
Gaussian Processes (Contd)

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

Jan 30, 2019

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes (Contd) 1



Announcement

Quiz 1 tomorrow - Jan 31, 7pm-8pm

Y14, Y15, Y18: RM-101

Y16, Y17: KD-101

Bring a pencil and eraser (answers to be written on the question paper itself)

Do not bring anything else
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Recap: Bayesian Modeling of Nonlinear Functions

Goal: Learn a nonlinear function f for discriminative models of the form p(y |x), e.g.,

p(y |f , x) = N (y |f (x), β−1)

p(y |f , x) = [σ(f (x))]y [1− σ(f (x))]1−y

p(y |f , x) = ExpFam(f (x))

Not just interested in a point estimate but the full posterior over f

Usually done in one of the following ways

Ad-hoc: Define nonlinear features φ(x) + train Bayesian linear model (f (x) = w>φ(x)))

Ad-hoc: Train a neural net to extract features φ(x) + train Bayesian linear model

Bayesian Neural Networks (infer posterior over NN weights; compute posterior predictive)

Gaussian Processes (Bayesian modeling + kernels)
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Recap: Gaussian Process

A Gaussian Process is a distribution over functions

Denoted as GP(µ, κ); parametrized by a mean function µ and covariance/kernel function κ

Mean function µ models the “average” function f from GP(µ, κ): µ(x) = Ef∼GP(µ,κ)[f (x)]

Cov. function κ models “shape/smoothness” of functions from this GP

κ(., .) is a function that computes similarity between two inputs
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Recap: Gaussian Process

For f ∼ GP(µ, κ), f ’s values at any finite set of input x1, . . . , xN are jointly Gaussian


f (x1)
f (x2)

.

.

.
f (xN )

 ∼ N



µ(x1)
µ(x2)

.

.

.
µ(xN )

 ,


κ(x1, x1) . . . κ(x1, xN )
κ(x2, x1) . . . κ(x2, xN )

.

.

.
. . .

.

.

.
κ(xN , x1) . . . κ(xN , xN )




In a more compact notation, p(f) = N (µ,K), where f and µ are N × 1 and K is N × N

Can use it to easily compute f∗ = f (x∗) for a new input x∗. To see this, note that for µ = 0

p

([
f
f∗

])
= N

([
f
f∗

]∣∣∣∣ [ 0
0

]
,

[
K k∗

k∗
> κ(x∗, x∗)

])
where k∗ = [κ(x∗, x1), . . . , κ(x∗, xN)]>

Can now apply the Gaussian conditioning to get p(f∗|f ) = N (µ∗, σ
2
∗) where

µ∗ = k∗
>K−1f (=

N∑
n=1

wnfn =
N∑

n=1

αnk(xn, x∗))

σ
2
∗ = κ(x∗, x∗)− k∗

>K−1k∗
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N∑
n=1

wnfn =
N∑

n=1

αnk(xn, x∗))

σ
2
∗ = κ(x∗, x∗)− k∗

>K−1k∗
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GP: A Visualization

Some functions drawn from a GP prior
(note: Blue dots are values of a randomly
drawn function at a small number of inputs;
the solid curves are generated by evaluating 
the functions at a large # of inputs)

Some functions drawn from the GP posterior
          after observing 5 (x,f(x)) pairs
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GP: Noiseless to Noisy Setting

In many cases, we are modeling outputs yn that are “noisy” versions of fn = f (xn), e.g.,

p(yn|fn) = N (yn|fn, β−1)

p(yn|fn) = [σ(fn)]yn [1− σ(fn)]1−yn

p(yn|fn) = ExpFam(fn)

Here making predictions for a new input x∗ requires not p(f∗|f ) but p(y∗|y)

p(y∗|y) =

∫
p(y∗|f∗)p(f∗|y)df∗ =

∫
p(y∗|f∗)p(f∗|f)p(f|y)df df∗

For the above, p(y∗|f∗) and p(f|y) ∝ p(f )p(y |f ) will depend on likelihood model p(yn|fn)

However p(f∗|f) will be the same as in the noiseless setting (i.e., a Gaussian as we saw) :-)

Note: For GP Regression (with Gaussian noise), p(y∗|y) is very easily computable!
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GP Regression

The likelihood model: p(y |f) = N (y |f, σ2IN). The prior distribution: p(f) = N (f|0,K)

The posterior predictive p(y∗|x∗, y ,X) or p(y∗|y) (skipping X, x∗ from the notation) will be

p(y∗|y) =

∫
p(y∗|f∗)p(f∗|y)df∗ =

∫
p(y∗|f∗)p(f∗|f)p(f|y)df df∗

where all the 3 distributions in the integrand are Gaussians in case of GP regression!

Therefore it is an easy to compute integral!

However, we cancompute p(y∗|y) even without using the above method

Reason: The marginal distribution of the training data responses y

p(y) =

∫
p(y |f)p(f)df = N (y |0,K + σ2IN) = N (y |0,CN)

Using the same result, the marginal distribution p(y∗) = N (y∗|0, κ(x∗, x∗) + σ2)
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GP Regression: Making Predictions

Let’s consider the joint distr. of N training responses y and test response y∗

p

([
y
y∗

])
= N

([
y
y∗

]∣∣∣∣ [ 0
0

]
,

[
CN k∗

k∗
> c

])

where k∗ = [κ(x∗, x1), . . . , κ(x∗, xN)]>, c = κ(x∗, x∗) + σ2

The desired predictive posterior will be (using conditional from joint property of Gaussian)

p(y∗|y) = N (y∗|µ∗, σ2
∗)

µ∗ = k∗
>C−1

N y

σ
2
∗ = κ(x∗, x∗) + σ

2 − k∗
>C−1

N k∗

Note that this is almost identical to the noiseless case (with σ2 added to the predictive variance)

Can interpret predictive mean µ∗ as kernelized SVM or nearest neighbor based prediction

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes (Contd) 9



GP Regression: Making Predictions

Let’s consider the joint distr. of N training responses y and test response y∗

p

([
y
y∗

])
= N

([
y
y∗

]∣∣∣∣ [ 0
0

]
,

[
CN k∗

k∗
> c

])

where k∗ = [κ(x∗, x1), . . . , κ(x∗, xN)]>, c = κ(x∗, x∗) + σ2

The desired predictive posterior will be (using conditional from joint property of Gaussian)

p(y∗|y) = N (y∗|µ∗, σ2
∗)

µ∗ = k∗
>C−1

N y

σ
2
∗ = κ(x∗, x∗) + σ

2 − k∗
>C−1

N k∗

Note that this is almost identical to the noiseless case (with σ2 added to the predictive variance)

Can interpret predictive mean µ∗ as kernelized SVM or nearest neighbor based prediction

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes (Contd) 9



GP Regression: Making Predictions

Let’s consider the joint distr. of N training responses y and test response y∗

p

([
y
y∗

])
= N

([
y
y∗

]∣∣∣∣ [ 0
0

]
,

[
CN k∗

k∗
> c

])

where k∗ = [κ(x∗, x1), . . . , κ(x∗, xN)]>, c = κ(x∗, x∗) + σ2

The desired predictive posterior will be (using conditional from joint property of Gaussian)

p(y∗|y) = N (y∗|µ∗, σ2
∗)

µ∗ = k∗
>C−1

N y

σ
2
∗ = κ(x∗, x∗) + σ

2 − k∗
>C−1

N k∗

Note that this is almost identical to the noiseless case (with σ2 added to the predictive variance)

Can interpret predictive mean µ∗ as kernelized SVM or nearest neighbor based prediction

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes (Contd) 9



GP Regression: Making Predictions

Let’s consider the joint distr. of N training responses y and test response y∗

p

([
y
y∗

])
= N

([
y
y∗

]∣∣∣∣ [ 0
0

]
,

[
CN k∗

k∗
> c

])

where k∗ = [κ(x∗, x1), . . . , κ(x∗, xN)]>, c = κ(x∗, x∗) + σ2

The desired predictive posterior will be (using conditional from joint property of Gaussian)

p(y∗|y) = N (y∗|µ∗, σ2
∗)

µ∗ = k∗
>C−1

N y

σ
2
∗ = κ(x∗, x∗) + σ

2 − k∗
>C−1

N k∗

Note that this is almost identical to the noiseless case (with σ2 added to the predictive variance)

Can interpret predictive mean µ∗ as kernelized SVM or nearest neighbor based prediction

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes (Contd) 9



GP Regression: Making Predictions

Let’s consider the joint distr. of N training responses y and test response y∗

p

([
y
y∗

])
= N

([
y
y∗

]∣∣∣∣ [ 0
0

]
,

[
CN k∗

k∗
> c

])

where k∗ = [κ(x∗, x1), . . . , κ(x∗, xN)]>, c = κ(x∗, x∗) + σ2

The desired predictive posterior will be (using conditional from joint property of Gaussian)

p(y∗|y) = N (y∗|µ∗, σ2
∗)

µ∗ = k∗
>C−1

N y

σ
2
∗ = κ(x∗, x∗) + σ

2 − k∗
>C−1

N k∗

Note that this is almost identical to the noiseless case (with σ2 added to the predictive variance)

Can interpret predictive mean µ∗ as kernelized SVM or nearest neighbor based prediction

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes (Contd) 9



GP Regression: Making Predictions

Let’s consider the joint distr. of N training responses y and test response y∗

p

([
y
y∗

])
= N

([
y
y∗

]∣∣∣∣ [ 0
0

]
,

[
CN k∗

k∗
> c

])

where k∗ = [κ(x∗, x1), . . . , κ(x∗, xN)]>, c = κ(x∗, x∗) + σ2

The desired predictive posterior will be (using conditional from joint property of Gaussian)

p(y∗|y) = N (y∗|µ∗, σ2
∗)

µ∗ = k∗
>C−1

N y

σ
2
∗ = κ(x∗, x∗) + σ

2 − k∗
>C−1

N k∗

Note that this is almost identical to the noiseless case (with σ2 added to the predictive variance)

Can interpret predictive mean µ∗ as kernelized SVM or nearest neighbor based prediction

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes (Contd) 9



GP Regression: An Illustration

Red curve: True function
Red points: Noisy training examples
Black curve: Predictive mean 
Shaded part: Predictive variance
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GP Regression: Learning Hyperparameters

There are two hyperparameters in the GP regression model

Variance of the Gaussian noise σ2

Assuming µ = 0, the hyperparameters θ of the covariance/kernel function κ, e.g.,

κ(xn, xm) = exp

(
−
||xn − xm||2

γ

)
(RBF kernel)

κ(xn, xm) = exp

(
−

D∑
d=1

(xnd − xmd )2

γd

)
(ARD kernel)

κ(xn, xm) = κθ1
(xn, xm) + κθ2

(xn, xm) + . . . + κθM
(xn, xm) (flexible composition of multiple kernels)

Type-II MLE is a popular choice for learning these hyperparams, by maximizing marginal likelihood

p(y |σ2
, θ) = N (y |0, σ2IN + Kθ)

MLE-II for GP regression maximizes the log marginal likelihood w.r.t. the hyperparameters

log p(y |σ2
, θ) = −

1

2
log |σ2IN + Kθ| −

1

2
y>(σ2IN + Kθ)−1y + const
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GP for Classification and GLMs

Binary classification: Now the likelihood p(y |f ) will be Bernoulli: p(yn|fn) = Bernoulli(σ(fn))

For multiclass GP (K > 2 classs), p(yn|fn) will be multinoulli (note: fn will be a K × 1 vector)

For GP GLM, p(yn|fn) will be some exp-family distribution

The prior is still GP, therefore p(f ) = N (0,K)

The posterior predictive p(y∗|y) can again be written as

p(y∗|y) =

∫
p(y∗|f∗)p(f∗|y)df∗ =

∫
p(y∗|f∗)p(f∗|f)p(f|y)df df∗

This in general is not as easy to compute as in case of GP regression

p(f∗|f ) is still not a problem (will be Gaussian)

p(f|y) ∝ p(f )p(y |f ) will require approximation (e.g., Laplace, MCMC, variational, etc.)

The overall integral will require approximation as well
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Scalability Aspects of GP

Computational costs in some steps of GP based models scale in the size of training data

E.g., test time prediction in GP regression takes O(N) time

p(y∗|y) = N (y∗|µ∗, σ2
∗)

µ∗ = k∗
>C−1

N y (O(N) cost assuming C−1
N is pre-computed)

σ2
∗ = k(x∗, x∗) + σ2 − k∗

>C−1
N k∗

GP models often require matrix inversions - takes O(N3) time. Storage also requires O(N2) space

A lot of work on speeding up GPs1. Some approaches for speeding up GPs

Inducing Point Methods (condition the predictions only on a small set of “learnable” points)

Divide-and-Conquer methods (learn GP on small subsets of data and aggregate predictions)

Kernel approximations

Note that nearest neighbor methods and kernel methods also face similar issues w.r.t. scalability

Many tricks to speed up kernel methods can be used for speeding up GPs too

1
When Gaussian Process Meets Big Data: A Review of Scalable GPs - Liu et al, 2018
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GP: A few comments

GP is a nonparametric model

. Why called “nonparametric”?

Complexity (representation size) of the function f grows in the size of training data

To see this, note the form of the GP predictions, e.g., predictive mean in GP regression

µ∗ = f (x∗) = k∗
>C−1

N y = k∗
>α =

N∑
n=1

αnk(x∗, xn)

It implies that f (.) =
∑N

n=1 αnk(., xn), which means f is written in terms of all training examples

Thus the representation size of f depends on the number of training examples

In contrast, a parametric model has a size that doesn’t grow with training data

E.g., a linear model learns a fixed-sized weight vector w ∈ RD (D parameters, size independent of N)

Nonparametric models therefore are more flexible since their complexity is not limited beforehand

Note: Methods such as nearest neighbors and kernel SVMs are also nonparametric (but not Bayesian)

GPs equivalent to infinitely-wide single hidden-layer neural net (under some technical conditions)
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Neural Networks and Gaussian Processes

An infinitely-wide single hidden layer NN with i.i.d. priors on weights = a Gaussian Process

Shown formally by (Radford Neal, 1994)2. Based on a simple application of central limit theorem

x
n

h
n

y
n

  i.i.d.
weights

  i.i.d.
weights

Sum of infinite many 
i.i.d. random variables
(thus y

n
 Gaussian and so

is any finite collection of y
n
)

x
n

A useful result for several reasons

Can use a GP instead of an infinitely wide Bayesian NN (which is impractical anyway)

With GPs, inference is easy (at least for regression and with known hyperparams)

A proof that GPs can also learn any function (just like infinitely wide neural nets - Hornik’s theorem)

Connection recently generalized to infinitely wide multiple hidden layer NN (Lee et al, 2018)3

2Priors for infinite networks, Tech Report, 1994
3Deep Neural Networks as Gaussian Processes (ICLR 2018)
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GP: A few other comments

Can be thought of as Bayesian analogues of kernel methods

Can get estimate in the uncertainty in the function and its predictions

Can learn the kernel (by learning the hyperparameters of the kernels)

Not limited to supervised learning problems

The function f could even be a mapping of an unknown quantity to an observed quantity

xn = f (zn) + “noise”

where zn is a latent representation of xn (“GP latent variable models” for nonlin. dim. red.)

Many mature implementations of GP exist. You may check out

GPML (MATLAB), GPsuff (MATLAB/Octave), GPy (Python), GPyTorch (PyTorch)
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Other Recent Advances on Gaussian Processes

Deep Gaussian Processes (DGP)

Akin to a deep neural network where each hidden node is modeled by a GP

A nice alternative to linear transform + nonlinearity based neural nets, e.g., h = tanh(Wx)

GPs with deep kernels defined by neural nets

Neural Processes and Conditional Neural Processes (GP + neural nets): Most recent development
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GPs are very versatile!

GPs enable us to learn nonlinear functions while also capturing the uncertainty

Uncertainty can tell us where to acquire more training data to improve the function’s estimate

Especially useful if we can’t get too many training examples (e.g., expensive inputs and/or labels)

This is very useful in a wide range of applications involving sequential decision-making

Active Learning: Learning a function by gathering the most informative training examples

Bayesian Optimization: Optimizing an expensive to evaluate functions (and maybe we don’t even
know it form) – boils down to simultaneous function learning and optimization
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Bayesian Optimization: The Basic Formulation

Consider finding the optima x∗ (say minima) of a function f (x)

Caveat: We don’t know the form of the function; can’t get its gradient,Hessian, etc

Suppose we can only query the function’s values at certain points (i.e., only black-box access)

Thus we have to learn the function as well as find its optima

Can learn the function using GP and use the uncertainty to decide which f (x) value to query next

Will look at it in more detail later this semester
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Will look at it in more detail later this semester
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