Bayesian Logistic Regression, Bayesian Generative Classification

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

Jan 23, 2019

Bayesian Logistic Regression

• Recall that the likelihood model for logistic regression is Bernoulli (since $y \in \{0, 1\}$)

$$p(y|\mathbf{x}, \mathbf{w}) = \mathsf{Bernoulli}(\sigma(\mathbf{w}^{\top}\mathbf{x})) = \left[\frac{\exp(\mathbf{w}^{\top}\mathbf{x})}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})}\right]^{y} \left[\frac{1}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})}\right]^{(1-y)} = \mu^{y}(1 - \mu)^{1-y}$$

ullet Just like the Bayesian linear regression case, let's use a Gausian prior on $oldsymbol{w}$

$$p(\mathbf{w}) = \mathcal{N}(0, \lambda^{-1} \mathbf{I}_D) \propto \exp(-\frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w})$$

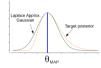
• Given N observations $(\mathbf{X}, \mathbf{y}) = \{\mathbf{x}_n, y_n\}_{n=1}^N$, where \mathbf{X} is $N \times D$ and \mathbf{y} is $N \times 1$, the posterior over \mathbf{w}

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})}{\int p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})d\mathbf{w}} = \frac{\prod_{n=1}^{N} p(y_n|\mathbf{x}_n,\mathbf{w})p(\mathbf{w})}{\int \prod_{n=1}^{N} p(y_n|\mathbf{x}_n,\mathbf{w})p(\mathbf{w})d\mathbf{w}}$$

- The denominator is intractable in general (logistic-Bernoulli and Gaussian are not conjugate)
 - Can't get a closed form expression for p(w|X, y). Must approximate it!
 - Several ways to do it, e.g., MCMC, variational inference, Laplace approximation (today)

Laplace Approximation of Posterior Distribution

• Approximate the posterior distribution $p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})} = \frac{p(\mathcal{D},\theta)}{p(\mathcal{D})}$ by the following Gaussian $p(\theta|\mathcal{D}) \approx \mathcal{N}(\theta_{MAP},\mathbf{H}^{-1})$



• Note: θ_{MAP} is the maximum-a-posteriori (MAP) estimate of θ , i.e.,

$$\theta_{MAP} = \arg\max_{\theta} p(\theta|\mathcal{D}) = \arg\max_{\theta} p(\mathcal{D}, \theta) = \arg\max_{\theta} p(\mathcal{D}|\theta) p(\theta) = \arg\max_{\theta} [\log p(\mathcal{D}|\theta) + \log p(\theta)]$$

- Usually θ_{MAP} can be easily solved for (e.g., using first/second order iterative methods)
- ullet H is the Hessian matrix of the negative log-posterior (or negative log-joint-prob) at $heta_{MAP}$

$$\mathbf{H} = -\nabla^2 \log p(\theta|\mathcal{D})\big|_{\theta = \theta_{MAP}} = -\nabla^2 \log p(\mathcal{D}, \theta)\big|_{\theta = \theta_{MAP}} = -\nabla^2 [\log p(\mathcal{D}|\theta) + \log p(\theta)]\big|_{\theta = \theta_{MAP}}$$

Derivation of the Laplace Approximation

Let's write the Bayes rule as

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}, \theta)}{p(\mathcal{D})} = \frac{p(\mathcal{D}, \theta)}{\int p(\mathcal{D}, \theta) d\theta} = \frac{e^{\log p(\mathcal{D}, \theta)}}{\int e^{\log p(\mathcal{D}, \theta)} d\theta}$$

• Suppose $\log p(\mathcal{D}, \theta) = f(\theta)$. Let's approximate $f(\theta)$ using its 2nd order Taylor expansion

$$f(heta) pprox f(heta_0) + (heta - heta_0)^ op
abla f(heta_0) + rac{1}{2} (heta - heta_0)^ op
abla^2 f(heta_0) (heta - heta_0)$$

where θ_0 is some arbitrarily chosen point in the domain of f

• Let's choose $\theta_0 = \theta_{MAP}$. Note that $\nabla f(\theta_{MAP}) = \nabla \log p(\mathcal{D}, \theta_{MAP}) = 0$. Therefore

$$\log p(\mathcal{D}, \theta) \approx \log p(\mathcal{D}, \theta_{MAP}) + \frac{1}{2} (\theta - \theta_{MAP})^{\top} \nabla^2 \log p(\mathcal{D}, \theta_{MAP}) (\theta - \theta_{MAP})$$

Derivation of the Laplace Approximation

• Plugging in this 2nd order Taylor approximation for $\log p(\mathcal{D}, \theta)$, we have

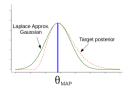
$$p(\theta|\mathcal{D}) = \frac{e^{\log p(\mathcal{D},\theta)}}{\int e^{\log p(\mathcal{D},\theta)} d\theta} \approx \frac{e^{\log p(\mathcal{D},\theta_{MAP}) + \frac{1}{2}(\theta - \theta_{MAP})^{\top} \nabla^{2} \log p(\mathcal{D},\theta_{MAP})(\theta - \theta_{MAP})}}{\int e^{\log p(\mathcal{D},\theta_{MAP}) + \frac{1}{2}(\theta - \theta_{MAP})^{\top} \nabla^{2} \log p(\mathcal{D},\theta_{MAP})(\theta - \theta_{MAP})} d\theta}$$

Further simplifying, we have

$$p(\theta|\mathcal{D}) \approx \frac{e^{-\frac{1}{2}(\theta - \theta_{MAP})^{\top} \{-\nabla^2 \log p(\mathcal{D}, \theta_{MAP})\}(\theta - \theta_{MAP})}}{\int e^{-\frac{1}{2}(\theta - \theta_{MAP})^{\top} \{-\nabla^2 \log p(\mathcal{D}, \theta_{MAP})\}(\theta - \theta_{MAP})} d\theta}$$

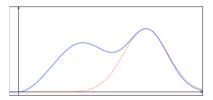
ullet Therefore the Laplace approximation of the posterior $p(heta|\mathcal{D})$ is a Gaussian and is given by

$$p(\theta|\mathcal{D}) \approx \mathcal{N}(\theta|\theta_{MAP}, \mathbf{H}^{-1})$$
 where $\mathbf{H} = -\nabla^2 \log p(\mathcal{D}, \theta_{MAP})$



Properties of Laplace Approximation

- Usually straightforward if derivatives (first and second) can be computed easily
- Expensive if the number of parameters is very large (due to Hessian computation and inversion)
- Can do badly if the (true) posterior is multimodal



- Can actually apply it when working with any regularized loss function (not just probabilistic models) to get a Gaussian posterior distribution over the parameters
 - negative log-likelihood (NLL) = loss function, negative log-prior = regularizer
 - Easy exercise: Try doing this for ℓ₂ regularized least squares regression (will get the same posterior as in Bayesian linear regression)

Laplace Approximation for Bayesian Logistic Regression

• Data $\mathcal{D} = (\mathbf{X}, \mathbf{y})$ and parameter $\theta = \mathbf{w}$. The Laplace approximation of posterior will be

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) \approx \mathcal{N}(\mathbf{w}_{MAP},\mathbf{H}^{-1})$$

• The required quantities are defined as

$$\mathbf{w}_{MAP} = \underset{\mathbf{w}}{\operatorname{arg max}} \log p(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \underset{\mathbf{w}}{\operatorname{arg max}} \log p(\mathbf{y}, \mathbf{w}|\mathbf{X}) = \underset{\mathbf{w}}{\operatorname{arg min}} [-\log p(\mathbf{y}, \mathbf{w}|\mathbf{X})]$$

$$\mathbf{H} = \nabla^{2} [-\log p(\mathbf{y}, \mathbf{w}|\mathbf{X})]|_{\mathbf{w} = \mathbf{w}_{MAP}}$$

- We can compute \mathbf{w}_{MAP} using iterative methods (gradient descent):
 - First-order (gradient) methods: $\mathbf{w}_{t+1} = \mathbf{w}_t \eta \mathbf{g}_t$. Requires gradient \mathbf{g} of $-\log p(\mathbf{y}, \mathbf{w}|\mathbf{X})$

$$\mathbf{g} = \nabla[-\log p(\mathbf{y}, \mathbf{w}|\mathbf{X})]$$

- Second-order methods. $\mathbf{w}_{t+1} = \mathbf{w}_t \mathbf{H}_t^{-1} \mathbf{g}_t$. Requires both gradient and Hessian (defined above)
- Note: When using second order methods for estimating \mathbf{w}_{MAP} , we anyway get the Hessian needed for the Laplace approximation of the posterior

An Aside: Gradient and Hessian for Logistic Regression

• The LR objective function $-\log p(\mathbf{y}, \mathbf{w}|\mathbf{X}) = -\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) - \log p(\mathbf{w})$ can be written as

$$-\log \prod_{n=1}^{N} p(y_n|x_n, \boldsymbol{w}) - \log p(\boldsymbol{w}) = -\sum_{n=1}^{N} \log p(y_n|x_n, \boldsymbol{w}) - \log p(\boldsymbol{w})$$

- For the logistic regression model, $p(y_n|\mathbf{x}_n,\mathbf{w}) = \mu_n^{y_n}(1-\mu_n)^{1-y_n}$ where $\mu_n = \frac{\exp(\mathbf{w}^{\top}\mathbf{x}_n)}{1+\exp(\mathbf{w}^{\top}\mathbf{x}_n)}$
- With a Gaussian prior $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|0, \lambda^{-1}\mathbf{I}) \propto \exp(-\lambda \mathbf{w}^{\top}\mathbf{w})$, the gradient and Hessian will be

$$oldsymbol{g} = -\sum_{n=1}^N (y_n - \mu_n) oldsymbol{x}_n + \lambda oldsymbol{\mathsf{I}} oldsymbol{w} = oldsymbol{\mathsf{X}}^ op (oldsymbol{\mu} - oldsymbol{y}) + \lambda oldsymbol{w}$$
 (a $D imes 1$ vector)

$$\mathbf{H} = \sum_{n=1}^{N} \mu_n (1 - \mu_n) \mathbf{x}_n \mathbf{x}_n^{\top} + \lambda \mathbf{I} = \mathbf{X}^{\top} \mathbf{S} \mathbf{X} + \lambda \mathbf{I}$$
 (a $D \times D$ matrix)

• $\mu = [\mu_1, \dots, \mu_N]^{\top}$ is $N \times 1$ and **S** is a $N \times N$ diagonal matrix with $S_{nn} = \mu_n (1 - \mu_n)$

Logistic Regression: Predictive Distributions

When using MLE, the predictive distribution will be

$$p(y_* = 1 | \mathbf{x}_*, \mathbf{w}_{MLE}) = \sigma(\mathbf{w}_{MLE}^{\top} \mathbf{x}_*)$$

$$p(y_* | \mathbf{x}_*, \mathbf{w}_{MLE}) = \text{Bernoulli}(\sigma(\mathbf{w}_{MLE}^{\top} \mathbf{x}_*))$$

When using MAP, the predictive distribution will be

$$p(y_* = 1 | \mathbf{x}_*, \mathbf{w}_{MAP}) = \sigma(\mathbf{w}_{MAP}^\top \mathbf{x}_*)$$
$$p(y_* | \mathbf{x}_*, \mathbf{w}_{MAP}) = \text{Bernoulli}(\sigma(\mathbf{w}_{MAP}^\top \mathbf{x}_*))$$

• When using Bayesian inference, the posterior predictive distribution, based on posterior averaging

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{\mathsf{X}}, \boldsymbol{y}) = \int p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}) p(\boldsymbol{w} | \boldsymbol{\mathsf{X}}, \boldsymbol{y}) d\boldsymbol{w} = \int \sigma(\boldsymbol{w}^{ op} \boldsymbol{x}_*) p(\boldsymbol{w} | \boldsymbol{\mathsf{X}}, \boldsymbol{y}) d\boldsymbol{w}$$

• Above is hard in general. :-(If using the Laplace approximation for p(w|X, y), it will be

$$p(y_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) \approx \int \sigma(\mathbf{w}^{\top} \mathbf{x}_*) \mathcal{N}(\mathbf{w} | \mathbf{w}_{MAP}, \mathbf{H}^{-1}) d\mathbf{w}$$

• Even after Laplace approximation for p(w|X,y), the above integral to compute posterior predictive is intractable. So we will need to also approximate the predictive posterior. :-)

Posterior Predictive via Monte-Carlo Sampling

• The posterior predictive is given by the following integral

$$p(y_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \int \sigma(\mathbf{w}^{\top} \mathbf{x}_*) \mathcal{N}(\mathbf{w} | \mathbf{w}_{MAP}, \mathbf{H}^{-1}) d\mathbf{w}$$

• Monte-Carlo approximation: Draw several samples of \boldsymbol{w} from $\mathcal{N}(\boldsymbol{w}|\boldsymbol{w}_{MAP},\boldsymbol{\mathsf{H}}^{-1})$ and replace the above integral by an empirical average of $\sigma(\boldsymbol{w}^{\top}\boldsymbol{x}_*)$ computed using each of those samples

$$ho(y_* = 1 | oldsymbol{x}_*, oldsymbol{X}, oldsymbol{y}) ~pprox ~rac{1}{S} \sum_{s=1}^S \sigma(oldsymbol{w}_s^ op oldsymbol{x}_*)$$

where
$$\mathbf{w}_s \sim \mathcal{N}(\mathbf{w}|\mathbf{w}_{MAP}, \mathbf{H}^{-1})$$
, $s = 1, \dots, S$

More on Monte-Carlo methods when we discuss MCMC sampling

Predictive Posterior via Probit Approximation

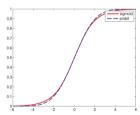
The posterior predictive we wanted to compute was

$$p(y_* = 1 | x_*, \mathbf{X}, \mathbf{y}) \approx \int \sigma(\mathbf{w}^{\top} x_*) \mathcal{N}(\mathbf{w} | \mathbf{w}_{MAP}, \mathbf{H}^{-1}) d\mathbf{w}$$

• In the above, let's replace the sigmoid $\sigma(\mathbf{w}^{\top}\mathbf{x}_*)$ by $\Phi(\mathbf{w}^{\top}\mathbf{x}_*)$, i.e., CDF of standard normal

$$\Phi(z) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^z \mathrm{e}^{-t^2} dt$$
 (Note: z is a scalar and $0 \le \Phi(z) \le 1$)

• Note: $\Phi(z)$ is also called the probit function



• This approach relies on numerical approximation (as we will see)

Predictive Posterior via Probit Approximation

With this approximation, the predictive posterior will be

$$\begin{split} \rho(y_* = 1 | \pmb{x}_*, \pmb{\mathsf{X}}, \pmb{y}) &= \int \Phi(\pmb{w}^\top \pmb{x}_*) \mathcal{N}(\pmb{w} | \pmb{w}_{MAP}, \pmb{\mathsf{H}}^{-1}) d\pmb{w} \qquad \text{(an expectation)} \\ &= \int_{-\infty}^{\infty} \Phi(a) p(a | \mu_a, \sigma_a^2) da \qquad \qquad \text{(an equivalent expectation)} \end{split}$$

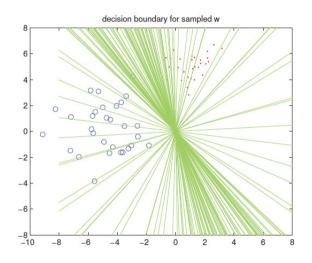
- Since $a = \mathbf{w}^{\top} \mathbf{x}_* = \mathbf{x}_*^{\top} \mathbf{w}$, and \mathbf{w} is normally distributed, $p(a|\mu_a, \sigma_a^2) = \mathcal{N}(a|\mu_a, \sigma_a^2)$, with $\mu_a = \mathbf{w}_{MAP}^{\top} \mathbf{x}_*$ and $\sigma_a^2 = \mathbf{x}_*^{\top} \mathbf{H}^{-1} \mathbf{x}_*$ (follows from the linear trans. property of random vars)
- Given $\mu_a = \mathbf{w}_{MAP}^{\top} \mathbf{x}_*$ and $\sigma_a^2 = \mathbf{x}_*^{\top} \mathbf{H}^{-1} \mathbf{x}_*$, the predictive posterior will be

$$p(y_* = 1 | \pmb{x}_*, \pmb{X}, \pmb{y}) pprox \int_{-\infty}^{\infty} \Phi(a) \mathcal{N}(a | \mu_a, \sigma_a^2) da = \Phi\left(rac{\mu_a}{\sqrt{1 + \sigma_a^2}}
ight)$$

- Note that the variance σ_a^2 also "moderates" the probability of y_n being 1 (MAP would give $\Phi(\mu_a)$)
- Since logistic and probit aren't exactly identical, we usually scale a by a scalar t s.t. $t^2 = \pi/8$

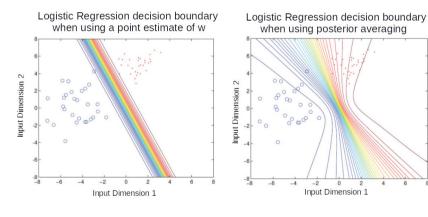
$$p(y_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \int_{-\infty}^{\infty} \Phi(ta) \mathcal{N}(a | \mu_a, \sigma_a^2) da = \Phi\left(\frac{\mu_a}{\sqrt{t^{-2} + \sigma_a^2}}\right)$$

Bayesian Logistic Regression: Posterior over Linear Classifiers!



Logistic Regression: Plug-in Prediction vs Bayesian Averaging

- (Left) Predictive distribution when using a point estimate uses only a single linear hyperplane \boldsymbol{w}
- (Right) Posterior predictive distribution averages over many linear hyperplanes w



Some Comments

- We saw basic logistic regression model and some ways to perform Bayesian inference for this model
 - We assumed the hyperparameters (e.g., precision/variance of $p(w) = \mathcal{N}(0, \lambda^{-1}I)$) to be fixed. However, these can also be learned if desired
 - LR is a linear classification model. Can be extended to nonlinear classification (more on this later)
- Logistic Regression (and its Bayesian version) is widely used in probabilistic classification
- Its multiclass extension is softmax regression (which again can be treated in a Bayesian manner)
- LR and softmax some of the simplest models for discriminative classification but non-conjugate
- The Laplace approximation is one of the simplest approximations to handle non-conjugacy
- A variety of other approximate inference algorithms exist for these models
 - We will revisit LR when discussing such approximate inference methods

Bayesian Generative Classification

A Generative Model for Classification

- Consider N labeled examples $\{(x_i, y_i)\}_{n=1}^N$. Assume binary labels, i.e., $y_i \in \{0, 1\}$
- ullet Goal: Classify a new example $oldsymbol{x}$ by assigning a label $y \in \{0,1\}$ to it
- We will assume a Generative Model for both labels y and and features x
 - \bullet What it means: We will have (probabilistic) observation models for both y as well as x
 - In contrast, in Bayesian linear regression model (and Bayesian logistic regression model), we didn't model x (there, we simply conditioned y on x, treating x as "fixed")
 - When we don't model x and simply model y as a function of x: Discriminative Model
- Generative classification models have many benefits. E.g.,
 - Can also utilize unlabeled examples (semi-supervised learning)
 - Can handle missing/corrupted features in x
 - \bullet Can properly handle cases when features in x could be of mixed type (e.g., real, binary, count)
 - And many others (more on this later during the semester)

Generative Classification: The Generative Story

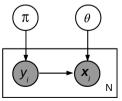
- Basic idea: Each x_i is assumed generated conditioned on the value of corresponding label y_i
- The associated generative story is as follows
 - First draw ("generate") a binary label $y_i \in \{0,1\}$

$$y_i \sim \mathsf{Bernoulli}(\pi)$$

• Now draw ("generate") the feature vector x from a distribution specific to the value y_i takes

$$\mathbf{x}_i|\mathbf{y}_i \sim p(\mathbf{x}|\theta_{y_i})$$

The above generative model shown in "plate notation" (shaded = observed)



A Generative Model for Classification

Our generative model for classification is

$$y_i \sim \text{Bernoulli}(\pi), \qquad \mathbf{x}_i | y_i \sim p(\mathbf{x} | \theta_{y_i})$$

- Note: We have two distributions $p(x|\theta_0)$ and $p(x|\theta_1)$ for feature vector x (depending on its label)
- These distributions are also known as "class-conditional distributions"
- ullet For now, we will not assume any specific form for the distriutions $p(m{x}| heta_0)$ and $p(m{x}| heta_1)$
 - Depends on nature of x (real-valued vectors? binary vectors? count vectors?)
- Model parameters to be learned here: $(\pi, \theta_0, \theta_1)$
- \bullet Note: Can extend to more than 2 classes (e.g., by replacing the Bernoulli on y by multinoulli)
- Note: When y_i for each x_i is a hidden variable, we can think of it as the cluster id of x
 - It then becomes a mixture model based data clustering problem (unsupervised learning)

Predicting Labels in Generative Classification

- Note: The generative model only defines $p(y|\pi)$ and $p(x|\theta_y)$. Doesn't define p(y|x)
- We combine these using Bayes rule to get p(y|x)

$$p(y|\mathbf{x}) = \frac{p(y|\pi)p(\mathbf{x}|\theta_y)}{p(\mathbf{x})} = \frac{p(y|\pi)p(\mathbf{x}|\theta_y)}{\sum_y p(y|\pi)p(\mathbf{x}|\theta_y)}$$

- Parameters of distributions $p(y|\pi)$ and $p(\mathbf{x}|\theta_y)$ are estimated from training data using point estimation methods (MLE or MAP) or using fully Bayesian inference (discussed today)
- Once these parameters π and θ_y are estimated (point estimates, or full posterior if doing Bayesian inference), the above Bayes rule can be applied to a new input \hat{x} to compute $p(\hat{y}|\hat{x})$
- ullet Let's now set up the parameter estimation for π and $heta_y$ as a Bayesian inference problem
 - Note: As we will see in the end, in this approach, computing $p(\hat{y}|\hat{x})$ for a new input \hat{x} will NOT use a point estimate of the parameters π, θ_{y} but would use posterior averaging

The Priors

- Let us focus on the supervised, binary classification setting for now
- ullet In this case, we have three parameters to be learned: π , $heta_0$, and $heta_1$
 - ullet Probability $\pi \in (0,1)$ of the Bernoulli. Can assume the following Beta prior

$$\pi \sim \mathsf{Beta}(a,b)$$

• Parameters θ_0 , and θ_1 of the class-conditional distributions. Will assume the same prior on both

$$heta_0, heta_1 \sim p(heta)$$

- Note: The actual form of $p(\theta)$ will depend on what the class conditional distributions $p(\mathbf{x}|\theta_0)$ and $p(\mathbf{x}|\theta_1)$ are (e.g., if these are Gaussians and if we want to learn both mean and covariance matrix of these Gaussians, then $p(\theta)$ will be some distribution over mean and covariance matrix, e.g., a Normal-inverse Wishart distribution)
- We will jointly denote the prior on π , θ_0 , and θ_1 as $p(\pi, \theta_0, \theta_1) = p(\pi)p(\theta_0)p(\theta_1)$

The Likelihood

- Denote the $N \times D$ feature matrix by X and the $N \times 1$ label vector by y
- Since both X and y are being modeled here, the likelihood function will be

$$p(X, \vec{y}|\pi, \theta_1, \theta_0) = \prod_{i=1}^{N} p(x_i, y_i|\pi, \theta_1, \theta_0)$$

$$= \prod_{i=1}^{N} p(x_i|y_i, \pi, \theta_1, \theta_0) p(y_i|\pi, \theta_1, \theta_0)$$

$$= \prod_{i=1}^{N} p(x_i|\theta_{y_i}) p(y_i|\pi)$$

The Posterior

We need to infer the following posterior distribution

$$p(\pi, \theta_1, \theta_0 | \vec{y}, X) = \frac{p(X, \vec{y} | \pi, \theta_1, \theta_0) p(\pi, \theta_1, \theta_0)}{\int_{\Omega_\theta} \int_{\Omega_\theta}^1 \int_0^1 p(X, \vec{y} | \pi, \theta_1, \theta_0) p(\pi, \theta_1, \theta_0) d\pi d\theta_1 d\theta_0}$$

- Note: Ω_{θ} denotes the domain of θ
- Might look scary at first but it isn't actually
- Recall the prior $p(\pi, \theta_0, \theta_1) = p(\pi)p(\theta_0)p(\theta_1)$. The likelihood also factorized over data points, i.e.,

$$p(X, \mathbf{y}|\pi, \theta_1, \theta_0) = \prod_{i=1}^{N} p(x_i|\theta_{y_i}) p(y_i|\pi)$$

Thus, the posterior will be

$$p(\pi, \theta_1, \theta_0 | \vec{y}, X) \propto \left[\prod_{i:y_i=1} p(x_i | \theta_1) p(\theta_1) \right] \left[\prod_{i:y_i=0} p(x_i | \theta_0) p(\theta_0) \right] \left[\prod_{i=1}^N p(y_i | \pi) p(\pi) \right]$$

• But what about the normalization constant in the denominator?

The Posterior

• Luckily, in this case, the same factorization structure simplies the denominator as well

$$p(\pi, \theta_1, \theta_0 | \vec{y}, X) = \frac{\prod_{i:y_i=1} p(x_i | \theta_1) p(\theta_1)}{\int \prod_{i:y_i=1} p(x_i | \theta_1) p(\theta_1) d\theta_1} \cdot \frac{\prod_{i:y_i=0} p(x_i | \theta_0) p(\theta_0)}{\int \prod_{i:y_i=0} p(x_i | \theta_0) p(\theta_0) d\theta_0} \cdot \frac{\prod_{i=1}^N p(y_i | \pi) p(\pi)}{\int \prod_{i=1}^N p(y_i | \pi) p(\pi) d\pi}$$

• The above is just a product of three posterior distributions!

$$p(\pi, \theta_1, \theta_0 | \vec{y}, X) = p(\theta_1 | \{x_i : y_i = 1\}) p(\theta_0 | \{x_i : y_i = 0\}) p(\pi | \vec{y})$$

• We also know what $p(\pi|\mathbf{y})$ will be (recall the coin-toss example)

$$p(\pi|\vec{y}) \propto \prod_{i=1}^{N} p(y_i|\pi)p(\pi) \longrightarrow p(\pi|\vec{y}) = \text{Beta}(a + \sum_{i} y_i, b + N - \sum_{i} y_i)$$

• Form of posteriors on θ_1 and θ_2 will depend on $p(\mathbf{x}|\theta_1)$ and $p(\theta_1)$, and $p(\mathbf{x}|\theta_0)$ and $p(\theta_0)$, resp.

The Predictive Posterior Distribution

- We have already seen how to compute the parameter posterior $p(\pi, \theta_1, \theta_0 | \mathbf{y}, X)$ for this model
- Original goal is classification. We thus also want the predictive posterior for label of a new input, i.e., $p(\hat{y}|\hat{x})$, for which the more "complete" notation in this Bayesian setting would be $p(\hat{y}|\hat{x}, X, y)$

$$p(\hat{y}|\hat{x}, X, \vec{y}) = \int_{\Omega_{\theta}} \int_{\Omega_{\theta}} \int_{0}^{1} p(\hat{y}|\hat{x}, \theta_{1}, \theta_{0}, \pi) p(\theta_{1}, \theta_{0}, \pi|X, \vec{y}) d\pi d\theta_{1} d\theta_{0}$$

Luckily, in this case, this too has a rather simple form. Using Bayes rule, we have

$$\begin{split} p(\hat{y}|\hat{x},X,\vec{y}) &= \frac{p(\hat{x}|\hat{y},X,\vec{y})p(\hat{y}|X,\vec{y})}{p(\hat{x}|\hat{y}=1,X,\vec{y})p(\hat{y}=1|X,\vec{y}) + p(\hat{x}|\hat{y}=0,X,\vec{y})p(\hat{y}=0|X,\vec{y})} \\ &= \frac{p(\hat{x}|\hat{y},X,\vec{y})p(\hat{y}|\vec{y})}{p(\hat{x}|\hat{y}=1,X,\vec{y})p(\hat{y}=1|\vec{y}) + p(\hat{x}|\hat{y}=0,X,\vec{y})p(\hat{y}=0|\vec{y})} \end{split}$$

- In order to compute this, we need $p(\hat{x}|\hat{y}, X, \mathbf{y})$ and $p(\hat{y}|\mathbf{y})$
 - $p(\hat{x}|\hat{y}, X, y)$: Marginal class-conditional distribution of the new input vector \hat{x}
 - $p(\hat{y}|y)$: Marginal probability of its label \hat{y} given the labels of training data

The Predictive Posterior Distribution (Contd.)

- Predictive posterior requires computing $p(\hat{x}|\hat{y}, X, \mathbf{y})$ and $p(\hat{y}|\mathbf{y})$
- The marginal likelihood $p(\hat{x}|\hat{y}, X, y)$ of \hat{x} can be computed as

$$p(\hat{x}|\hat{y}, X, \vec{y}) = \int_{\Omega_{\theta}} \int_{\Omega_{\theta}} p(\hat{x}|\hat{y}, \theta_{1}, \theta_{0}) p(\theta_{1}, \theta_{0}|X, \vec{y}) d\theta_{1} d\theta_{0}$$
$$= \int_{\Omega_{\theta}} p(\hat{x}|\theta_{\hat{y}}) p(\theta_{\hat{y}}|\{x_{i}: y_{i} = \hat{y}\}) d\theta_{\hat{y}}$$

- The above is simply the posterior predictive distribution of class \hat{y} . The final expression will depend on the forms of $p(\hat{x}|\theta_{\hat{y}})$ and $p(\theta_{\hat{y}}|.)$. If exp-family, we will have closed form expression!
- The marginal likelihood $p(\hat{y}|\mathbf{y})$ is something we have already seen (recall Bernoulli coin-toss)

$$p(\hat{y}=1|\boldsymbol{y}) = \int p(\hat{y}=1|\pi)p(\pi|\boldsymbol{y})d\pi = \int \pi p(\pi|\boldsymbol{y})d\pi = \frac{a+\sum_{i=1}^{N}y_i}{a+b+N}$$

• .. and
$$p(\hat{y}=0|\mathbf{y})=1-p(\hat{y}=1|\mathbf{y})=rac{b+N-\sum_{i=1}^{N}y_i}{a+b+N}$$

A Simple/Special Case: Naïve Bayes Assumption

- Usually the most critical choice in generative classification is that of class conditional $p(\mathbf{x}|\theta_y)$
- Very complex $p(x|\theta_y)$ with lots of parameters may make estimation difficult
- ullet Often however we can choose simple forms of $p(x|\theta_y)$ to make estimation easier
- The naïve Bayes assumption: The conditional distribution $p(\mathbf{x}|\theta_y)$ factorizes over individual features (or over groups of features)
 - Suppose the features of \hat{x} can be partitioned into v groups $\hat{x} = \{\hat{x}(j)\}_{j=1}^{v}$
 - ullet Can also assume a similar partitioning for the parameters $heta_{\hat{\mathbf{y}}}$
 - This further simplifies calculation of marginal likelihood $p(\hat{x}|\hat{y}, X, y)$

$$p(\hat{x}|\hat{y}, X, \vec{y}) = \int_{\Omega_{\theta}} \prod_{j=1}^{v} p(\hat{x}(j)|\theta_{\hat{y}}(j)) p(\theta_{\hat{y}}(j)|\{x_{i}(j) : y_{i} = \hat{y}\}) d\theta_{\hat{y}}$$

$$= \prod_{j=1}^{v} \int p(\hat{x}(j)|\theta_{\hat{y}}(j)) p(\theta_{\hat{y}}(j)|\{x_{i}(j) : y_{i} = \hat{y}\}) d\theta_{\hat{y}}(j)$$

• This modeling choice in a Bayesian setting gives rise to a "Bayesian naïve Bayes" model

A Simple/Special Case: Naïve Bayes Assumption

- ullet In the Bayesian naïve Bayes model, we can still choose different types of class conditional $p(m{x}| heta_y)$
 - Gaussian naïve Bayes: if x is modeled using a multivariate Gaussian (assumed factorized as per the naïve Bayes assumption)
 - Multivariate Bernoulli naïve Bayes: if x is modeled using a multivariate Bernoulli (assumed factorized as per the naïve Bayes assumption)
- MLAPP (Murphy) Section 3.5.1.2 and 3.5.5 contains an example of Multivariate Bernoulli case

