
Chapter 2

Bayesian Active Learning

This chapter introduces the Bayesian framework used to design the active learning

algorithms in this thesis. This framework takes an information-theoretic approach to

active learning. First, in Section 2.1 we introduce active learning and then describe the

Bayesian information theoretic approach in Section 2.2. We discuss possible computa-

tional difficulties, and present our framework which can circumnavigate these, called

Bayesian Active Learning by Disagreement (BALD), in Section 2.3. We discuss prop-

erties of the framework, such as computational complexity and submodularity. The

chapter finishes with a review of related literature in active learning and experimental

design that has developed in statistics, experimental science, social science, computer

science and machine learning.

2.1 Introduction to Active Learning

We first introduce active learning, discuss when it is applicable, and present the different

settings for active querying.

2.1.1 When Active Learning may be Applied

Data, particularly labelled data, can be expensive to obtain. Therefore, it is desirable

to collect only the most useful points. To address this, active learning algorithms choose

their training data. These are ‘active’ in the sense that they can adjust which points

they choose in light of data collected so far.

A concern may arise: when choosing the data to learn from, can one bias the infer-

ences made? Fortunately, this is not the case, provided that we condition our inferences

on the actively selected variables. More concretely, consider the setting where we choose
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Figure 2.1: Graphical model for a discriminative learner. White nodes indicate latent
(unobserved) variables and shaded nodes denote observed variables. Note that the
distribution of the input x is assumed to be independent of the parameters θ.

a query x ∈ X, and observe a variable y ∈ Y in response. These quantities shall be

referred to as the input and output variables respectively.1 Suppose that we also have a

model with parameters θ ∈ Θ that describes the dependence of the output on the input,

p(y|x, θ). This setting is called discriminative learning, see Figure 2.1. Provided that

we condition on x, we may perform Bayesian computations without introducing infer-

ential bias into posterior distribution p(θ|y,x) or the predictive distribution p(y|x)2.

More specifically, when computing these quantities, we must compute the likelihood

function p(y|x, θ). When computing the likelihood we implicitly integrate over all of

the unobserved data. Ignoring this integral does not effect the likelihood provided that

we condition on all observed data, regardless of how it was collected, and do not filter

it based upon the output variable y.

The alternative to discriminative learning is generative learning in which the entire

data distribution p(x,y) is modelled [Ng & Jordan, 2002]. Learning a full generative

model actively is not possible because one does not observe an unbiased sample from

p(x). However, this terminology may be confusing. For example, probabilistic models

of matrix data are normally termed ‘generative’ as the data is a matrix Y, and matrix

models typically generate the entire dataset, they learn p(Y|θ). However, active learn-

ing with matrices can be reconciled with the framework in Figure 2.1. Here, we select

a row and column index and observe that entries’ value. The location of each matrix

entry corresponds to the input variable x, and we do not model the entries’ locations

directly, but we condition upon them. However, this variable is usually implicit in the

equations.

1 X,Y can be general input and output spaces. Unless stated otherwise, X will be a real-valued
vector space X = RD. Y will usually be uni-dimensional, but may be binary, real-valued, ordinal etc.

2 In this context we use the term ‘bias’ loosely to mean that the distributions differ to those
computed by integrating all of the unobserved data, not in the formal sense of a biased statistical
estimator.
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A second distinction that is often made is between supervised and unsupervised

learning. In supervised learning there are clearly defined input and output variables,

and the goal is to predict the output corresponding to new, unseen inputs. Super-

vised learning fits well into the discriminative setting in Figure 2.1. Supervised active

learning is the focus of this thesis, although the methods could be extended to unsu-

pervised learning by choosing a partition of the variables and learning the conditional

distributions actively.

2.1.2 Query Scenarios

Active learning can be performed in three scenarios: continuous sampling, pool based

and stream based learning. In continuous sampling any point in input space may be

selected. This is appropriate when the input space can be queried to arbitrary preci-

sion. For example, in cognitive science where the queries may be computer generated

stimuli with real-valued parameters, or when learning the kinematics of a robot arm

by choosing joint angles and measuring hand coordinates [Cohn et al., 1996]. However,

in other regimes continuous querying is inappropriate. In a handwriting recognition

system, Baum & Lang [1992] found that many generated query images contained no

recognizable symbols and hence could not be labelled. In Chapter 4 we perform con-

tinuous sampling, adjusting real-valued parameters of a physics experiment to select

continuous measurements.

In pool based active learning one has access to a set (pool) of unlabelled data from

which to select points for annotation. For example, in a study on the effects of smoking

on cancer rates, the pool contains people whose age, smoking habits etc. are known, and

the scientist wants to select only the most informative few for expensive clinical trials.

This is probably the most common scenario in machine learning, occurring in many

applications including text classification [Tong & Koller, 2002], image classification

[Tong & Chang, 2001], speech recognition [Tur et al., 2005], cancer diagnosis [Liu,

2004] and recommendation systems [Jin & Si, 2004].

Stream based active learning is closely related to pool based learning, except that

the pool is presented sequentially and the algorithm must decide online whether or not

to collect the point’s label. A famous example is ‘triggering’ on the CERN particle

accelerator; there is insufficient storage capacity to store the vast stream of events, so

only potentially interesting measurements are recorded [Aad et al., 2012].

Active learning algorithms must assign a score, or utility, to each location in input

space that may be queried. Continuous sampling is the most flexible, but requires
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optimization of the utility function over input space. This may involve a hard high

dimensional, multi-modal optimization problem. If the utility function is not differen-

tiable, continuous optimization may be infeasible. In pool based active learning the

utility is normally evaluated for every point in the pool, but if the pool is large, or

the utility is expensive to evaluate, pruning may be required [Roy & McCallum, 2001].

We now present general strategies for active learning, these are usually applicable in

any of the three scenarios, but the computational issues above should be considered in

practice.

2.2 Information Theoretic Active Learning

Probabilistic active learning broadly divides into two categories, decision and informa-

tion theoretic. We take the information-theoretic approach, which we first motivate.

2.2.1 Motivation

In Bayesian methods, it is common to separate learning from decision making. This per-

mits general models and learning algorithms to be used in a variety of tasks. Learning,

or inference1, involves applying Bayes’ rule (1.1) to compute the posterior distribution

of the parameters of the model p(θ|D). Decision making involves choosing an action

a, which incurs a particular loss that depends on the true parameters of the system

θ̂, denoted L(θ̂, a). However, in practice the true parameters are unknown. Therefore,

the optimal course of action, on average, is to minimize the expected loss given our

beliefs about the parameters,

RD(a) = Ep(θ|D)L(θ, a) . (2.1)

RD(a) is called the Bayes posterior risk. Inference and decision making can be separated

because the posterior is not a function of the loss. This can be beneficial because the

same posterior can be used to solve different tasks.2

Active learning algorithms need to quantify how ‘useful’ datapoints are. To do

this, they are equipped with a utility function U(x) : X → R. The optimal utility

1 Sometimes these terms are distinguished. Inference is often used to refer to computing the
posterior distribution over variables local to each datapoint. Learning then refers to optimizing or
computing the posterior over global model parameters. Unless context dictates otherwise, these terms
will be used interchangeably.

2 Recent work couples inference with the loss function in order to incur lower loss when the posterior
can only be approximated [Abbasnejad et al., 2013; Lacoste-Julien et al., 2011].
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function, from a loss minimization standpoint, minimizes the expected posterior risk

after observing the output y corresponding to input x,

U(x) = Ep(y|x,D) argmin
a

R{D,x,y}(a) . (2.2)

Choosing samples to maximize Equation (2.2) is known as decision theoretic active

learning [Kapoor et al., 2007; Roy & McCallum, 2001].

Decision theoretic active learning, although theoretically optimal in terms of ex-

pected loss minimization, can be disadvantageous for two reasons. First, the utility

function is tied to a particular task and loss function. These may not be known ahead

of time, or we may desire a learning algorithm that can perform well with a variety of

loss functions. Second, computing the expected change in risk can be expensive. This

is because the utility function in Equation (2.2) includes both the learning and decision

making processes. Thus, to compute Equation (2.2) one must calculate the expected

change in beliefs and then compute the new optimal decision after including any new

data {x,y}.
An alternative is to focus upon learning alone, and choose data that is most useful

for inferring the parameters θ. This approach decouples learning from future decision

making which is consistent with many Bayesian methods. To measure the utility of a

datapoint, we must quantify its ‘informativeness’ about the parameters. Information

theory is a natural tool for doing this, so this approach is called information theoretic

active learning.

2.2.2 Information Theory

Before presenting information-theoretic active learning, a brief overview of elementary

information theory is provided. For a complete introduction see Cover et al. [1994].

Information theory was founded by Claude Shannon who studied data transmission

over noisy communication channels [Shannon, 1948]. Shannon derived a theoretical

upper bound for the capacity of a channel, which is the maximum rate that a set of

symbols X = {x1 . . . xN} which have distribution P (X) can be transmitted with zero

reconstruction error. To do this he defined the information content in a symbol x, and

the entropy, which is the average information content in the ensemble.

Information content: J(x) = − logP (x) , (2.3)

Entropy: H[P (X)] = −
∑
x

P (x) logP (x) . (2.4)
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The usual shorthand P (x) ≡ P (X = x) will be used to denote the probability that X

takes a particular value x when context makes the usage clear. When unambiguous,

H[X] will be used to denote the entropy of the distribution P (X). Entropy is a measure

of uncertainty in a distribution that satisfies two intuitive desiderata. First, H[X] ≥ 0,

and takes value zero only when all of the mass in P (X) is concentrated on a single

symbol. In this case the outcome of sampling from P (X) is certain. Furthermore,

H[X] is maximized when P (X) is a uniform distribution. Intuitively, this corresponds to

maximal uncertainty. The second desiderata is that entropy is additive for independent

random variables. If X and Y are independent, then H[P (X,Y )] = H[P (X)]+H[P (Y )].

Intuitively, if we have n units of uncertainty in X and m units of uncertainty in Y , then

we have n+m units of uncertainty in their joint distribution. The base of the logarithm

in Equations (2.3) and (2.4) changes the quantities by a multiplicative constant, with

base two the units of information are called bits. When measured in bits, the entropy

may be interpreted as “The average number of binary questions that must be asked to

determine the value of a sample from P (X).”

Shannon’s entropy can be extended to distributions over continuous variables by

replacing the sum in Equation (2.4) with an integral. This quantity is known as the

differential entropy.1

Differential entropy: H[p(X)] = −
∫
p(x) log p(x)dx ,

where X now denotes a continuous random variable and p(X) is a continuous prob-

ability density function. Again, this quantity is maximized when p(X) is a uniform

distribution over the domain of X, and it is minimized when p(X) is a Dirac delta

function δ(x − x′). However, in this case the differential entropy equals −∞, because

x can be specified to infinite precision and hence can carry an infinite amount of infor-

mation.

Two further information theoretic quantities that occur frequently are the mutual

information, and Kullback-Leibler (KL) divergence. The mutual information between

1 It may concern some that, unlike entropy in Equation (2.4), the differential entropy is not a
dimensionless quantity. However, it be thought of as the KL divergence, Equation (2.7), to an improper

uniform distribution u(x), H[p(x)] = −
∫
p(x) log p(x)

u(x)
dx, which is dimensionless.
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two random variables X and Y is

mutual information: I[X,Y ] = H[p(X)]− Ep(Y )H[p(X|Y )] (2.5)

= H[p(Y )]− Ep(X)H[p(Y |X)]

= H[p(X)] + H[p(Y )]−H[p(X,Y )] , (2.6)

where Ep(Y )H[p(X|Y )] is the conditional entropy, and is often denoted H[X|Y ]. Mutual

information is a non-negative quantity that is symmetric in its arguments. It measures

how much information X carries about Y , and vice versa. Shannon showed that the

maximum possible capacity of a channel is given by the mutual information between

the sent and received signals. The mutual information equals zero if and only if X and

Y are statistically independent, that is p(X,Y ) = p(X)p(Y ).

The KL divergence is a measure of dissimilarity between two probability distribu-

tions p(X) and q(X),

KL divergence: KL[p(X)||q(X)] =

∫
p(x) log

p(x)

q(x)
dx . (2.7)

This divergence is non-negative, but asymmetric. It is equal to zero if and only if p(X)

is identical to q(X). Intuitively, the KL divergence is the number of additional bits

needed to transmit symbols with distribution p(X), if our model of the distribution is

q(X).

Entropy is a well established characterization of uncertainty in a probability distri-

bution and provides a natural metric for information theoretic active learning.

2.2.3 The Information Gain Utility Function

In information theoretic Bayesian active learning one is agnostic to future decision

tasks and loss functions. The goal is to learn as quickly as possible about the model

parameters θ. With Shannon’s entropy (2.4) to quantify the uncertainty in a probability

distribution, the natural objective is to minimize posterior entropy after collecting data.

However, if we collect many datapoints in sequence, optimizing this quantity is NP-

hard in the horizon length [Ko et al., 1995; Krause & Guestrin, 2005]. Therefore, as is

common in sequential decision making, we take a myopic (greedy) approach, selecting

the next point as if it were the last. The implications of the myopic approximation are

discussed in Section 2.3.6. The myopic expected information gain is given by

U(x) = H[p(θ|D)]− Ep(y|x,D)H[p(θ|D,x,y)] .1 (2.8)
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The expectation over y is taken because the output is unknown before the query has

been made. Equation (2.8) was first proposed for the design of Bayesian experiments in

Lindley [1956]. However, just as Bayes’ rule itself is usually intractable, Equation (2.8)

is difficult to compute with most interesting models. Therefore, much recent work

has addressed information theoretic active learning; mathematical approximations and

algorithmic techniques have been developed to apply Equation (2.8) to complex models.

As an aside: another intuitive information-theoretic objective is to maximize the

KL-divergence between the current and next posterior, KL[p(θ|D,x,y)||p(θ|D)]. How-

ever, after taking expectations with respect to y this utility function is equivalent to

entropy decrease in Equation (2.8) [MacKay, 1992b].

2.3 Bayesian Active Learning by Disagreement

We now present an entirely equivalent formulation of Equation (2.8). This reformula-

tion can provide substantial practical advantages that shall reappear throughout this

thesis. We then discuss various properties of this approach to active learning includ-

ing computational issues, extensibility, inductivity and submodularity. Inductivity and

submodularity are general properties of information-theoretic active learning. The com-

putational properties and extensions are specific to our method used to compute the

utility, Bayesian Active Learning by Disagreement.

2.3.1 Symmetry in the Objective

An important insight arises if we note that Equation (2.8) is equivalent to the mutual

information (2.5) between parameters and the unobserved output, conditioned upon

the input and the observed data I[θ; y|D,x]. Because mutual information is symmetric

in its arguments, Equation (2.8) can be re-written as follows,

U(x) = H[p(θ|D)]− Ep(y|x,D)H[p(θ|D,x,y)]

= I[θ,y|D,x] (2.9)

= H[p(y|x,D)]− Ep(θ|D)H[p(y|x, θ)] . (2.10)

Equation (2.10) is equivalent to the expected information gain in Equation (2.8), but

it provides a different intuition about the utility function. The first term in Equa-

tion (2.10) seeks the input x for which the model has high uncertainty about output

1Note that the first term is independent of x, and is therefore constant, this term is included for
clarity in subsequent sections.

14



y. That is, the output has a high marginal entropy, H[p(y|x,D)]. However, given any

particular parameter value θ drawn from the posterior, Equation (2.10) seeks a dat-

apoint with low expected conditional uncertainty, Ep(θ|D)H[p(y|x, θ)]. This relates to

the two sources of uncertainty described in Section 1.1: parameter uncertainty and ob-

servation noise. Equation (2.10) will reward datapoints whose output has high entropy

due to parameter uncertainty, which is captured by the marginal predictive distribution

p(y|x,D), but penalizes uncertainty due to inherent noise, which is modelled by the

likelihood p(y|x, θ). Equivalently, Equation (2.10) can be interpreted as seeking the

x for which the parameters under the posterior make confident predictions, but these

predictions are highly diverse. That is, the parameters disagree about the output y,

hence we name this formulation Bayesian Active Learning by Disagreement (BALD).

The equivalence follows from straightforward application of the properties of Shan-

non’s entropy and has been noted in the literature [Lindley, 1956; Shewry & Wynn,

1987]. A number of active learning algorithms are derived starting from the mutual

information in Equation (2.9) between observed variables and ‘variables of interest’

[Caselton & Zidek, 1984; Ertin et al., 2003; Krause et al., 2008], and thus may compute

this quantity in either direction. However, the use of BALD, Equation (2.10), as an

general-purpose alternative to posterior entropy minimization is not widely discussed.

We argue that this reformulation is a valuable tool for information theoretic active

learning, and it has a number of practical advantages. Noting the direct equivalence to

information gain allows us to relate and formalize a number of popular active learning

methods (Section 2.4). By working in this framework we derive new algorithms for spe-

cific domains in the subsequent chapters. However, we highlight BALD in its general

form as a starting point for active learning algorithms in many other possible domains.

2.3.2 Computational Advantages

The BALD reformulation in Equation (2.10) can provide a number of computational

advantages over direct entropy minimization in Equation (2.8). We discuss the immedi-

ate advantages in this section. In the next section we investigate empirically a further

computational advantage from improved sample complexity if Monte Carlo is used to

estimate the utility function.

A principal difference between Equations (2.8) and (2.10), is that Equation (2.10)

computes entropies in output space Y rather than parameter space Θ. Often param-

eter space is high dimensional and so posterior entropies are usually intractable. One

possibility is to use a histogram estimator [Paninski, 2003], but the number of bins
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scales exponentially with the dimensionality of parameter space. Another possibil-

ity is to sample from the posterior and estimate Equation (2.8) using these samples.

However, estimating entropies directly from samples in an unbiased manner is notori-

ously hard [Panzeri et al., 2007]. Therefore, the intractable posterior entropy is often

approximated directly from approximations to the posterior [Herbrich et al., 2002; Kr-

ishnapuram et al., 2004; Lewi et al., 2007; MacKay, 1992b].

In Bayesian nonparametric models, such as Gaussian processes (GPs), parameter

space is infinite dimensional and so entropies in parameter space are ill-defined. How-

ever, output space is often simple. For example, in regression and classification, the

output is usually a uni-dimensional real valued or binary variable, respectively. The en-

tropy of these scalars is usually straightforward to compute, either analytically or with

a one-dimensional grid. Therefore, BALD can often compute expected changes to pos-

terior entropy exactly, even with infinite dimensional parameter spaces. Furthermore,

because Equation (2.10) does not compute the entropy of the posterior distribution di-

rectly, estimating information gain in this way is not tied to a particular method for

approximating the posterior. Section 2.3.3 presents an empirical study on a toy prob-

lem to demonstrate that U(x) can be estimated more accurately from posterior samples

with BALD than with direct estimation using Equation (2.8).

A second advantage that BALD has over the original formulation is that the pos-

terior does not need to be updated until after a query has been made. Equation (2.8)

requires calculating the updated posteriors after including every possible new datapoint

p(θ|D,x,y). However, only the current posterior p(θ|D) appears in Equation (2.10).

Suppose we have a pool of N possible inputs, and can receive one of |Y| possible out-

puts – for continuous y output space could be partitioned into a grid. To compute

Equation (2.8) we must calculate N |Y| new posterior distributions. This will usually

require expensive approximate inference. BALD requires updating the posterior only

once per sample, after labelling the datapoint. This is the same as number of updates

required by passive online learning. If cinf is the cost of inference, and hθ is the cost to

compute the entropy of the posterior, then the complexity to compute Equation (2.8) on

N candidates is O(N |Y|cinf +N |Y|hθ). With BALD, the cost is O(cinf +Ncpred +Nhy),

where cpred is the cost to compute the predictive distribution, and hy is the cost to

compute the entropies in output space. For many models, cpred � cinf and hy � hθ.

Like any algorithm, BALD does not offer a free lunch. If output space is compli-

cated, such as in structured models [Tsochantaridis et al., 2004], then direct entropy

minimization may be easier. Even if this is not the case, the terms in Equation (2.10)

may still be non-trivial to compute. In practice, the first term is usually straightforward
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because the marginal predictive distribution p(y|x,D) is central to most applications of

Bayesian machine learning. Therefore techniques for computing this quantity have been

developed for many models. However, the second term, the posterior mean conditional

entropy Ep(θ|D)H[p(y|x, θ)] is more unusual. As we shall see in the following chapters,

computing this term is normally the main challenge when implementing BALD.

2.3.3 Simulation: Estimating the Utility from Samples

A toy linear-Gaussian model is used to investigate empirically the accuracy of esti-

mating U(x) from posterior samples, either directly (2.8), or with BALD (2.10). The

likelihood function is p(y|x, θ) = N(y; θ>x, σ2), where the parameters θ and input x

are 10-dimensional real valued vectors and the output y is a scalar: X = R10,Y = R,

Θ = R10. N(x;µ,Σ) denotes a (in general, multivariate) Gaussian distribution over x

with mean µ and covariance matrix Σ. The noise level σ2 is fixed and known. With

a Gaussian prior on θ, the posterior is tractable and Gaussian, so its entropy can be

computed analytically to assess the quality of the sampling approximations. Further-

more, in this model the posterior entropy is independent of the future observations, so

U(x) can be computed without simulating any y values.

Even a 10-dimensional parameter space is impractical to grid up, so we approximate

Equation (2.8) using Monte Carlo samples from the posterior,1

H[p(θ|D)] ≈ − 1

N

N∑
i=1

log p(θi|D), θi ∼ p(θ|D) , (2.11)

where N is the number of samples. Note that we do not have to integrate over y as the

output value does not influence the posterior entropy. We may also use these samples

to estimate U(x) using BALD,

U(x) ≈ H

[
1

N

N∑
i=1

p(y|x, θi)

]
− 1

N

N∑
i=1

H[p(y|x, θi)] . (2.12)

With this simple linear-Gaussian model the entropy of the second term in Equa-

tion (2.12) is constant with respect to x. The first term is the entropy of a mixture of

N one-dimensional Gaussians, which can be computed using a one-dimensional grid.

We define the approximation error as the normalized difference in utility between

1 In practice posterior samples will have often been computed already from the approximate infer-
ence algorithm. This is the case in Chapter 4.
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Figure 2.2: Error in the estimation of U(x) using samples directly (2.11) or with BALD
(2.12). Thicker lines give the mean and thinner dash-dot lines indicate ±1 s.d. over 200
repeats. The x-axis is the number of samples. Left: log squared error. Right: error,
Uapprox(x)− Utrue(x).

the truth, computed analytically, and the Monte Carlo approximations,

error =
Uapprox(x)− Utrue(x)

Utrue(x)
. (2.13)

The experiment was repeated 200 times, resampling x each time. Figure 2.2 shows the

distribution of errors over these runs as a function of the number of samples used to

estimate U(x) by either method. The left-hand plot in Figure 2.2 shows that BALD

provides a more accurate estimate of the information gain as the squared estimation

error is over an order of magnitude smaller than with direct estimation of posterior

entropy.

However, the right-hand plot in Figure 2.2 demonstrates that with very few sam-

ples (< 50) BALD tends to underestimate the entropy change. This is probably due to

the mixture of Gaussians used to estimate the marginal predictive entropy (the term

of Equation (2.12)). The true predictive distribution has infinitely many components.

Each component has the same variance, and with few samples the finite mixture approx-

imation is likely to yield an underestimate. In the extreme case of one sample, BALD

will always underestimate this marginal entropy and will return a utility of zero. How-

ever, as indicated by the error bands, BALD yields an estimate with smaller variance

and the bias is much smaller than the standard deviation of the direct estimate.
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2.3.4 Extension: Nuisance Parameters and Focused Active Learning

In many settings some parameters are more important to learn than others. Here, in

addition to the parameters of primary interest θ, the model has some other ‘nuisance

parameters’ of lesser importance φ. For example, in Bayesian models, φ may correspond

to hyper-parameters of the prior. Rather than collecting data that provides maximal

information about the joint distribution over all of the parameters p(θ, φ|D), we would

like to focus learning efforts on the parameters of interest alone. In particular, we want

to minimize the entropy of the marginal distribution p(θ|D). Equation (2.10) can be

directly extended to this scenario,

I[θ; y|x,D] = H

[∫
p(θ, φ|D)dφ

]
− Ep(y|x,D)H

[∫
p(θ, φ|x,y,D)dφ

]
(2.14)

= H[p(y|x,D)]− Ep(θ|D)H[Ep(φ|θ,D)p(y|x, θ, φ)] , (2.15)

where Equation (2.14) is the information gain in the marginal written explicitly and

Equation (2.15) is the computationally efficient rearrangement. The first term in this

‘focused’ BALD utility function is the entropy of the marginal predictive distribution,

as in the original BALD formula (2.10). The second term differs, the integral over

the nuisance parameters has moved inside the entropy. Intuitively, this only penalizes

datapoints about whose output we are still uncertain if we know θ, but not φ. We only

seek disagreement between the parameters of interest θ, and hence focus our efforts on

refining the distribution over these parameters only.

In the next two sections we discuss two properties of posterior information-gain for

active learning: inductivity and submodularity.

2.3.5 Inductive and Transductive Learning

In learning theory, inductive and transductive learning are distinguished [Vapnik, 2000].

Posterior information gain (2.8), and hence BALD, is an inductive approach. Inductive

methods address the generic task of generalization from samples, whereas transductive

methods minimize the expected loss on a particular test set or distribution. A trans-

ductive algorithm needs access to test-time information during training and exploits

this information. Therefore, inductive algorithms seek good performance in a variety

of possible test scenarios, but are not optimal for any single setting.

This distinction between inductive and transductive algorithms applies in active

learning [Tong, 2001; Yu et al., 2006]. It relates to the distinction between information
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and decision theoretic methods. Decision theoretic algorithms are inherently transduc-

tive because they focus on loss minimization on a particular test distribution. However,

information-theoretic transductive algorithms have also been proposed. These minimize

the average predictive variance or entropy over regions of interest in input space [Cohn

et al., 1996; Krause et al., 2008; MacKay, 1992b]. Note that this is not the same as

BALD, which uses predictive entropies to minimize the parameter entropy.

These approaches have relative advantages and disadvantages. If the test inputs are

known, transductive methods are likely to yield a smaller test loss because they focus

on learning in that region. Inductive methods may choose to learn about parameters

that have a small effect on the predictions in the interest region. However, transductive

methods first require the interest region to be known, then a distribution over it to be

defined. This is usually done using a set of reference points. These points may be

placed in a grid [Krause et al., 2008], but this is impractical in higher dimensions.

Alternatively, samples from the pool may be used. However, in this case an inductive

algorithm will naturally focus on the region of interest as well because the samples used

to train the model are also from the pool.

An advantage of inductive methods is that information about future inputs is not

required. Another advantage is by maximizing information gain in the parameters one

can choose which parameters to learn actively using Equation (2.15). With transductive

methods, the parameters are learnt selectively, but the algorithm designer cannot select

them directly. Directly choosing parameters to focus learning on can be advantageous if:

i) The values of particular parameters themselves are of primary interest. ii) Selective

learning allows the algorithm to be improved in other ways. For example, in Chapter 3

we find that choosing the order in which parameters are actively learnt appropriately

is crucial for robust active GP regression. In Chapter 7 we learn about a new user in

a recommendation system who is represented by a few parameters in a much larger

model.

2.3.6 Myopic Assumption and Submodularity

The utility functions presented so far have been myopic or greedy. That is, they seek

the optimal x as if it were the last datapoint to be selected. However, often one has a

budget to collect a set of L samples, X, and receive a set of labels Y . In this case we

want to maximize information gain over the entire set,

U(X) = H[θ|D]−H[θ|Y,X,D] . (2.16)
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Unfortunately, optimizing Equation (2.16) is, in general, NP-hard in the horizon length

L [Ko et al., 1995; Krause & Guestrin, 2005]. Therefore, a common approach is to

greedily maximize the utility with respect to the next sample alone [Dasgupta, 2005;

Heckerman et al., 1994]. Fortunately, under certain conditions, the greedy strategy is

near-optimal. We now discuss when these conditions apply to information theoretic

active learning.

The L-step utility (2.16) is a set function. A set function F (Y ) : 2Y 7→ R is a

function whose input is a set Y and (usually) outputs a real value. Submodularity is

an extension of convexity to set functions. Intuitively, submodular set functions exhibit

‘diminishing returns’. More precisely, adding an element y to a set Y small produces a

greater increase to F than adding y to Y large, where Y large ⊃ Y small. A set function is

submodular if for all Y large and Y small, and every y 6∈ Y large

F (Y small ∪ y)− F (Y small) ≥ F (Y large ∪ y)− F (Y large) . (2.17)

A set function is non-decreasing if F (Y large) ≥ F (Y small). The key result of

Nemhauser et al. [1978] is that if a set function is submodular, non-decreasing, and

F (∅) = 0, then greedy, sequential maximization is guaranteed to produce a solution

whose function value is within (1− 1/e) ≈ 63% of the global optimum.

Equation (2.16) is a set function from labels Y to information gain. Due to the

‘information never hurts’ bound [Cover et al., 1994], F is non-decreasing, and clearly

F (∅) = 0. Unfortunately, as noted in Krause et al. [2008] information gain is not in

general submodular. For example, consider a collection of three variables (y1, y2, z).

We wish to gain information about z by observing y1 or y2; z may be thought of as the

‘parameter of interest’ z ≡ θ. The input variable x is simply the index 1 or 2. Suppose

(y1, y2, z) are jointly Gaussian distributed as

p(y1, y2, z) = N
(

[y1, y2, z]
>; 0,Σ

)
, where Σ =

2 1 1

1 2 0

1 0 2

 . (2.18)

The information gain in observing set Y is IG(Y ) = H[z] − H[z|Y ]. y2 and z are

independent, therefore IG(y2)− IG(∅) = 0. Now suppose that we have observed y1, the

joint distribution of the remaining variables given y1 is

p

([
y2

z

]∣∣∣∣∣ y1

)
= N

(
1

2

[
y1

y1

]
,

[
1.5 −0.5

−0.5 1.5

])
.
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z

y1 y2

Figure 2.3: Graphical model for the joint Gaussian in Equation (2.18).

Now y2 and z are conditionally dependent, y2 provides information about z, IG(y1 ∪
y2) − IG(y2) = H[z|y1] − H[z|y1, y2] > 0. Therefore, the increase in information gain

when adding y2 to y1 is greater than when adding y2 to ∅. Since ∅ ⊂ y1, IG(Y ) does

not exhibit diminishing returns and is not submodular.

Fortunately, under certain conditional independence conditions, information gain

will be submodular. The following theorem is given in Krause & Guestrin [2005].

Theorem 1. Let S,U be disjoint subsets of (a finite set of random variables) V such

that the variables in S are independent given U . Let ‘information gain’ be IG(A) =

H[U ] − H[U \ A|A], where A ⊆ W , for any W ⊆ S ∪ U . Then IG is submodular and

non-decreasing on W , and IG(∅) = 0.

Theorem 1 seems a little daunting, but it has a simple intuition. We wish to learn

about some variables U by observing some variables A chosen from a set W . W includes

both the variables we are learning about U , or some extra variables S. Provided that

these extra variables S are independent given the variables that we are learning U , then

the information gain is a submodular set function. There is one further detail; if we

are selecting A from U , then we only care about the information gain in the remaining

variables in U , IG(A) = I[A,U \A].

Information theoretic active learning in the discriminative setting in Figure 2.1 is a

special case of Theorem 1. Identifying U with the parameters θ, we never observe U

directly, so W = S. Furthermore, since S ∩ U = ∅ we have U \ A = U . S is the set

of labels Y in Equation (2.16). The inputs X do not feature in the Theorem, they just

index the set of labels. For IG(θ) to be submodular and non-decreasing the variables

in Y must be independent given θ. This is the case in Figure 2.1 as θ forms a Markov

blanket between the variables yi.

So what is different in the joint Gaussian model in Equation (2.18)? The graphical

model for Equation (2.18) is in Figure 2.3. Here, z does not form a Markov blanket

between y1 and y2, so this figure cannot be mapped to the graphical model in Figure 2.1

and does not satisfy the conditional independence condition required by Theorem 1.
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Figure 2.4: Graphical model for the discriminative learner with parameters θ and
hyperparameters φ.

In summary, if the model can be mapped to the discriminative framework in Fig-

ure 2.1, then the information theoretic utility function in Equation (2.8) is submodular

and so the myopic assumption only results in a small constant loss of utility.

However, for ‘focused’ information theoretic active learning this is not always the

case. Consider a hierarchical Bayesian model in Figure 2.4. Suppose that the pa-

rameters of interest θ are the hyper-parameters and the ‘lower level’ parameters are

considered to be nuisance parameters φ. For example, in Section 3.3 we want to learn

the hyper-parameters of a GP kernel but do not care about the latent function. In this

case BALD in Equation (2.15) integrates out the nuisance parameters. After integrat-

ing out φ, the outputs yi are dependent, even when conditioned on θ. Therefore, with

focused active learning, BALD may not be submodular. In practice we found that the

myopic strategy performed well empirically, but investigating look-ahead techniques

could produce further improvements here.

2.4 Literature Review

Active learning has been widely studied in machine learning, statistics and experimental

and social sciences, where it is also referred to as query learning or optimal experimental

design (OED). We outline some of the key related algorithms. It is not possible to

cover the entire field, for comprehensive coverages see the textbooks Fedorov [1972]

and Settles [2012].

2.4.1 Classical Optimal Experimental Design

Classical OED, developed in statistics, focuses primarily on linear regression,

y = θ>x + ε . (2.19)
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The noise is usually Gaussian distributed with zero mean, ε ∼ N(0, σ2). In this case the

maximum likelihood estimator (MLE) of θ is equivalent to the least squares estimator.

The MLE is θ̂ = (X>X)−1X>Y, where X is the N ×D ‘design matrix’ consisting of N

input vectors x, and Y is the vector containing N real valued outputs y. The variance

of the MLE is given by σ2(X>X)−1, the inverse of the variance is the Fisher Information

(FI) matrix for this model. The FI provides an alternative to Shannon’s entropy for

measuring the information in a sample x about the unknown parameters θ. With linear-

Gaussian models classical OEDs maximize the FI, or equivalently minimize the variance

of the MLE, with respect to the next datapoint to be added to the design matrix.

However, because the FI is a matrix quantity, not a scalar like the posterior entropy,

a number of different utility functions have been proposed. These have alphabetized

names, such as A-, D-, or E- optimality. We discuss a few of the most famous amongst

these, others can be found in Atkinson [1988].

D-optimal design maximizes the determinant of X>X. This is equivalent to the

Bayesian information gain criterion used by BALD (2.8) if a flat (non-informative) prior

on θ is used. For example, if we have a zero mean Gaussian prior with covariance Σ, then

the posterior p(θ|X,Y) is Gaussian with covariance σ2(X>X+Σ−1)−1. The entropy of

a Gaussian is proportional to the log determinant of its covariance matrix, and so with

a non-informative prior, such as Σ = limε→0
1
ε I, the determinant of the design matrix

is a monotonic function of the posterior entropy. Bayesian D-optimality extends D-

optimality to include a prior. In this case |(X>X + Σ−1)−1| is minimized, which is

equivalent to posterior entropy minimization with the linear-Gaussian model (2.19).

Bayesian equivalents of most classical OEDs are formed by replacing the covariance of

the MLE (X>X)−1 with the posterior covariance matrix (X>X + Σ−1)−1 [Chaloner &

Verdinelli, 1995].

D-optimal design can be motivated using other utility functions on θ. Posterior

entropy minimization is equivalent to minimizing expected log loss on the parameters.

If the true parameter is θ̂ we can define a ‘score’ for the posterior distribution as

S(θ̂, p(θ|D)) = log p(θ̂|D). This score rewards posteriors with high density at the true

parameter value. The expected score given the current posterior beliefs is

Ep(θ|D)[S(θ, p(θ|D))] = −H[p(θ|D)] .

Maximizing the expected score with respect to the data D is therefore equivalent to

posterior entropy minimization. S(θ, p(θ|D)) is an example of a proper scoring rule.

These are scores that reward honest estimates of uncertainty. Proper scoring rules are
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beyond the scope of this thesis, see Dawid [2007]; Huszár [2013] for details. Other scor-

ing rules may be used, and with linear-Gaussian models, D-optimality is also equivalent

to maximizing the Brier score [Brier, 1950]. However, unlike Shannon’s information,

which is induced by the log score, other scoring rules do not result in symmetric utility

functions. Hence, computationally efficient rearrangements like BALD in Section 2.3.1

are not generally possible.

A-optimality minimizes the trace of (X>X)−1. The Bayesian equivalent, minimizing

the trace of the posterior covariance, is motivated if a point estimate of the parameters θ̂

is sought. This is because A-optimality is equivalent to minimizing the expected squared

Euclidean distance of an estimator θ̂ to the true parameters, U(x) = −Ep(y,θ|x,D)||θ −
θ̂||22.1 The trace operation minimizes the average variance of the estimator over the

dimensions of θ. If this average is replaced with a minimax criterion, then the objective

is called E-optimality. E-optimality minimizes the maximum posterior variance for any

linear projection of θ, argmaxc:||c||=1 c>(X>X)−1c.

E-optimality is mathematically similar to G-optimality which minimizes

argmaxx? x?>(X>X)−1x?, where x? is any point in input space. The Bayesian equiv-

alent has a decision-theoretic flavour: to minimize the greatest predictive variance at

any point in input space. This arises because the variance of the Bayesian predictive

distribution (1.2) for the linear-Gaussian model is Var [p(y?|x?,D)] = σ2x?>(X>X +

Σ−1)−1x?.

These designs have been extended to nonlinear regression models, y = f(θ>x) + η,

where f is a nonlinear function. In the linear-Gaussian model (2.19) most designs, such

as D-optimality, are independent of the output y. This is also true for other models

such as the generalized linear model with Poisson likelihood and exponential link func-

tion [Lewi et al., 2009]. With linear regression the design is also independent of the

parameters. In these cases, the optimal sequence of measurements can be computed

a priori. However, this is not the case with nonlinearities. Similar to active learning,

classical designs often take an iterative approach. They estimate the parameter θ̂ and

then select the next measurement using this estimate [Chaloner & Verdinelli, 1995].

In Bayesian OED, the posterior usually becomes intractable, so a number of approx-

imations have been proposed. The most popular methods approximate the posterior

with a Gaussian, whose mean is equal to the MLE or MAP estimate θ̂. The vari-

ance of the approximation is computed using the inverse of the FI matrix. In general,

the FI matrix is the Hessian of the negative log likelihood surface, and is a function

1 Note that an expectation of the unseen y is needed here because, although the posterior variance
is not a function of y, the estimator θ̂ may be.
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Cost Function Bayesian Interpretation/Equivalence

D |(X>X)−1| max Shannon information gain in θ
A tr[(X>X)−1] min variance of a point estimate for θ
E argmaxc:||c||=1 c>(X>X)−1c min max post. variance for any projection of θ

G argmaxx? x?>(X>X)−1x? min max predictive variance at locations x?

Table 2.1: A few classic optimal experimental designs. Cost is ‘negative utility’.
Bayesian equivalents are formed by replacing X>X by X>X + Σ−1, where Σ is the
prior covariance of θ. More general equivalents for nonlinear regression models are
given by replacing X>X with the general form of the Fisher Information Matrix, F (θ̂).

of θ and y, unlike for the linear model where it is simply equal to X>X. This is the

Laplace approximation, widely used in machine learning and statistics [Kass & Raftery,

1995]. The classical design criteria can then be estimated for nonlinear designs using

the approximate distribution over θ.

Table 2.1 summarizes the classical designs presented in this Section.

2.4.2 Information Theoretic Methods

Maximizing Shannon’s information for Bayesian experimental design was originally

proposed in Lindley [1956]. This paper studies the fundamental properties of this

objective. These properties are studied further in Fedorov [1972]; MacKay [1992b].

In the latter, the posterior information gain for an arbitrary parametric model with a

Gaussian likelihood is approximated using the Laplace approximation. As described

in Section 2.3.2, performing active learning by computing parameter entropies can be

expensive, even with a Laplace approximation. More recently, a fast algorithm that

minimizes posterior entropies directly is proposed in Lewi et al. [2007].

Algorithms that work with predictive distributions tend to be more easily applicable,

but do not necessarily optimize an objective, such as information gain. The most well

known of these algorithms is Maximum Entropy (or uncertainty) Sampling (MES)

[Shewry & Wynn, 1987]. MES selects datapoints with the largest predictive entropy.

This corresponds to the first term in BALD, Equation (2.10). MES was originally

proposed for regression models with constant observation noise, such as the linear-

Gaussian model. Here, the second term in Equation (2.10) is constant with respect

to x, so it can be ignored. However, MES is not equivalent to BALD with more

complex models, such as classification or heteroscedastic models. This is because it

fails to differentiate between parameter uncertainty and observation noise. As a result
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}}
Figure 2.5: Toy example of classification with a 1D input. Circles and crosses denote
labelled datapoints. The plot shows the mean and variance of the predictive distribu-
tion. Maximum Entropy Sampling (MES) selects data from regions of high marginal
uncertainty. BALD seeks more informative data in the region of uncertainty due to
high posterior variance.

MES over-samples in regions of noisy data. For example, points near a classification

decision boundary may be very noisy, and hence provide no information about the

model. BALD, on the other hand, directly maximizes the information gain so does not

exhibit such pathologies. BALD will learn that a region has high inherent uncertainty

thus will explore elsewhere. Figure 2.5 illustrates this point on a 1D classification

example.

The mutual information between measured variables and ‘variables of interest’ has

been proposed in various applications. These include tracking via Bayesian filtering

[Ertin et al., 2003]. Here, the hidden state is the variable of interest, and with a linear

Gaussian model, the utility function reduces to MES. Fuhrmann [2003] applies mutual

information in noisy communication channels with binary variables, in this case entropy

computations are simple. With BALD, the interest variables are model parameters, the

above approaches do not learn these.

Another application of mutual information is for monitoring environmental vari-

ables. Here, the mutual information between measured locations and interest loca-

tions is maximized [Caselton & Zidek, 1984]. This approach is transductive (see Sec-

tion 2.3.5), it learns the function optimally just at the interest locations. This technique

is applied with GP regression in Krause et al. [2008], where a grid of interest locations is

specified. However, gridding the region of interest is impractical for higher dimensional

problems.

The above mutual information based methods do not consider hyperparameter

learning which we will address for GP regression in Chapter 3. Hyperparameter uncer-

tainty has been considered in a similar setting to GPs, Empirical Kriging. Zimmerman
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[2006] minimize the predictive variance at interest locations for active sensor place-

ment with unknown kernel hyperparameters. A linearized approximation of the effect

of hyperparameter uncertainty (measured using Fisher Information) on the predictive

variance is added to the utility function. Focused BALD (2.15) minimizes hyperparam-

eter uncertainty more directly.

2.4.3 Data Subsampling

Active learning is primarily used for collecting data when labelling is expensive. How-

ever, if the dataset is very large, or there is a continuous stream of data, and one does

not have the resources to process all of the points then active learning can be used

to subsample the dataset to a feasible size. This simple approach to ‘compressing’ a

large dataset is referred to as the subset of data approximation [Quiñonero-Candela &

Rasmussen, 2005]. Subset of data methods differ to active learning because the label y

can be observed prior to sampling, therefore, although active learning techniques can

address the subset of data problem, the reverse is not possible.

A popular dataset subsampling algorithm for GPs is the Informative Vector Machine

(IVM) [Herbrich et al., 2002].1 Like BALD, the IVM maximizes information gain in

the parameters. However, y is observed so the IVM does not work explicitly with

predictive distributions, but works directly in parameter space. However, GPs have

an infinite dimensional parameter, the latent function. The IVM computes parameter

entropies in the marginal subspace that corresponds to the observed datapoints. Now,

the entropy decrease after inclusion of a new point is calculated efficiently using the GP

covariance matrix. Figure 2.6 shows the difference between this approach and BALD.

As a result, the IVM has a transductive bias, the locations of the observed data defines

the parameters whose entropy are minimized. BALD is inductive because it works

implicitly with the full infinite-dimensional latent function.

Although the IVM and BALD are motivated by the same objective, they have

different properties when approximate inference is carried out, such as in Gaussian

process classification (GPC). At time t both methods have an approximate posterior

qt(θ|D). This can be updated with the likelihood of a new data point p(yt+1|f,xt+1),

yielding p̂t+1(θ|D,xt+1, yt+1) = 1
Z qt(θ|D)p(yt+1|f,xt+1). If the posterior at t + 1 is

approximated directly one gets qt+1(θ|D,xt+1, yt+1). BALD calculates the entropy

difference between qt and p̂t+1, without having to compute qt+1 for each candidate

xt+1 and label yt+1. In contrast, the IVM calculates the entropy change between qt

1 GPs are introduced in Section 3.1.

28



f

fi

yixi

i = 1 . . . N

Figure 2.6: Graphical model for Gaussian processes. The infinite dimensional latent
parameter f gives rise to scalar latent variables fi at each input location, xi. The
directed links from the top layer to the 2nd layer are deterministic marginalizations,
not probabilistic dependencies. Given the latent function fi the likelihood function
generates the labels yi. The IVM calculates entropies in the second layer, whereas
BALD calculates entropy changes to the entire f at the top.

and qt+1, and so must compute the new posterior for all possible queries. Methods

that compute posterior entropies directly require O(N |Y|cinf + N |Y|hθ)) computations

per sample since the posterior must be recomputed for all candidates.1 Therefore,

because cinf enters the complexity per candidate, the IVM for GPC must perform fast

approximate inference using assumed density filtering (ADF). BALD requires only one

posterior update, so costs O(cinf + Ncpred + Nhy). Therefore, more accurate iterative

procedures, such as expectation propagation (EP) [Minka, 2001b], can be used. ADF

is a single-pass version of EP, so this results in qt+1 being a direct approximation to

p̂t+1 which BALD implicitly works with.

2.4.4 Decision Theoretic Methods

Decision theoretic methods directly minimize the expected loss, measured using the

Bayes posterior risk (2.1). In many tasks, the loss is hard to quantify, but in classifica-

tion, the misclassification rate provides a sensible loss function [Kapoor et al., 2007; Roy

& McCallum, 2001; Zhu et al., 2003]. These methods assume knowledge of the location

of the test data and then minimize the expected 0/1 classification loss. However, as

1 For homoscedastic regression with fixed hyperparameters the posterior variance is independent
of y, so only O(Ncinf +Nhθ) updates are needed. With further approximations to the likelihood the
IVM can be sped up further for regression [Seeger et al., 2003].
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Bayesian Non-Probabilistic

parameter setting hypothesis/hyperplane
posterior distribution version space (VS)
posterior entropy log volume of VS
Gaussian approx to posterior hypersphere approx to VS

e.g. EP, Laplace e.g. Tong & Koller [2002]
samples from posterior committee members
MES margin sampling
Equation (2.8) directly minimizing VS volume
BALD QBC with an infinite committee

and probabilistic voting

Table 2.2: Analogies between Bayesian active learning and non-probabilistic active
learning methods for SVMs.

noted in Roy & McCallum [2001], a limitation of decision theoretic methods is the com-

putational cost. In general, with T test points they require O(N |Y|cinf + TN |Y|cpred)

computations to calculate the posterior risk on the test set for all possible new data-

points. Incremental re-training and re-classification can speed up computations with

certain models [Roy & McCallum, 2001]. Further computational savings require ap-

proximations such as pruning the query search space or sub-sampling the test set.

2.4.5 Non-Probabilistic Methods

Non-probabilistic methods have analogies with Bayesian active learning. The most

well known non-probabilistic active learning methods are for Support Vector Machines

(SVMs) [Seung et al., 1992; Tong & Koller, 2002]. SVMs are a sparse non-probabilistic

model mostly used for binary classification. SVMs classify the data using a hyperplane

with maximal separation from each class.1 The set of possible hyperplanes that cor-

rectly classifies the training data is called version space (VS). An introduction to SVMs

can be found in Burges [1998].

A popular approach to SVM active learning minimizes the number of possible hy-

potheses (hyperplanes), which is done by minimizing the volume of VS. VS can be

interpreted as a deterministic equivalent to the posterior distribution, and its volume

is analogous to the posterior entropy. If a uniform (improper) prior and a determin-

istic likelihood are used then the log volume of VS is equivalent to the entropy of the

posterior. Each observed datapoint defines a plane in VS and hypotheses consistent

1 SVMs are not limited to linear decision planes, they can use kernels to produce complex decision
boundaries [Schölkopf & Smola, 2002].
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with the data lie on one side of this plane. The goal of active learning with SVMs is

to sample a datapoint that cuts VS in half. Thus, after receiving the label, at worst

almost half of the hypotheses are eliminated.

However, just as Bayesian posterior distributions can be intractable, VS can become

complex after observing many datapoints, and the relevant volumes hard to compute.

Therefore, Tong & Koller [2002] propose approximating a complex VS with simpler

shapes, such as hyperspheres. Their simplest approximation fits the largest possible

hypersphere into VS and selects the point whose dual hyperplane falls closest to the

centre of this sphere. This is equivalent to margin sampling, which chooses the point

closest to the decision boundary [Campbell et al., 2000]. Similar to MES, margin

sampling can over-sample noisy data beside the boundary. This approximation of VS

using a simple shape is similar to Bayesian inference methods that approximate the

posterior with a simple distribution, such as a Gaussian.

Query by Committee (QBC) sidesteps complex version spaces and, like BALD,

works directly with predictions [Seung et al., 1992]. QBC samples parameters from VS

‘committee members’, each of whom makes a prediction, ‘votes’, on the label of x. The

x with the most balanced vote is selected, this is termed the ‘principle of maximum

disagreement’. If Equation (2.10) is approximated by sampling θ, then BALD resem-

bles QBC, but with a probabilistic measure of disagreement. By discarding confidence

estimates QBC can exhibit the same pathologies as MES, namely over-sampling noisy

data. QBC was proposed for classification, and to extend this algorithm directly to

other scenarios, such as regression, the disagreement measure needs to be re-designed

[Burbidge et al., 2007]. McCallum & Nigam [1998]; Melville et al. [2005] replace the

deterministic voting in QBC with the Jensen-Shannon (JS) divergence between a finite

number of predictive distributions. These works do not uncover the link to information

gain in the parameters; BALD also minimizes the JS-divergence of predictive distribu-

tions, but from infinitely many committee members drawn from the posterior. Table 2.2

summarizes the analogies between Bayesian and non-probabilistic methods for active

learning.

2.4.6 Summary

We have presented a framework for Bayesian information theoretic active learning called

BALD. This framework directly exploits the rearrangement of parameter entropies to

predictive entropies. There are many approaches to active learning, but BALD can be

advantageous for a number of reasons:
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• It is inductive, so does not make any assumptions about a future decision task,

loss or test set.

• With many models, the utility function is smooth and so BALD may be applied

to both continuous sampling and pool-based active learning.

• The utility function is often, but not always, submodular and hence greedy max-

imization is near-optimal.

The above advantages are specific to the classical information gain objective function

in Equation (2.8). The potential advantages of the rearrangement that BALD exploits

(2.10) and the extension in Equation (2.15) are:

• The required computations are not inherently tied to a particular model or infer-

ence method.

• If output space is ‘simpler’ than parameter space, as is often the case, then the

required entropies are more straightforward to compute.

• The number of (approximate) posterior updates is reduced from one per possible

datapoint to one per observed datapoint.

• One can focus upon learning particular variables in the model.

However, computation of the utility in Equation (2.10) may still be non-trivial. Whether

BALD is computationally useful depends on the particular task and model. Whether

BALD is practically useful is a matter of empirical performance. In the following

chapters we apply this framework in machine learning and scientific domains to yield

efficient algorithms with strong practical performances.
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