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o Discussion session on project topics/ideas: Tomorrow 7pm-8pm (KD-101)
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o Project proposals due on Feb 1
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Announcements

o Discussion session on project topics/ideas: Tomorrow 7pm-8pm (KD-101)
o Project proposals due on Feb 1

o HW1 out now. Due on Feb 8, 11:59pm. Please start early.
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Announcements

©

Discussion session on project topics/ideas: Tomorrow 7pm-8pm (KD-101)

©

Project proposals due on Feb 1

o HW1 out now. Due on Feb 8, 11:59pm. Please start early.

©

Quiz 1 on Jan 31, 7pm-8pm (RM-101)
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Recap: Bayesian Generative Classification

p(y=Fk)p(xly=k)
>y ply=K)p(x|y=k)

o Recall generative classification p(y = k|x) =
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Recap: Bayesian Generative Classification

p(y=Fk)p(xly=k)

. Prediction rule for a test input x
S, Py=K)p(xly=F) PUT X

o Recall generative classification p(y = k|x) =

p(y* = k|x*7X7y)
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Recap: Bayesian Generative Classification

p(y=Fk)p(xly=k)
>y ply=K)p(x|y=kK)

o Recall generative classification p(y = k|x) = Prediction rule for a test input x.

plys = kIX, y)p(x«lyx = k, X, y)
Zszl p(y* = k‘xay)p(x*b/* = kaxay)

p(y*:k|x*7x7y) =
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Recap: Bayesian Generative Classification

p(y=Fk)p(xly=k)
>y ply=K)p(x|y=kK)

o Recall generative classification p(y = k|x) = Prediction rule for a test input x.
Py« = kX, y)p(x+ly- = k, X, y)

Zszl p(y* = k‘xay)p(x*b/* = kaxay)
ply- = kly)p(x.|X™)

= K — (1)
> k1 Py« = kly)p(x.|X(R))

p(y*:k|x*7x7y) =
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Recap: Bayesian Generative Classification

p(y=Fk)p(xly=k)
>y ply=K)p(x|y=kK)

o Recall generative classification p(y = k|x) = Prediction rule for a test input x.

P(y« = kIX, y)p(xs|y« = k, X, y)
Sy P(ye = kX, y)p(xalye = Kk, X, y)
ply- = kly)p(x.|X™)
S Py = kly)p(x.|X®)

o Note: X(¥) denotes training inputs with y = k

p(y* = k|x*7X7y)
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Recap: Bayesian Generative Classification

p(y=Fk)p(xly=k)
>y ply=K)p(x|y=kK)

o Recall generative classification p(y = k|x) = Prediction rule for a test input x.

P(y« = kIX, y)p(xs|y« = k, X, y)
Sy P(ye = kX, y)p(xalye = Kk, X, y)
ply- = kly)p(x.|X™)
S Py = kly)p(x.|X®)

o Note: X(¥) denotes training inputs with y = k

p(y*:k|x*7x7y) =

o Here p(y. = kly) = | p(ys|m)p(r|y)dn (we did this; recall dice roll example)
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Recap: Bayesian Generative Classification

p(y=Fk)p(xly=k)
>y ply=K)p(x|y=kK)

o Recall generative classification p(y = k|x) = Prediction rule for a test input x.

P(y« = kIX, y)p(xs|y« = k, X, y)
Sy P(ye = kX, y)p(xalye = Kk, X, y)
ply- = kly)p(x.|X™)
S Py = kly)p(x.|X®)

o Note: X(¥) denotes training inputs with y = k

p(y*:k|x*7x7y) =

o Here p(y. = kly) = | p(ys|m)p(r|y)dn (we did this; recall dice roll example)
o Here p(x.|X®") = [ p(x.|0k)p(0x| X)) dbx (post. predictive dist. of input x.. under class k)
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Recap: Bayesian Generative Classification

p(y=Fk)p(xly=k)
>y ply=K)p(x|y=kK)

o Recall generative classification p(y = k|x) = Prediction rule for a test input x.

P(y« = kIX, y)p(xs|y« = k, X, y)
Sy P(ye = kX, y)p(xalye = Kk, X, y)
ply- = kly)p(x.|X™)
S Py = kly)p(x.|X®)

o Note: X(¥) denotes training inputs with y = k

p(y*:k|x*7x7y) =

©

Here p(y. = kly) = [ p(y«|7)p(r|y)dr (we did this; recall dice roll example)

©

Here p(x.|X(")) = [ p(x.|0k)p(0x| X)) dOy (post. predictive dist. of input x. under class k)

(+]

Eq (1) is the posterior predictive distribution of test output y, given input x,
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Recap: Bayesian Generative Classification

p(y=Fk)p(xly=k)
>y ply=K)p(x|y=kK)

o Recall generative classification p(y = k|x) = Prediction rule for a test input x.

P(y« = kIX, y)p(xs|y« = k, X, y)
Sy P(ye = kX, y)p(xalye = Kk, X, y)
ply- = kly)p(x.|X™)
S Py = kly)p(x.|X®)

o Note: X(¥) denotes training inputs with y = k

p(y*:k|x*7x7y) =

©

Here p(y. = kly) = [ p(y«|7)p(r|y)dr (we did this; recall dice roll example)

©

Here p(x.|X(")) = [ p(x.|0k)p(0x| X)) dOy (post. predictive dist. of input x. under class k)

(+]

Eq (1) is the posterior predictive distribution of test output y, given input x,

o Note that we have done posterior averaging for all the parameters
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Recap: Bayesian Generative Classification

p(y=Fk)p(xly=k)
>y ply=K)p(x|y=kK)

o Recall generative classification p(y = k|x) = Prediction rule for a test input x.

P(y« = kIX, y)p(xs|y« = k, X, y)
Sy P(ye = kX, y)p(xalye = Kk, X, y)
ply- = kly)p(x.|X™)
S Py = kly)p(x.|X®)

o Note: X(¥) denotes training inputs with y = k

p(y*:k|x*7x7y) =

©

Here p(y. = kly) = [ p(y«|7)p(r|y)dr (we did this; recall dice roll example)

©

Here p(x.|X(")) = [ p(x.|0k)p(0x| X)) dOy (post. predictive dist. of input x. under class k)

(+]

Eq (1) is the posterior predictive distribution of test output y, given input x,

o Note that we have done posterior averaging for all the parameters
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Recap: Bayesian Generative Classification

p(y=Fk)p(xly=k)

. Prediction rule for a test input x
S, Py=K)p(xly=F) PUT X

o Recall generative classification p(y = k|x) =

P(y« = kIX, y)p(xs|y« = k, X, y)
Sy P(ye = kX, y)p(xalye = Kk, X, y)
ply- = kly)p(x.|X™)
S Py = kly)p(x.|X®)

o Note: X(¥) denotes training inputs with y = k

p(y*:k|x*7x7y) =

©

Here p(y. = kly) = [ p(y«|7)p(r|y)dr (we did this; recall dice roll example)

©

Here p(x.|X(")) = [ p(x.|0k)p(0x| X)) dOy (post. predictive dist. of input x. under class k)

(+]

Eq (1) is the posterior predictive distribution of test output y, given input x,

o Note that we have done posterior averaging for all the parameters
o In contrast, for gen. class with MLE/MAP, p(y. = k|y) =~ mx and p(x.|X)) ~ p(x.|0)

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes for Learning Nonlinear Functions



Gaussian Processes (GP)

(GP = Bayesian Modeling + Kernel Methods)

(Goal: learning nonlinear discriminative models p(y|x))
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o Consider the problem of learning to map an input x € RP to an output y



Linear Models

o Consider the problem of learning to map an input x € RP to an output y

o Linear models use a weighted combination of input features (i.e., w ' x) to generate y
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Linear Models

o Consider the problem of learning to map an input x € RP to an output y

o Linear models use a weighted combination of input features (i.e., w ' x) to generate y

plylw,x) = N(ylw'x,57) (Linear Regression)
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Linear Models

o Consider the problem of learning to map an input x € RP to an output y

o Linear models use a weighted combination of input features (i.e., w ' x) to generate y

plylw,x) = N(ylw'x,57) (Linear Regression)
plylw,x) = [o(w x)[1—o(w' x)} (Logistic Regression)
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Linear Models

o Consider the problem of learning to map an input x € RP to an output y

o Linear models use a weighted combination of input features (i.e., w ' x) to generate y

plylw,x) = N(y|lw'x,57%) (Linear Regression)
plylw,x) = [o(w x)[1—o(w' x)} (Logistic Regression)
p(y|lw,x) = ExpFam(w'x) (Generalized Linear Model)

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes for Learning Nonlinear Functions



Linear Models

o Consider the problem of learning to map an input x € RP to an output y

o Linear models use a weighted combination of input features (i.e., w ' x) to generate y

plylw,x) = N(y|lw'x,57%) (Linear Regression)
plylw,x) = [o(w x)[1—o(w' x)} (Logistic Regression)
p(y|lw,x) = ExpFam(w'x) (Generalized Linear Model)

o The weights w can be learned using MLE, MAP, or fully Bayesian inference
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Linear Models

Consider the problem of learning to map an input x € RP to an output y

©

o Linear models use a weighted combination of input features (i.e., w ' x) to generate y

plylw,x) = N(y|lw'x,57%) (Linear Regression)
plylw,x) = [o(w x)[1—o(w' x)} (Logistic Regression)
p(y|lw,x) = ExpFam(w'x) (Generalized Linear Model)
o The weights w can be learned using MLE, MAP, or fully Bayesian inference
o However, linear models have limited expressive power. Unable to learn highly nonlinear patterns.

Nonlinear Regression Nonlinear Classification
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Modeling Nonlinear Functions

o Assume the input to output relationship to be modeled by a nonlinear function f
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Modeling Nonlinear Functions

o Assume the input to output relationship to be modeled by a nonlinear function f

pylf,x) = N(ylf(x),67)
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Modeling Nonlinear Functions

o Assume the input to output relationship to be modeled by a nonlinear function f

pylf,x) = N(ylf(x),67)
p(ylf,x) [o(FO)P L = o (F)I
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Modeling Nonlinear Functions

o Assume the input to output relationship to be modeled by a nonlinear function f

ply|f,x) = N(yIf(x),57")
ply|f,x) = [o(F(x)[1—o(F(x)]'
p(ylf,x) = ExpFam(f(x))
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Modeling Nonlinear Functions

o Assume the input to output relationship to be modeled by a nonlinear function f

ply|f,x) = N(yIf(x),57")
p(y|f, x) [o(Fx))[1 = o(FOx))
p(y|f, x) ExpFam(f(x))

o How can we define such a function nonlinear ?
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Modeling Nonlinear Functions

o Assume the input to output relationship to be modeled by a nonlinear function f

ply|f,x) = N(yIf(x),57")
p(y|f, x) [o(Fx))[1 = o(FOx))
p(y|f, x) ExpFam(f(x))

o How can we define such a function nonlinear ?

o Note: We not only want nonlinearity but also all benefits of probabilistic/Bayesian modeling
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Modeling Nonlinear Functions

o Assume the input to output relationship to be modeled by a nonlinear function f

ply|f,x) = N(yIf(x),57")
p(y|f, x) [o(Fx))[1 = o(FOx))
p(y|f, x) ExpFam(f(x))

o How can we define such a function nonlinear ?

o Note: We not only want nonlinearity but also all benefits of probabilistic/Bayesian modeling

o Must be able to get uncertainty estimates in the function and its predictions
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Modeling Nonlinear Functions

o Assume the input to output relationship to be modeled by a nonlinear function f

ply|f,x) = N(yIf(x),57")
p(y|f, x) [o(Fx))[1 = o(FOx))
p(y|f, x) ExpFam(f(x))

o How can we define such a function nonlinear ?

o Note: We not only want nonlinearity but also all benefits of probabilistic/Bayesian modeling

o Must be able to get uncertainty estimates in the function and its predictions

o Usually done in one of the following ways
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Modeling Nonlinear Functions

o Assume the input to output relationship to be modeled by a nonlinear function f

ply|f,x) = N(yIf(x),57")
p(y|f, x) [o(Fx))[1 = o(FOx))
p(y|f, x) ExpFam(f(x))

o How can we define such a function nonlinear ?

o Note: We not only want nonlinearity but also all benefits of probabilistic/Bayesian modeling

o Must be able to get uncertainty estimates in the function and its predictions

o Usually done in one of the following ways

o Ad-hoc: Define nonlinear features ¢(x) -+ train Bayesian linear model (f(x) = w ' ¢(x)): HW1)
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Modeling Nonlinear Functions

o Assume the input to output relationship to be modeled by a nonlinear function f

ply|f,x) = N(yIf(x),57")
p(y|f, x) [o(Fx))[1 = o(FOx))
p(y|f, x) ExpFam(f(x))

o How can we define such a function nonlinear ?

o Note: We not only want nonlinearity but also all benefits of probabilistic/Bayesian modeling

o Must be able to get uncertainty estimates in the function and its predictions

o Usually done in one of the following ways

o Ad-hoc: Define nonlinear features ¢(x) -+ train Bayesian linear model (f(x) = w ' ¢(x)): HW1)

o Ad-hoc: Train a neural net to extract features ¢(x) + train Bayesian linear model
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Modeling Nonlinear Functions

o Assume the input to output relationship to be modeled by a nonlinear function f

ply|f,x) = N(yIf(x),57")
p(y|f, x) [o(Fx))[1 = o(FOx))
p(y|f, x) ExpFam(f(x))

o How can we define such a function nonlinear ?

o Note: We not only want nonlinearity but also all benefits of probabilistic/Bayesian modeling

o Must be able to get uncertainty estimates in the function and its predictions

o Usually done in one of the following ways

o Ad-hoc: Define nonlinear features ¢(x) -+ train Bayesian linear model (f(x) = w ' ¢(x)): HW1)
o Ad-hoc: Train a neural net to extract features ¢(x) + train Bayesian linear model

o Bayesian Neural Networks (later this semester)
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Modeling Nonlinear Functions

o Assume the input to output relationship to be modeled by a nonlinear function f

ply|f,x) = N(yIf(x),57")
p(y|f, x) [o(Fx))[1 = o(FOx))
p(y|f, x) ExpFam(f(x))

o How can we define such a function nonlinear ?

o Note: We not only want nonlinearity but also all benefits of probabilistic/Bayesian modeling

o Must be able to get uncertainty estimates in the function and its predictions

o Usually done in one of the following ways
o Ad-hoc: Define nonlinear features ¢(x) -+ train Bayesian linear model (f(x) = w ' ¢(x)): HW1)
o Ad-hoc: Train a neural net to extract features ¢(x) + train Bayesian linear model
o Bayesian Neural Networks (later this semester)
o Gaussian Processes (a Bayesian approach to kernel based nonlinear learning; today)
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What is Gaussian Process?

o A Gaussian Process, denoted as GP(u, k), defines a distribution over functions

o The GP is defined by mean function p and covariance/kernel function
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What is Gaussian Process?

o A Gaussian Process, denoted as GP(u, k), defines a distribution over functions

o The GP is defined by mean function p and covariance/kernel function x

o Can use GP as a prior distribution over functions
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What is Gaussian Process?

o A Gaussian Process, denoted as GP(u, k), defines a distribution over functions

o The GP is defined by mean function p and covariance/kernel function

o Can use GP as a prior distribution over functions

o Draw from a GP(u, k) will give us a random function f (imagine it as an infinite dim. vector)
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What is Gaussian Process?

o A Gaussian Process, denoted as GP(u, k), defines a distribution over functions

o The GP is defined by mean function p and covariance/kernel function

o Can use GP as a prior distribution over functions

o Draw from a GP(u, k) will give us a random function f (imagine it as an infinite dim. vector)
A\ A\
o Mean function p models the “average” function f from GP(u, K)
p(x) = E[f(x)]

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes for Learning Nonlinear Functions



What is Gaussian Process?

o A Gaussian Process, denoted as GP(u, k), defines a distribution over functions

o The GP is defined by mean function p and covariance/kernel function x

©

Can use GP as a prior distribution over functions

©

Draw from a GP(u, k) will give us a random function f (imagine it as an infinite dim. vector)
AN
\”\\/Ov
Mean function . models the “average” function f from GP(u, k)

p(x) = E[f(x)]
o Cov. function kK models "shape/smoothness” of these functions

©
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What is Gaussian Process?

o A Gaussian Process, denoted as GP(u, k), defines a distribution over functions

o The GP is defined by mean function p and covariance/kernel function x

©

Can use GP as a prior distribution over functions

©

Draw from a GP(u, k) will give us a random function f (imagine it as an infinite dim. vector)
AN
\”\\/Ov
Mean function . models the “average” function f from GP(u, k)

p(x) = E[f(x)]
o Cov. function kK models "shape/smoothness” of these functions

©

o k(.,.) is a function that computes similarity between two inputs (just like a kernel function)
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What is Gaussian Process?

o A Gaussian Process, denoted as GP(u, k), defines a distribution over functions

o The GP is defined by mean function p and covariance/kernel function x

©

Can use GP as a prior distribution over functions

©

Draw from a GP(u, k) will give us a random function f (imagine it as an infinite dim. vector)
AN
\”\\/Ov
Mean function . models the “average” function f from GP(u, k)

p(x) = E[f(x)]
o Cov. function kK models "shape/smoothness” of these functions

©

o k(.,.) is a function that computes similarity between two inputs (just like a kernel function)

o Note: k(.,.) needs to be positive definite (just like kernel functions)
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What is Gaussian Process?

o A Gaussian Process, denoted as GP(u, k), defines a distribution over functions

o The GP is defined by mean function p and covariance/kernel function x

©

Can use GP as a prior distribution over functions

©

Draw from a GP(u, k) will give us a random function f (imagine it as an infinite dim. vector)
AN
\”\\/Ov
Mean function . models the “average” function f from GP(u, k)

p(x) = E[f(x)]
o Cov. function kK models "shape/smoothness” of these functions

©

o k(.,.) is a function that computes similarity between two inputs (just like a kernel function)

o Note: k(.,.) needs to be positive definite (just like kernel functions)

o Can even learn p and especially k (makes GP very flexible to model, possibly nonlinear, functions)
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Gaussian Process

o f is said to be drawn from a GP(u, k) if its finite dim. version is the following joint Gaussian
f'
f

(x n(x2) rw(x2, x1) ... K(x2, xn)

~N . R

(X1§ u(x1) K(x1, x1) . .. K(x1, XN)
2

F(xn) p(xn) k(. x1) -+ K(xas Xn)
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Gaussian Process

o f is said to be drawn from a GP(u, k) if its finite dim. version is the following joint Gaussian

f(Xl) M(Xl) K(X17X1)...K(X1,XN)

f(x2) (x2) K(x2, x1) . .. K(x2, Xn)
~N : R

F(xn) p(xn) k(. x1) -+ K(xas Xn)

o The above means that f's values at any finite set of inputs are jointly Gaussian
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Gaussian Process

o f is said to be drawn from a GP(u, k) if its finite dim. version is the following joint Gaussian

f(Xl) M(Xl) K(X17X1)...K(X1,XN)

f(x2) (x2) K(x2, x1) . .. K(x2, Xn)
. ~N : s

F(xn) p(xn) k(. x1) -+ K(xas Xn)

o The above means that f's values at any finite set of inputs are jointly Gaussian

o We can also write the above more compactly as f ~ A(u, K) where

f(x1) p(x1) K(x1, x1) . .. k(x1, XNn)

f(x2) (x2) K(x2, X1) ... k(Xx2, Xn)
f= . = . ,K=

F(xn) p(xn) R(xns x1) - - (X, xw)
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Gaussian Process

o f is said to be drawn from a GP(u, k) if its finite dim. version is the following joint Gaussian

f(Xl) M(Xl) K(X17X1)...K(X1,XN)

f(x2) (x2) K(x2, x1) . .. K(x2, Xn)
. ~N : s

F(xn) p(xn) k(. x1) -+ K(xas Xn)

o The above means that f's values at any finite set of inputs are jointly Gaussian

o We can also write the above more compactly as f ~ A(u, K) where

f(x1) p(x1) K(x1, x1) . .. k(x1, XNn)

f(x2) (x2) K(x2, X1) ... k(Xx2, Xn)
f= . = . ,K=

F(xn) p(xn) R(xns x1) - - (X, xw)

o Note that p(f) = N(u, K) can be seen as the finite-dimensional version of the GP prior over f
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Gaussian Process

o f is said to be drawn from a GP(u, k) if its finite dim. version is the following joint Gaussian

f(Xl) M(Xl) K(X17X1)...K(X1,XN)
(x2) n(x2) rw(x2, x1) ... K(x2, xn)

~N . R

-

F(xn) p(xn) k(. x1) -+ K(xas Xn)

o The above means that f's values at any finite set of inputs are jointly Gaussian

o We can also write the above more compactly as f ~ A(u, K) where

f(x1) p(x1) K(x1, x1) . .. k(x1, XNn)

f(x2) (x2) K(x2, X1) ... k(Xx2, Xn)
f= . = . K= . .

F(xn) p(xn) R(xns x1) - - (X, xw)

o Note that p(f) = N(u, K) can be seen as the finite-dimensional version of the GP prior over f

o If mean function is zero, we will have p(f) = N(0, K)
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Gaussian Process

o f is said to be drawn from a GP(u, k) if its finite dim. version is the following joint Gaussian

f(Xl) M(Xl) K(X17X1)...K(X1,XN)

f(x2) (x2) K(x2, x1) . .. K(x2, Xn)
~N : R

F(xn) p(xn) k(. x1) -+ K(xas Xn)

o The above means that f's values at any finite set of inputs are jointly Gaussian

o We can also write the above more compactly as f ~ A(u, K) where

f(x1) p(x1) K(x1, x1) . .. k(x1, XNn)

f(x2) (x2) K(x2, X1) ... k(Xx2, Xn)
f= . = . ,K=

F(xn) p(xn) R(xns x1) - - (X, xw)

o Note that p(f) = N(u, K) can be seen as the finite-dimensional version of the GP prior over f

o If mean function is zero, we will have p(f) = N/(0,K). Important: p(f;|f_;) is also Gaussian
(where i denotes any subset of inputs and —i denotes rest of the inputs) due to Gaussian properties
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A Perspective from Bayesian Linear Regression

o Let's first consider the (probabilistic) linear regression model

p(w) = N(w|po, o) (Prior)
p(y|X, w) N(Xw,3 'Iy)  (Likelihood w.r.t. N obs.)
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A Perspective from Bayesian Linear Regression

o Let's first consider the (probabilistic) linear regression model

p(w) = N(w|po, o) (Prior)
p(y|X, w) N(Xw,3 'Iy)  (Likelihood w.r.t. N obs.)

p(y|X) /p(y|X, w)p(w)dw = N (Xpo, B 'y + XEoX ") (Marginal likelihood)
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A Perspective from Bayesian Linear Regression

o Let's first consider the (probabilistic) linear regression model

p(w) = N(w|po, o) (Prior)
p(ylX,w) = N(Xw,B8 'ly)  (Likelihood w.r.t. N obs.)
p(y|X) = /p(y|X, w)p(w)dw = N (Xpo, B 'y + XEoX ") (Marginal likelihood)
py|X) = N(0,8 'y +XXT) (if up=0and To =1)
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A Perspective from Bayesian Linear Regression

o Let's first consider the (probabilistic) linear regression model

p(w) = N(w|po, o) (Prior)
p(ylX,w) = N(Xw,B8 'ly)  (Likelihood w.r.t. N obs.)
p(y|X) = /p(y|X, w)p(w)dw = N (Xpo, B 'y + XEoX ") (Marginal likelihood)
py|X) = N(0,8 'y +XXT) (if up=0and To =1)
p(y|X) = N(0,XX") (if 87! = o0, i.e., zero noise)
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A Perspective from Bayesian Linear Regression

o Let's first consider the (probabilistic) linear regression model

p(w) = N(w|po, o) (Prior)
p(ylX,w) = N(Xw,B8 'ly)  (Likelihood w.r.t. N obs.)
p(y|X) = /p(y|X, w)p(w)dw = N (Xpo, B 'y + XEoX ") (Marginal likelihood)
py|X) = N(0,8 'y +XXT) (if up=0and To =1)
p(y|X) = N(0,XX") (if 87! = o0, i.e., zero noise)
o Thus the joint marginal distr. of y conditioned on X is the following multivariate Gaussian
1 0 xfxl.l.xIxN
Y2 0 X;Xl...X;XN
~N o,
YN 0 XNX1.. . XyXN
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A Perspective from Bayesian Linear Regression

o Let's first consider the (probabilistic) linear regression model

p(w) = N(w|po, o) (Prior)
p(ylX,w) = N(Xw,B8 'ly)  (Likelihood w.r.t. N obs.)
p(y|X) = /p(y|X, w)p(w)dw = N (Xpo, B 'y + XEoX ") (Marginal likelihood)
py|X) = N(0,8 'y +XXT) (if up=0and To =1)
p(y|X) = N(0,XX") (if 87! = o0, i.e., zero noise)
o Thus the joint marginal distr. of y conditioned on X is the following multivariate Gaussian
1 0 xfxl.l.xIxN
Y2 0 X;Xl...X;XN
~N o,
YN 0 XNX1.. . XyXN

o A "function space” view of linear regression as opposed to “weight space” view (both equivalent)
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GP for Regression and Classification

(Note that GP only defines the score f(x) but y = f(x) + “noise”)

(“noise” may be Gaussian, sigmoid-Bernoulli, or something else)
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o Training data: {Xn,yn}n_1. Xn € R?, y, € R
<O «Fr o« > < ) gl
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o Training data: {x,,y,}" ;. x, € RP, y, € R
o Assume the responses to be a noisy function of the inputs
Yn = f(xn) +en="Fte€n
«4O0>» «F>r «E» «E)» = DA
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GP Regression

o Training data: {x,,y,}" ;. x, € RP, y, € R
o Assume the responses to be a noisy function of the inputs

yn:f(xn)+€n:fn+€n

o Assume a zero-mean Gaussian noise: ¢, ~ N(¢,[0,02)
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GP Regression

(+]

©

©

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK)

Training data: {x,, y,}N ;. x, €RP, y, €R
Assume the responses to be a noisy function of the inputs

yn:f(xn)+€n:fn+€n

Assume a zero-mean Gaussian noise: €, ~ N (e,|0,0?)

This implies the following likelihood model: p(y,|f,) = N (yn|fa, 0?)
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GP Regression

o Training data: {x,, y,}N ;. x, € RP y, € R

©

Assume the responses to be a noisy function of the inputs

yn:f(xn)+€n:fn+€n

o Assume a zero-mean Gaussian noise: ¢, ~ N(¢,[0,02)

©

This implies the following likelihood model: p(y,|f,) = N (yn|fa, 0?)

©

Denote f = [f1,...,fy] and y = [y1,..., ¥n]-
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GP Regression

(+]

©

©

©

Training data: {x,, y,}N ;. x, €RP, y, €R
Assume the responses to be a noisy function of the inputs
Yo =f(xn) + €0 =fo+ €n
Assume a zero-mean Gaussian noise: €, ~ N (e,|0,0?)
This implies the following likelihood model: p(y,|f,) = N (yn|fa, 0?)

Denote f = [f1,...,fy] and y = [y1,...,yn]. Fori.i.d. responses, the joint likelihood will be
p(yIf) = N(ylf.o%Iy)
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GP Regression

(+]

©

©

©

Training data: {x,, y,}N ;. x, €RP, y, €R
Assume the responses to be a noisy function of the inputs
Yn=f(xp) +€n="f+en
Assume a zero-mean Gaussian noise: €, ~ N (e,|0,0?)
This implies the following likelihood model: p(y,|f,) = N (yn|fa, 0?)
Denote f = [f1,...,fy] and y = [y1,...,yn]. Fori.i.d. responses, the joint likelihood will be
p(y[f) = N(ylf, o*In)

We now need a prior on the function f that enables us to model a nonlinear f
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GP Regression

o Training data: {x,,y,}" ;. x, € RP, y, € R
o Assume the responses to be a noisy function of the inputs

yn:f(xn)+€n:fn+€n

o Assume a zero-mean Gaussian noise: ¢, ~ N (€,|0, 02)
o This implies the following likelihood model: p(y,|f,) = N (ynlfa, 0%)
o Denote f =[fi,...,fy] and y = [y1,...,yn]. Fori.i.d. responses, the joint likelihood will be
p(y[f) = N(ylf, o*In)
o We now need a prior on the function f that enables us to model a nonlinear f
o Let's choose zero mean Gaussian Process prior GP(0, k) on f, which is equivalent to
p(f) = N(fl0,K)

where K,m = k(Xp, Xm)-
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GP Regression

o Training data: {x,, y,}N ;. x, € RP y, € R
o Assume the responses to be a noisy function of the inputs

yn:f(xn)+€n:fn+€n

o Assume a zero-mean Gaussian noise: ¢, ~ N (€,|0, 02)
o This implies the following likelihood model: p(y,|f,) = N (ynlfa, 0%)
o Denote f =[fi,...,fy] and y = [y1,...,yn]. Fori.i.d. responses, the joint likelihood will be
p(y[f) = N(ylf, o*In)
o We now need a prior on the function f that enables us to model a nonlinear f
o Let's choose zero mean Gaussian Process prior GP(0, k) on f, which is equivalent to
p(f) = N(fl0,K)

where K, = k(xp, Xm). For now, assume & is a known function with fixed hyperparameters.
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o The likelihood model: p(y|f) = N (y|f, o2ly). The prior distribution: p(f) = N(f|0, K)
«O0>» «Fr» «E» « 3 DA
~ Prob. Mod. & Inference - CS698X (Piyush Rai, ITK) ~ Gaussian Processes for Learning Nonlinear Functions 12



GP Regression

o The likelihood model: p(y|f) = N (y|f, o2ly). The prior distribution: p(f) = N(f|0, K)

o The posterior p(fly) oc p(f)p(y|f), which will be another Gaussian (Exercise: Find its expression)
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GP Regression

o The likelihood model: p(y|f) = N (y|f, o2ly). The prior distribution: p(f) = N(f|0, K)
o The posterior p(fly) oc p(f)p(y|f), which will be another Gaussian (Exercise: Find its expression)

o What's the posterior predictive p(y.|x.,y,X) or p(y.|y) (skipping X, x, from the notation)?
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GP Regression

o The likelihood model: p(y|f) = N (y|f, o2ly). The prior distribution: p(f) = N(f|0, K)
o The posterior p(fly) oc p(f)p(y|f), which will be another Gaussian (Exercise: Find its expression)

o What's the posterior predictive p(y.|x.,y,X) or p(y.|y) (skipping X, x, from the notation)?

p(valy) = / Pyl )p(F.|y) .
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GP Regression

o The likelihood model: p(y|f) = N (y|f, o2ly). The prior distribution: p(f) = N(f|0, K)
o The posterior p(fly) oc p(f)p(y|f), which will be another Gaussian (Exercise: Find its expression)

o What's the posterior predictive p(y.|x.,y,X) or p(y.|y) (skipping X, x, from the notation)?

plly) = [ Bl I£)p(Ely)of
where p(f.|ly) = [ p(f.|f)p(fly)df and note that p(f|f) must be Gaussian for GP
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GP Regression

©

©

The likelihood model: p(y|f) = N(y|f,o2ly). The prior distribution: p(f) = N(f|0, K)
The posterior p(fly) o< p(f)p(y|f), which will be another Gaussian (Exercise: Find its expression)

What's the posterior predictive p(y.|x.,y, X) or p(y«|y) (skipping X, x, from the notation)?

plly) = [ Bl I£)p(Ely)of
where p(f.|ly) = [ p(f.|f)p(fly)df and note that p(f|f) must be Gaussian for GP

For this case (GP regression), we actually don't need to compute p(y.|y) using the above method
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GP Regression

©

©

©

The likelihood model: p(y|f) = N(y|f,o2ly). The prior distribution: p(f) = N(f|0, K)
The posterior p(fly) o< p(f)p(y|f), which will be another Gaussian (Exercise: Find its expression)

What's the posterior predictive p(y.|x.,y, X) or p(y«|y) (skipping X, x, from the notation)?

plly) = [ Bl I£)p(Ely)of
where p(f.|ly) = [ p(f.|f)p(fly)df and note that p(f|f) must be Gaussian for GP
For this case (GP regression), we actually don't need to compute p(y.|y) using the above method

Reason: The marginal distribution of the training data responses y

ply) = / p(yI)p(F)dF = N (y[0,K + 0?ly) = A(]0, Cn)
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GP Regression

©

©

©

Qo

The likelihood model: p(y|f) = N(y|f,o2ly). The prior distribution: p(f) = N(f|0, K)
The posterior p(fly) o< p(f)p(y|f), which will be another Gaussian (Exercise: Find its expression)

What's the posterior predictive p(y.|x.,y, X) or p(y«|y) (skipping X, x, from the notation)?

plly) = [ Bl I£)p(Ely)of
where p(f.|ly) = [ p(f.|f)p(fly)df and note that p(f|f) must be Gaussian for GP
For this case (GP regression), we actually don't need to compute p(y.|y) using the above method

Reason: The marginal distribution of the training data responses y

ply) = / p(yI)p(F)dF = N (y[0,K + 0?ly) = A(]0, Cn)

Using the same result, the marginal distribution p(y.) = N (y«|0, 5(x«, Xx) + 02)
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GP Regression: Making Predictions
o Let's consider the joint distr. of N training responses y and test response y.

([ )= (L ]I ] o)

where the (N + 1) x (N + 1) matrix Cyy is given by

C k.
CN+1_[klyr c]
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GP Regression: Making Predictions

o Let's consider the joint distr. of N training responses y and test response y.

([ )= (L ]I ] o)

where the (N + 1) x (N + 1) matrix Cyy is given by

Cv ks«
Crni1 = [ KT ¢ ]
and ki = [K(Xs, X1), .o, 6(Xs, xn)] 7)€ = K(Xs, X4) + 02
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GP Regression: Making Predictions

o Let's consider the joint distr. of N training responses y and test response y.

([ )= (L ]I ] o)

where the (N + 1) x (N + 1) matrix Cyy is given by

Cv ks«
Crni1 = [ KT ¢ ]
and ki = [K(Xs, X1), .o, 6(Xs, xn)] 7)€ = K(Xs, X4) + 02

o The desired predictive posterior will be (using conditional from joint property of Gaussian)

ply-ly) = N(Y*W*aai)

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes for Learning Nonlinear Functions 13



GP Regression: Making Predictions

o Let's consider the joint distr. of N training responses y and test response y.

([ )= (L ]I ] o)

where the (N + 1) x (N + 1) matrix Cyy is given by

Cv ks«
Crni1 = [ KT ¢ ]
and ki = [K(Xs, X1), .o, 6(Xs, xn)] 7)€ = K(Xs, X4) + 02

o The desired predictive posterior will be (using conditional from joint property of Gaussian)

ply-ly) = N(Y*W*aai)
M = k*Tcﬁly
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GP Regression: Making Predictions

o Let's consider the joint distr. of N training responses y and test response y.

([ )= (L ]I ] o)

where the (N + 1) x (N + 1) matrix Cyy is given by

C k.
CN+1_[klyr c]

and ki = [K(Xs, X1), .o, 6(Xs, xn)] 7)€ = K(Xs, X4) + 02

o The desired predictive posterior will be (using conditional from joint property of Gaussian)

ply<ly) = N(Y*W*aai)
M = k*Tcﬁly
o2 = K(Xx, Xs) + 0% — k*TC,Qlk*
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GP Regression: Interpreting GP Predictions

o Let's look at the predictions made by GP regression

p(y«ly)

[
2

*

ag

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK)

N(y*“’b*aax%)
_ k*'l'cﬁly
TH~—
= k(Xu,x:) + 0% — k. Cylks
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GP Regression: Interpreting GP Predictions

o Let's look at the predictions made by GP regression

plyly) = N(yelps, o)
Msx = k*Tcﬁly
02 = k(x.,x.)+ 0% — k. Cylk,

o Two interpretations for the mean prediction .,
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GP Regression: Interpreting GP Predictions

o Let's look at the predictions made by GP regression

plyly) = N(yelps, o)
Msx = k*Tcﬁly
02 = k(x.,x.)+ 0% — k. Cylk,

o Two interpretations for the mean prediction .,

o A kernel SVM like interpretation
N

e =k Culy =k "= k(x., Xxn)o

n=1
where « is akin to the weights of support vectors
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GP Regression: Interpreting GP Predictions

o Let's look at the predictions made by GP regression

plyly) = N(yelps, o)
Msx = k*Tcﬁly
02 = k(x.,x.)+ 0% — k. Cylk,

o Two interpretations for the mean prediction .,

o A kernel SVM like interpretation

N
e =k Culy =k "= k(x., Xxn)o
where « is akin to the weights of support vectors "~
o A nearest neighbors interpretation .
pe =k Culy=w'y=> " wy,
n=1

where w is akin to the weights of the neighbors
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Next Class

©

Properties of GP based models, choice of kernels, etc

©

Learning hyperparameters in GP based models

GP for classification and GLMs

©

©

Making GP models scalable

o Some recent advances in GP
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