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Announcements

Discussion session on project topics/ideas: Tomorrow 7pm-8pm (KD-101)

Project proposals due on Feb 1

HW1 out now. Due on Feb 8, 11:59pm. Please start early.

Quiz 1 on Jan 31, 7pm-8pm (RM-101)
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Recap: Bayesian Generative Classification

Recall generative classification p(y = k |x) = p(y=k)p(x|y=k)∑K
k=1 p(y=k)p(x|y=k)

. Prediction rule for a test input x∗

p(y∗ = k|x∗,X, y) =
p(y∗ = k|X, y)p(x∗|y∗ = k,X, y)∑K
k=1 p(y∗ = k|X, y)p(x∗|y∗ = k,X, y)

=
p(y∗ = k|y)p(x∗|X(k))∑K
k=1 p(y∗ = k|y)p(x∗|X(k))

(1)

Note: X(k) denotes training inputs with y = k

Here p(y∗ = k|y) =
∫
p(y∗|π)p(π|y)dπ (we did this; recall dice roll example)

Here p(x∗|X(k)) =
∫
p(x∗|θk)p(θk |X(k))dθk (post. predictive dist. of input x∗ under class k)

Eq (1) is the posterior predictive distribution of test output y∗ given input x∗

Note that we have done posterior averaging for all the parameters

In contrast, for gen. class with MLE/MAP, p(y∗ = k |y) ≈ πk and p(x∗|X(k)) ≈ p(x∗|θk)
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Gaussian Processes (GP)

(GP = Bayesian Modeling + Kernel Methods)

(Goal: learning nonlinear discriminative models p(y |x))
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Linear Models

Consider the problem of learning to map an input x ∈ RD to an output y

Linear models use a weighted combination of input features (i.e., w>x) to generate y

p(y |w , x) = N (y |w>x , β−1) (Linear Regression)

p(y |w , x) = [σ(w>x)]y [1− σ(w>x)]1−y (Logistic Regression)

p(y |w , x) = ExpFam(w>x) (Generalized Linear Model)

The weights w can be learned using MLE, MAP, or fully Bayesian inference

However, linear models have limited expressive power. Unable to learn highly nonlinear patterns.
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Modeling Nonlinear Functions

Assume the input to output relationship to be modeled by a nonlinear function f

p(y |f , x) = N (y |f (x), β−1)

p(y |f , x) = [σ(f (x))]y [1− σ(f (x))]1−y

p(y |f , x) = ExpFam(f (x))

How can we define such a function nonlinear f ?

Note: We not only want nonlinearity but also all benefits of probabilistic/Bayesian modeling

Must be able to get uncertainty estimates in the function and its predictions

Usually done in one of the following ways

Ad-hoc: Define nonlinear features φ(x) + train Bayesian linear model (f (x) = w>φ(x)): HW1)

Ad-hoc: Train a neural net to extract features φ(x) + train Bayesian linear model

Bayesian Neural Networks (later this semester)

Gaussian Processes (a Bayesian approach to kernel based nonlinear learning; today)

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes for Learning Nonlinear Functions 6



Modeling Nonlinear Functions

Assume the input to output relationship to be modeled by a nonlinear function f

p(y |f , x) = N (y |f (x), β−1)

p(y |f , x) = [σ(f (x))]y [1− σ(f (x))]1−y

p(y |f , x) = ExpFam(f (x))

How can we define such a function nonlinear f ?

Note: We not only want nonlinearity but also all benefits of probabilistic/Bayesian modeling

Must be able to get uncertainty estimates in the function and its predictions

Usually done in one of the following ways

Ad-hoc: Define nonlinear features φ(x) + train Bayesian linear model (f (x) = w>φ(x)): HW1)

Ad-hoc: Train a neural net to extract features φ(x) + train Bayesian linear model

Bayesian Neural Networks (later this semester)

Gaussian Processes (a Bayesian approach to kernel based nonlinear learning; today)

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes for Learning Nonlinear Functions 6



Modeling Nonlinear Functions

Assume the input to output relationship to be modeled by a nonlinear function f

p(y |f , x) = N (y |f (x), β−1)

p(y |f , x) = [σ(f (x))]y [1− σ(f (x))]1−y

p(y |f , x) = ExpFam(f (x))

How can we define such a function nonlinear f ?

Note: We not only want nonlinearity but also all benefits of probabilistic/Bayesian modeling

Must be able to get uncertainty estimates in the function and its predictions

Usually done in one of the following ways

Ad-hoc: Define nonlinear features φ(x) + train Bayesian linear model (f (x) = w>φ(x)): HW1)

Ad-hoc: Train a neural net to extract features φ(x) + train Bayesian linear model

Bayesian Neural Networks (later this semester)

Gaussian Processes (a Bayesian approach to kernel based nonlinear learning; today)

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes for Learning Nonlinear Functions 6



Modeling Nonlinear Functions

Assume the input to output relationship to be modeled by a nonlinear function f

p(y |f , x) = N (y |f (x), β−1)

p(y |f , x) = [σ(f (x))]y [1− σ(f (x))]1−y

p(y |f , x) = ExpFam(f (x))

How can we define such a function nonlinear f ?

Note: We not only want nonlinearity but also all benefits of probabilistic/Bayesian modeling

Must be able to get uncertainty estimates in the function and its predictions

Usually done in one of the following ways

Ad-hoc: Define nonlinear features φ(x) + train Bayesian linear model (f (x) = w>φ(x)): HW1)

Ad-hoc: Train a neural net to extract features φ(x) + train Bayesian linear model

Bayesian Neural Networks (later this semester)

Gaussian Processes (a Bayesian approach to kernel based nonlinear learning; today)

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes for Learning Nonlinear Functions 6



Modeling Nonlinear Functions

Assume the input to output relationship to be modeled by a nonlinear function f

p(y |f , x) = N (y |f (x), β−1)

p(y |f , x) = [σ(f (x))]y [1− σ(f (x))]1−y

p(y |f , x) = ExpFam(f (x))

How can we define such a function nonlinear f ?

Note: We not only want nonlinearity but also all benefits of probabilistic/Bayesian modeling

Must be able to get uncertainty estimates in the function and its predictions

Usually done in one of the following ways

Ad-hoc: Define nonlinear features φ(x) + train Bayesian linear model (f (x) = w>φ(x)): HW1)

Ad-hoc: Train a neural net to extract features φ(x) + train Bayesian linear model

Bayesian Neural Networks (later this semester)

Gaussian Processes (a Bayesian approach to kernel based nonlinear learning; today)

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes for Learning Nonlinear Functions 6



Modeling Nonlinear Functions

Assume the input to output relationship to be modeled by a nonlinear function f

p(y |f , x) = N (y |f (x), β−1)

p(y |f , x) = [σ(f (x))]y [1− σ(f (x))]1−y

p(y |f , x) = ExpFam(f (x))

How can we define such a function nonlinear f ?

Note: We not only want nonlinearity but also all benefits of probabilistic/Bayesian modeling

Must be able to get uncertainty estimates in the function and its predictions

Usually done in one of the following ways

Ad-hoc: Define nonlinear features φ(x) + train Bayesian linear model (f (x) = w>φ(x)): HW1)

Ad-hoc: Train a neural net to extract features φ(x) + train Bayesian linear model

Bayesian Neural Networks (later this semester)

Gaussian Processes (a Bayesian approach to kernel based nonlinear learning; today)
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What is Gaussian Process?

A Gaussian Process, denoted as GP(µ, κ), defines a distribution over functions

The GP is defined by mean function µ and covariance/kernel function κ

Can use GP as a prior distribution over functions

Draw from a GP(µ, κ) will give us a random function f (imagine it as an infinite dim. vector)

Mean function µ models the “average” function f from GP(µ, κ)

µ(x) = E[f (x)]

Cov. function κ models “shape/smoothness” of these functions

κ(., .) is a function that computes similarity between two inputs (just like a kernel function)

Note: κ(., .) needs to be positive definite (just like kernel functions)

Can even learn µ and especially κ (makes GP very flexible to model, possibly nonlinear, functions)
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Gaussian Process

f is said to be drawn from a GP(µ, κ) if its finite dim. version is the following joint Gaussian


f (x1)
f (x2)

.

.

.
f (xN )

 ∼ N



µ(x1)
µ(x2)

.

.

.
µ(xN )

 ,


κ(x1, x1) . . . κ(x1, xN )
κ(x2, x1) . . . κ(x2, xN )

.

.

.
. . .

.

.

.
κ(xN , x1) . . . κ(xN , xN )




The above means that f ’s values at any finite set of inputs are jointly Gaussian

We can also write the above more compactly as f ∼ N (µ,K) where

f =


f (x1)
f (x2)

.

.

.
f (xN )

 ,µ =


µ(x1)
µ(x2)

.

.

.
µ(xN )

 ,K =


κ(x1, x1) . . . κ(x1, xN )
κ(x2, x1) . . . κ(x2, xN )

.

.

.
. . .

.

.

.
κ(xN , x1) . . . κ(xN , xN )



Note that p(f) = N (µ,K) can be seen as the finite-dimensional version of the GP prior over f

If mean function is zero, we will have p(f) = N (0,K). Important: p(f i |f −i ) is also Gaussian
(where i denotes any subset of inputs and −i denotes rest of the inputs) due to Gaussian properties
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A Perspective from Bayesian Linear Regression

Let’s first consider the (probabilistic) linear regression model

p(w) = N (w |µ0,Σ0) (Prior)

p(y |X,w) = N (Xw , β−1IN) (Likelihood w.r.t. N obs.)

p(y |X) =

∫
p(y |X,w)p(w)dw = N (Xµ0, β

−1IN + XΣ0X>) (Marginal likelihood)

p(y |X) = N (0, β−1IN + XX>) (if µ0 = 0 and Σ0 = I)

p(y |X) = N (0,XX>) (if β−1 =∞, i.e., zero noise)

Thus the joint marginal distr. of y conditioned on X is the following multivariate Gaussian
y1
y2
...
yN

 ∼ N



0
0
...
0

 ,


x>1 x1 . . . x>1 xN

x>2 x1 . . . x>2 xN

...
. . .

...
x>N x1 . . . x>N xN




A “function space” view of linear regression as opposed to “weight space” view (both equivalent)
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GP for Regression and Classification

(Note that GP only defines the score f (x) but y = f (x) + “noise”)

(“noise” may be Gaussian, sigmoid-Bernoulli, or something else)
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GP Regression

Training data: {xn, yn}Nn=1. xn ∈ RD , yn ∈ R

Assume the responses to be a noisy function of the inputs

yn = f (xn) + εn = fn + εn

Assume a zero-mean Gaussian noise: εn ∼ N (εn|0, σ2)

This implies the following likelihood model: p(yn|fn) = N (yn|fn, σ2)

Denote f = [f1, . . . , fN ] and y = [y1, . . . , yN ]. For i.i.d. responses, the joint likelihood will be

p(y |f) = N (y |f, σ2IN)

We now need a prior on the function f that enables us to model a nonlinear f

Let’s choose zero mean Gaussian Process prior GP(0, κ) on f , which is equivalent to

p(f) = N (f|0,K)

where Knm = κ(xn, xm). For now, assume κ is a known function with fixed hyperparameters.
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GP Regression

The likelihood model: p(y |f) = N (y |f, σ2IN). The prior distribution: p(f) = N (f|0,K)

The posterior p(f|y) ∝ p(f)p(y |f), which will be another Gaussian (Exercise: Find its expression)

What’s the posterior predictive p(y∗|x∗, y ,X) or p(y∗|y) (skipping X, x∗ from the notation)?

p(y∗|y) =

∫
p(y∗|f∗)p(f∗|y)df∗

where p(f∗|y) =
∫
p(f∗|f )p(f |y)df and note that p(f∗|f ) must be Gaussian for GP

For this case (GP regression), we actually don’t need to compute p(y∗|y) using the above method

Reason: The marginal distribution of the training data responses y

p(y) =

∫
p(y |f)p(f)df = N (y |0,K + σ2IN) = N (y |0,CN)

Using the same result, the marginal distribution p(y∗) = N (y∗|0, κ(x∗, x∗) + σ2)
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Reason: The marginal distribution of the training data responses y

p(y) =

∫
p(y |f)p(f)df = N (y |0,K + σ2IN) = N (y |0,CN)

Using the same result, the marginal distribution p(y∗) = N (y∗|0, κ(x∗, x∗) + σ2)
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GP Regression: Making Predictions

Let’s consider the joint distr. of N training responses y and test response y∗

p

([
y
y∗

])
= N

([
y
y∗

]∣∣∣∣ [ 0
0

]
,CN+1

)
where the (N + 1)× (N + 1) matrix CN+1 is given by

CN+1 =

[
CN k∗
k∗
> c

]

and k∗ = [κ(x∗, x1), . . . , κ(x∗, xN)]>, c = κ(x∗, x∗) + σ2

The desired predictive posterior will be (using conditional from joint property of Gaussian)

p(y∗|y) = N (y∗|µ∗, σ2
∗)

µ∗ = k∗
>C−1N y

σ2
∗ = κ(x∗, x∗) + σ2 − k∗

>C−1N k∗
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GP Regression: Interpreting GP Predictions

Let’s look at the predictions made by GP regression

p(y∗|y) = N (y∗|µ∗, σ2
∗)

µ∗ = k∗
>C−1N y

σ2
∗ = k(x∗, x∗) + σ2 − k∗

>C−1N k∗

Two interpretations for the mean prediction µ∗

A kernel SVM like interpretation

µ∗ = k∗
>C−1

N y = k∗
>α =

N∑
n=1

k(x∗, xn)αn

where α is akin to the weights of support vectors

A nearest neighbors interpretation

µ∗ = k∗
>C−1

N y = w>y =
N∑

n=1

wnyn

where w is akin to the weights of the neighbors
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Next Class

Properties of GP based models, choice of kernels, etc

Learning hyperparameters in GP based models

GP for classification and GLMs

Making GP models scalable

Some recent advances in GP
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