for optimizing the ELBO.

The natural gradient of the ELBO. In gradient-based opti-
mization, the natural gradient accounts for the geometric
structure of probability parameters (Amari 1982, 1998). Specif-
ically, natural gradients warp the parameter space in a sensible
way, so that moving the same distance in different directions
amounts to equal change in symmetrized KL divergence. The
usual Euclidean gradient does not enjoy this property.

In exponential families, we find the natural gradient with
respect to the parameter by premultiplying the usual gradient
by the inverse covariance of the sufficient statistic, a′′(λ)−1.
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This is the inverse Riemannian metric and the inverse Fisher
information matrix (Amari 1982).

Conditionally conjugate models enjoy simple natural gradi-
ents of the ELBO. We focus on gradients with respect to the
global parameter λ. Hoffman et al. (2013) derived the Euclidean
gradient of the ELBO,

∇λelbo = a′′(λ)(Eϕ[α̂]− λ), (51)

where Eϕ[α̂] is in Equation (48). Premultiplying by the inverse
Fisher information gives the natural gradient g(λ),

g(λ) = Eϕ[α̂]− λ. (52)

It is the difference between the coordinate updates Eϕ[α̂] and
the variational parameters λ at which we are evaluating the gra-
dient. In addition to enjoying good theoretical properties, the
natural gradient is easier to calculate than the Euclidean gradi-
ent. For more on natural gradients and variational inference, see
Sato (2001) and Honkela et al. (2008).

We can use this natural gradient in a gradient-based opti-
mization algorithm. At each iteration, we update the global
parameters,

λt = λt−1 + εt g(λt ), (53)

where εt is a step size.
Substituting Equation (52) into the second term reveals a spe-

cial structure,

λt = (1− εt )λt−1 + εtEϕ[α̂]. (54)

Notice this does not require additional types of calculations
other than those for coordinate ascent updates. At each itera-
tion, we first compute the coordinate update. We then adjust the
current estimate to be a weighted combination of the update and
the current variational parameter.

Though easy to compute, using the natural gradient has the
same cost as the coordinate update in Equation (48); it requires
summing over the entire dataset and computing the optimal
local variational parameters for each data point. With massive
data, this is prohibitively expensive.

Stochastic optimization of the ELBO. Stochastic variational
inference solves this problem by using the natural gradient in
a stochastic optimization algorithm. Stochastic optimization
algorithms follow noisy but cheap-to-compute gradients to
reach the optimum of an objective function. (In the case of the
ELBO, stochastic optimization will reach a local optimum.)
In their seminal article, Robbins and Monro (1951) proved
results implying that optimization algorithms can successfully
use noisy, unbiased gradients, as long as the step size sequence
satisfies certain conditions. This idea has blossomed (Kushner
and Yin 1997; Spall 2003). Stochastic optimization has enabled
modern machine learning to scale to massive data (Le Cun and
Bottou 2004).

Our aim is to construct a cheaply computed, noisy, unbiased
natural gradient. We expand the natural gradient in Equation
(52) using Equation (44):

g(λ) = α +
[ n∑

i=1
Eϕ∗i [t(zi, xi)] , n

]�
− λ, (55)

where ϕ∗i indicates that we consider the optimized local vari-
ational parameters (at fixed global parameters λ) in Equation
(47).We construct a noisy natural gradient by sampling an index
from the data and then rescaling the second term,

t ∼ Unif(1, . . . , n) (56)

ĝ(λ) = α + n
[
Eϕ∗t [t(zt , xt )] , 1

]� − λ. (57)

The noisy natural gradient ĝ(λ) is unbiased: Et
[
ĝ(λ)

] = g(λ).
And it is cheap to compute—it only involves a single sampled
data point and only one set of optimized local parameters. (This
immediately extends to minibatches, where we sample B data
points and rescale appropriately.) Again, the noisy gradient only
requires calculations from the coordinate ascent algorithm. The
first two terms of Equation (57) are equivalent to the coordinate
update in a model with n replicates of the sampled data point.

Finally, we set the step size sequence. It must follow the con-
ditions by Robbins and Monro (1951),∑

t

εt = ∞ ;
∑
t

ε2t <∞. (58)

Many sequences will satisfy these conditions, for example, εt =
t−κ for κ ∈ (0.5, 1]. The full SVI algorithm is in Algorithm 3.

We emphasize that SVI requires no new derivation beyond
what is needed for CAVI. Any implementation of CAVI can be
immediately scaled up to a stochastic algorithm.

Probabilistic topic models. We demonstrate SVI with a
probabilistic topic model. Probabilistic topic models are mixed-
membership models of text, used to uncover the latent “topics”
that run through a collection of documents. Topic models have
become a popular technique for exploratory data analysis of
large collections (Blei 2012).

In detail, each latent topic is a distribution over terms in
a vocabulary and each document is a collection of words that
comes from a mixture of the topics. The topics are shared
across the collection, but each documentmixes themwith differ-
ent proportions. (This is the hallmark of a mixed-membership
model.) Thus, topicmodeling casts topic discovery as a posterior
inference problem. Posterior estimates of the topics and topic
proportions can be used to summarize, visualize, explore, and
form predictions about the documents.

Onemotivation for topic modeling is to get a handle onmas-
sive collections of documents. Early inference algorithms were
based on coordinate ascent variational inference (Blei, Ng, and
Jordan 2003) and analyzed collections in the thousands or tens
of thousands of documents. (Appendix C presents this algo-
rithm). With SVI, topic models scale up to millions of docu-
ments; the details of the algorithm are in Hoffman et al. (2013).
Figure 7 illustrates topics inferred using the latent Dirichlet allo-
cation model (Blei, Ng, and Jordan 2003) from 1.8M articles
from the New York Times. This analysis would not have been
possible without SVI.

5. Discussion

We described variational inference, a method that uses opti-
mization to make probabilistic computations. The goal is to
approximate the conditional density of latent variables z given
observed variables x, p(z | x). The idea is to posit a family of
densities Q and then to find the member q∗(·) that is closest
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Algorithm 3: SVI for conditionally conjugate models
Input: Model p(x, z), data x, and step size sequence εt
Output: Global variational densities qλ(β)

Initialize: Variational parameters λ0
while TRUE do

Choose a data point uniformly at random,
t ∼ Unif(1, . . . , n)

Optimize its local variational parameters
ϕ∗t = Eλ [η(β, xt )]
Compute the coordinate update as though xt were
repeated n times,

λ̂ = α + nE[ϕ∗t f (zt , xt )]

Update the global variational parameter,
λt = (1− εt )λt + εt λ̂t

end
return λ

in KL divergence to the conditional of interest. Minimizing the
KL divergence is the optimization problem, and its complexity
is governed by the complexity of the approximating family.

We then described themean-field family, that is, the family of
fully factorized densities of the latent variables. Using this fam-
ily, variational inference is particularly amenable to coordinate-
ascent optimization, which iteratively optimizes each factor.
This approach closely connects to the classical Gibbs sampler
(Geman andGeman 1984;Gelfand and Smith 1990).We showed
how to use mean-field VI to approximate the posterior density
of a Bayesian mixture of Gaussians, discussed the special case of
exponential families and conditional conjugacy, and described
the extension to stochastic variational inference (Hoffman et al.
2013), which scales mean-field variational inference to massive
data.

Figure . Topics found in a corpus of .M articles from the New York Times. Repro-
duced with permission from Hoffman et al. ().

5.1. Applications

Researchers in many fields have used variational inference to
solve real problems. Here, we focus on example applications
of mean-field variational inference and structured variational
inference based on the KL divergence. This discussion is not
exhaustive; our intention is to outline the diversity of applica-
tions of variational inference.

Computational biology. VI is widely used in computational
biology, where probabilistic models provide important building
blocks for analyzing genetic data. For example, VI has been used
in genome-wide association studies (Logsdon, Hoffman, and
Mezey 2010; Carbonetto and Stephens 2012), regulatory net-
work analysis (Sanguinetti, Lawrence, and Rattray 2006), motif
detection (Xing et al. 2004), phylogenetic hidden Markov mod-
els (Jojic et al. 2004), population genetics (Raj, Stephens, and
Pritchard 2014), and gene expression analysis (Stegle et al. 2010).

Computer vision and robotics. Since its inception, varia-
tional inference has been important to computer vision. Vision
researchers frequently analyze large and high-dimensional
datasets of images, and fast inference is important to successfully
deploy a vision system. Some of the earliest examples included
inferring nonlinear image manifolds (Bishop and Winn 2000)
and finding layers of images in videos (Jojic and Frey 2001).
As other examples, variational inference is important to prob-
abilistic models of videos (Chan and Vasconcelos 2009; Wang
and Mori 2009), image denoising (Likas and Galatsanos 2004),
tracking (Vermaak, Lawrence, and Pérez 2003; Yu and Wu
2005), place recognition and mapping for robotics (Cummins
and Newman 2008; Ramos et al. 2012), and image segmentation
with Bayesian nonparametrics (Sudderth and Jordan 2009). Du
et al. (2009) used variational inference in a probabilisticmodel to
combine the tasks of segmentation, clustering, and annotation.

Computational neuroscience. Modern neuroscience research
also requires analyzing very large and high-dimensional
datasets, such as high-frequency time series data or high-
resolution functional magnetic imaging data. There have been
many applications of variational inference to neuroscience,
especially for autoregressive processes (Roberts and Penny 2002;
Penny, Kiebel, and Friston 2003; Penny, Trujillo-Barreto, and
Friston 2005; Flandin and Penny 2007; Harrison and Green
2010). Other applications of variational inference to neuro-
science include hierarchical models of multiple subjects (Wool-
rich et al. 2004), spatial models (Sato et al. 2004; Zumer et al.
2007; Kiebel et al. 2008;Wipf andNagarajan 2009; Lashkari et al.
2012; Nathoo et al. 2014), brain-computer interfaces (Sykacek,
Roberts, and Stokes 2004), and factor models (Manning et al.
2014; Gershman et al. 2014). There is a software toolbox that
uses variational methods for solving neuroscience and psychol-
ogy research problems (Daunizeau et al. 2014).

Natural language processing and speech recognition. In natu-
ral language processing, variational inference has been used for
solving problems such as parsing (Liang et al. 2007; Liang, Jor-
dan, and Klein 2009), grammar induction (Kurihara and Sato
2006; Naseem et al. 2010; Cohen and Smith 2010), models of
streaming text (Yogatama et al. 2014), topic modeling (Blei,
Ng, and Jordan 2003), and hidden Markov models and part-of-
speech tagging (Wang and Blunsom 2013). In speech recogni-
tion, variational inference has been used to fit complex coupled
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hiddenMarkovmodels (Reyes-Gomez, Ellis, and Jojic 2004) and
switching dynamic systems (Deng 2004).

Other applications. There have been many other applications
of variational inference. Fields in which it has been used include
economics (Braun and McAuliffe 2010), optimal control and
reinforcement learning (Van Den Broek, Wiegerinck, and Kap-
pen 2008; Furmston and Barber 2010), statistical network anal-
ysis (Wiggins and Hofman 2008; Airoldi et al. 2008), astronomy
(Regier et al. 2015), and the social sciences (Erosheva, Fienberg,
and Joutard 2007; Grimmer 2011). General variational inference
algorithms have been developed for a variety of classes of mod-
els, including shrinkage models (Armagan, Clyde, and Dunson
2011; Armagan andDunson 2011; Neville, Ormerod, andWand
2014), general time-series models (Roberts et al. 2004; Barber
and Chiappa 2006; Archambeau et al. 2007a, 2007b; Johnson
and Willsky 2014; Foti et al. 2014), robust models (Tipping and
Lawrence 2005; Wang and Blei 2015), and Gaussian process
models (Titsias and Lawrence 2010; Damianou, Titsias, and
Lawrence 2011; Hensman, Fusi, and Lawrence 2013).

5.2. Theory

Though researchers have not developed much theory around
variational inference, there are several threads of research about
theoretical guarantees of variational approximations. As we
mentioned in the introduction, one of our purposes for writing
this article is to catalyze research on the statistical theory around
variational inference.

Below, we summarize a variety of results. In general, they
are all of the following type: treat VI posterior means as point
estimates (or use m-step estimates from variational EM) and
confirm that they have the usual frequentist asymptotics.
(Sometimes the research finds that they do not enjoy the same
asymptotics.) Each result revolves around a single model and a
single family of variational approximations.

You, Ormerod, and Muller (2014) studied the variational
posterior for a classical Bayesian linear model. They put a nor-
mal prior on the coefficients and an inverse gamma prior on
the response variance. They found that, under standard regu-
larity conditions, the mean-field variational posterior mean of
the parameters is consistent in the frequentist sense. Ormerod,
You, and Muller (2014) built on their earlier work with a spike-
and-slab prior on the coefficients and found similar consistency
results.

Hall, Ormerod, and Wand (2011a) and Hall et al. (2011b)
examined a simple Poissonmixed-effects model, one with a sin-
gle predictor and a random intercept. They used a Gaussian
variational approximation and estimated parameters with vari-
ational EM. They proved consistency of these estimates at the
parametric rate and showed asymptotic normality with asymp-
totically valid standard errors.

Celisse et al. (2012) and Bickel et al. (2013) analyzed network
data using stochastic blockmodels. They showed asymptotic
normality of parameter estimates obtained using a mean-field
variational approximation. They highlighted the computa-
tional advantages and theoretical guarantees of the variational
approach over maximum likelihood for dense, sparse, and
restricted variants of the stochastic blockmodel.

Westling and McCormick (2015) studied the consistency of
VI through a connection to M-estimation. They focused on a
broader class of models (with posterior support in real coordi-
nate space) and analyzed an automated VI technique that uses
a Gaussian variational approximation (Kucukelbir et al. 2015).
They derived an asymptotic covariance matrix estimator of the
variational approximation and showed its robustness to model
misspecification.

Finally, Wang and Titterington (2006) analyzed variational
approximations to mixtures of Gaussians. Specifically, they con-
sidered Bayesian mixtures with conjugate priors, the mean-field
variational approximation, and an estimator that is the varia-
tional posterior mean. They confirmed that CAVI converges
to a local optimum, that the VI estimator is consistent, and
that the VI estimate and maximum likelihood estimate (MLE)
approach each other at a rate of O(1/n). Wang and Tittering-
ton (2005), showed that the asymptotic variational posterior
covariancematrix is “too small”—it differs from theMLE covari-
ance (i.e., the inverse Fisher information) by a positive-definite
matrix.

5.3. Beyond Conditional Conjugacy

We focused on models where the complete conditional is in the
exponential family. Many models, however, do not enjoy this
property. A simple example is Bayesian logistic regression,

βk ∼ N (0, 1),
yi | xi, β ∼ Bern(σ (β�xi)),

where σ (·) is the logistic function. The posterior density of
the coefficients is not in an exponential family and we cannot
apply the variational inference methods we discussed above.
Specifically, we cannot compute the expectations in the first
term of the ELBO in Equation (13) or the coordinate update in
Equation (18).

Exploring variational methods for such models has been a
fruitful area of research. An early example is Jaakkola and Jor-
dan (1997, 2000), who developed a variational bound tailored
to logistic regression. Blei and Lafferty (2007) later adapted
their idea to nonconjugate topic models, and researchers have
continued to improve the original bound (Khan et al. 2010;
Marlin, Khan, andMurphy 2011; Ermis and Bouchard 2014). In
other work, Braun and McAuliffe (2010) derived a variational
inference algorithm for the discrete choice model, which also
lies outside of the class of conditionally conjugate models.
They developed a delta method to approximate the difficult-to-
compute expectations. Finally, Wand et al. (2011) used auxiliary
variable methods, quadrature, and mixture approximations
to handle a variety of likelihood terms that fall outside of the
exponential family.

More recently, researchers have generalized nonconjugate
inference, seeking recipes that can be used across many models.
Wang and Blei (2013) adapted Laplace approximations and the
delta method to this end, improving inference in nonconjugate
generalized linear models and topic models; this approach is
also used by Bugbee, Breidt, and van der Woerd (2016) for
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semiparametric regression. Knowles and Minka (2011) gen-
eralized the Jaakkola and Jordan (1997, 2000) bound in a
message-passing algorithm andWand (2014) further simplified
and extended their approach. Tan andNott (2013, 2014) applied
these message-passing methods to generalized linear mixed
models (and also combined them with SVI). Rohde and Wand
(2016) unifiedmany of these algorithmic developments andpro-
vided practical insights into their numerical implementations.

Finally, there has been a flurry of research on optimizing
difficult variational objectives with Monte Carlo (MC) esti-
mates of the gradient. The idea is to write the gradient of the
ELBO as an expectation, compute MC estimates of it, and then
use stochastic optimization with repeated MC gradients. This
first appeared independently in several articles (Ji, Shen, and
West 2010; Nott et al. 2012; Paisley, Blei, and Jordan 2012;
Wingate and Weber 2013). The newest approaches avoid any
model-specific derivations, and are termed “black box” infer-
ence methods. As examples, see Kingma and Welling (2014);
Rezende, Mohamed, and Wierstra (2014); Ranganath, Gerrish,
and Blei (2014); Ranganath, Tran, and Blei (2016); Salimans and
Knowles (2014); Titsias and Lázaro-Gredilla (2014); and Tran,
Ranganath, and Blei (2016). Kucukelbir et al. (2017) leveraged
these ideas toward an automatic VI technique that works on
any model written in the probabilistic programming system
Stan (Stan Development Team 2015). This is a step toward a
derivation-free, easy-to-use VI algorithm.

5.4. Open Problems

There are many open avenues for statistical research in varia-
tional inference.

We focused on optimizing kl
(
q(z)||p(z | x)) as the vari-

ational objective function. A promising avenue of research is
to develop variational inference methods that optimize other
measures, such as α-divergence measures. As one example,
expectation propagation (Minka 2001) is inspired by the KL
divergence “in the other direction,” between p(z | x) and q(z).
Other work has developed divergences based on lower bounds
that are tighter than the ELBO (Barber and de van Laar 1999;
Leisink and Kappen 2001). While alternative divergences may
be difficult to optimize, they may give better approximations
(Minka 2005; Opper and Winther 2005).

Though it is flexible, the mean-field family makes strong
independence assumptions. These assumptions help with scal-
able optimization, but they limit the expressibility of the vari-
ational family. Further, they can exacerbate issues with local
optima of the objective and underestimating posterior vari-
ances; see Figure 1. A second avenue of research is to develop
better approximations while maintaining efficient optimization.

As wementioned previously, structured variational inference
has its roots in the early days of the method (Saul and Jordan
1996; Barber and Wiegerinck 1999). More recently, Hoffman
and Blei (2015) used generic structured variational inference
in a stochastic optimization algorithm; Kucukelbir et al. (2017),
Challis and Barber (2013), and Tan andNott (2017) took advan-
tage of Gaussian variational families with nondiagonal covari-
ance; Giordano, Broderick, and Jordan (2015) post-processed
the mean-field parameters to correct for underestimating the
variance; and Ranganath, Tran, and Blei (2016) embedded the

mean-field parameters themselves in a hierarchical model to
induce variational dependencies between latent variables.

The interface between variational inference and MCMC
remains relatively unexplored. de Freitas et al. (2001) used fit-
ted variational distributions as a component of a proposal dis-
tribution for Metropolis–Hastings. Hoffman, Blei, and Mimno
(2012) and Hoffman and Blei (2015) studied MCMC as a
method of approximating coordinate updates, for example, to
include structure in the variational family. Salimans, Kingma,
and Welling (2015) proposed a variational approximation to
the MCMC chain; their method enables an explicit trade off
between computational accuracy and speed. Understanding
how to combine these two strategies for approximate inference
is a ripe area for future research. A principled analysis of when
to use (and combine) variational inference and MCMC would
have both theoretical and practical impact in the field.

Finally, the statistical properties of variational inference are
not yet well understood, especially in contrast to the wealth of
analysis of MCMC techniques. There has been some progress;
see Section 5.2. A final open research problem is to understand
variational inference as an estimator and to understand its sta-
tistical profile relative to the exact posterior.

Supplementary Materials
The online supplementary materials contain the appendices for the article.
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