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Bayesian Logistic Regression

Recall that the likelihood model for logistic regression is Bernoulli (since y ∈ {0, 1})

p(y |x ,w) = Bernoulli(σ(w>x)) =

[
exp(w>x)

1 + exp(w>x)

]y[
1

1 + exp(w>x)

](1−y)

= µy (1− µ)1−y

Just like the Bayesian linear regression case, let’s use a Gausian prior on w

p(w) = N (0, λ−1ID) ∝ exp(−λ
2
w>w)

Given N observations (X, y) = {xn, yn}Nn=1, where X is N ×D and y is N × 1, the posterior over w

p(w |X, y) =
p(y |X,w)p(w)∫
p(y |X,w)p(w)dw

=

∏N
n=1 p(yn|xn,w)p(w)∫ ∏N
n=1 p(yn|xn,w)p(w)dw

The denominator is intractable in general (logistic-Bernoulli and Gaussian are not conjugate)

Can’t get a closed form expression for p(w |X, y). Must approximate it!

Several ways to do it, e.g., MCMC, variational inference, Laplace approximation (today)
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Laplace Approximation of Posterior Distribution

Approximate the posterior distribution p(θ|D) = p(D|θ)p(θ)
p(D) = p(D,θ)

p(D) by the following Gaussian

p(θ|D) ≈ N (θMAP ,H
−1)

Note: θMAP is the maximum-a-posteriori (MAP) estimate of θ, i.e.,

θMAP = arg max
θ

p(θ|D) = arg max
θ

p(D, θ) = arg max
θ

p(D|θ)p(θ) = arg max
θ

[log p(D|θ) + log p(θ)]

Usually θMAP can be easily solved for (e.g., using first/second order iterative methods)

H is the Hessian matrix of the negative log-posterior (or negative log-joint-prob) at θMAP

H = −∇2 log p(θ|D)
∣∣
θ=θMAP

= −∇2 log p(D, θ)
∣∣
θ=θMAP

= −∇2[log p(D|θ) + log p(θ)]
∣∣
θ=θMAP
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Derivation of the Laplace Approximation

Let’s write the Bayes rule as

p(θ|D) =
p(D, θ)

p(D)

=
p(D, θ)∫
p(D, θ)dθ

=
e log p(D,θ)∫
e log p(D,θ)dθ

Suppose log p(D, θ) = f (θ). Let’s approximate f (θ) using its 2nd order Taylor expansion

f (θ) ≈ f (θ0) + (θ − θ0)>∇f (θ0) +
1

2
(θ − θ0)>∇2f (θ0)(θ − θ0)

where θ0 is some arbitrarily chosen point in the domain of f

Let’s choose θ0 = θMAP . Note that ∇f (θMAP) = ∇ log p(D, θMAP) = 0. Therefore

log p(D, θ) ≈ log p(D, θMAP) +
1

2
(θ − θMAP)>∇2 log p(D, θMAP)(θ − θMAP)
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Derivation of the Laplace Approximation

Plugging in this 2nd order Taylor approximation for log p(D, θ), we have

p(θ|D) =
e log p(D,θ)∫
e log p(D,θ)dθ

≈
e log p(D,θMAP )+ 1

2
(θ−θMAP )>∇2 log p(D,θMAP )(θ−θMAP )∫

e log p(D,θMAP )+ 1
2

(θ−θMAP )>∇2 log p(D,θMAP )(θ−θMAP )dθ

Further simplifying, we have

p(θ|D) ≈
e−

1
2

(θ−θMAP )>{−∇2 log p(D,θMAP )}(θ−θMAP )∫
e−

1
2

(θ−θMAP )>{−∇2 log p(D,θMAP )}(θ−θMAP )dθ

Therefore the Laplace approximation of the posterior p(θ|D) is a Gaussian and is given by

p(θ|D) ≈ N (θ|θMAP ,H
−1) where H = −∇2 log p(D, θMAP)
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Properties of Laplace Approximation

Usually straightforward if derivatives (first and second) can be computed easily

Expensive if the number of parameters is very large (due to Hessian computation and inversion)

Can do badly if the (true) posterior is multimodal

Can actually apply it when working with any regularized loss function (not just probabilistic
models) to get a Gaussian posterior distribution over the parameters

negative log-likelihood (NLL) = loss function, negative log-prior = regularizer

Easy exercise: Try doing this for `2 regularized least squares regression (will get the same posterior as
in Bayesian linear regression)
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Laplace Approximation for Bayesian Logistic Regression

Data D = (X, y) and parameter θ = w . The Laplace approximation of posterior will be

p(w |X, y) ≈ N (wMAP ,H
−1)

The required quantities are defined as

wMAP = arg max
w

log p(w |y ,X) = arg max
w

log p(y ,w |X) = arg min
w

[− log p(y ,w |X)]

H = ∇2[− log p(y ,w |X)]
∣∣
w=wMAP

We can compute wMAP using iterative methods (gradient descent):

First-order (gradient) methods: w t+1 = w t − ηg t . Requires gradient g of − log p(y ,w |X)

g = ∇[− log p(y ,w |X)]

Second-order methods. w t+1 = w t −H−1
t g t . Requires both gradient and Hessian (defined above)

Note: When using second order methods for estimating wMAP , we anyway get the Hessian needed
for the Laplace approximation of the posterior
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An Aside: Gradient and Hessian for Logistic Regression

The LR objective function − log p(y ,w |X) = − log p(y |X,w)− log p(w) can be written as

− log
N∏

n=1

p(yn|xn,w)− log p(w)

= −
N∑

n=1

log p(yn|xn,w)− log p(w)

For the logistic regression model, p(yn|xn,w) = µyn
n (1− µn)1−yn where µn = exp(w>xn)

1+exp(w>xn)

With a Gaussian prior p(w) = N (w |0, λ−1I) ∝ exp(−λw>w), the gradient and Hessian will be

g = −
N∑

n=1

(yn − µn)xn + λIw = X>(µ− y) + λw (a D × 1 vector)

H =
N∑

n=1

µn(1− µn)xnx>n + λI = X>SX + λI (a D × D matrix)

µ = [µ1, . . . , µN ]> is N × 1 and S is a N × N diagonal matrix with Snn = µn(1− µn)
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N∑

n=1

log p(yn|xn,w)− log p(w)

For the logistic regression model, p(yn|xn,w) = µyn
n (1− µn)1−yn where µn = exp(w>xn)

1+exp(w>xn)

With a Gaussian prior p(w) = N (w |0, λ−1I) ∝ exp(−λw>w), the gradient and Hessian will be

g = −
N∑

n=1

(yn − µn)xn + λIw = X>(µ− y) + λw (a D × 1 vector)

H =
N∑

n=1

µn(1− µn)xnx>n + λI = X>SX + λI (a D × D matrix)

µ = [µ1, . . . , µN ]> is N × 1 and S is a N × N diagonal matrix with Snn = µn(1− µn)
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Logistic Regression: Predictive Distributions

When using MLE, the predictive distribution will be

p(y∗ = 1|x∗,wMLE ) = σ(w>MLEx∗)

p(y∗|x∗,wMLE ) = Bernoulli(σ(w>MLEx∗))

When using MAP, the predictive distribution will be

p(y∗ = 1|x∗,wMAP) = σ(w>MAPx∗)
p(y∗|x∗,wMAP) = Bernoulli(σ(w>MAPx∗))

When using Bayesian inference, the posterior predictive distribution, based on posterior averaging

p(y∗ = 1|x∗,X, y) =

∫
p(y∗ = 1|x∗,w)p(w |X, y)dw =

∫
σ(w>x∗)p(w |X, y)dw

Above is hard in general. :-( If using the Laplace approximation for p(w |X, y), it will be

p(y∗ = 1|x∗,X, y) ≈
∫
σ(w>x∗)N (w |wMAP ,H

−1)dw

Even after Laplace approximation for p(w |X, y), the above integral to compute posterior predictive
is intractable. So we will need to also approximate the predictive posterior. :-)
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Posterior Predictive via Monte-Carlo Sampling

The posterior predictive is given by the following integral

p(y∗ = 1|x∗,X, y) =

∫
σ(w>x∗)N (w |wMAP ,H

−1)dw

Monte-Carlo approximation: Draw several samples of w from N (w |wMAP ,H−1) and replace the
above integral by an empirical average of σ(w>x∗) computed using each of those samples

p(y∗ = 1|x∗,X, y) ≈ 1

S

S∑
s=1

σ(w>s x∗)

where w s ∼ N (w |wMAP ,H−1), s = 1, . . . ,S

More on Monte-Carlo methods when we discuss MCMC sampling
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Predictive Posterior via Probit Approximation

The posterior predictive we wanted to compute was

p(y∗ = 1|x∗,X, y) ≈
∫
σ(w>x∗)N (w |wMAP ,H

−1)dw

In the above, let’s replace the sigmoid σ(w>x∗) by Φ(w>x∗) , i.e., CDF of standard normal

Φ(z) =
1√
2π

∫ z

−∞
e−t2

dt (Note: z is a scalar and 0 ≤ Φ(z) ≤ 1)

Note: Φ(z) is also called the probit function

This approach relies on numerical approximation (as we will see)
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Predictive Posterior via Probit Approximation

With this approximation, the predictive posterior will be

p(y∗ = 1|x∗,X, y) =

∫
Φ(w>x∗)N (w |wMAP ,H

−1)dw (an expectation)

=

∫ ∞
−∞

Φ(a)p(a|µa, σ
2
a)da (an equivalent expectation)

Since a = w>x∗ = x>∗ w , and w is normally distributed, p(a|µa, σ
2
a) = N (a|µa, σ

2
a), with

µa = w>MAPx∗ and σ2
a = x>∗ H−1x∗ (follows from the linear trans. property of random vars)

Given µa = w>MAPx∗ and σ2
a = x>∗ H−1x∗, the predictive posterior will be

p(y∗ = 1|x∗,X, y) ≈
∫ ∞
−∞

Φ(a)N (a|µa, σ
2
a)da = Φ

(
µa√

1 + σ2
a

)

Note that the variance σ2
a also “moderates” the probability of yn being 1 (MAP would give Φ(µa))

Since logistic and probit aren’t exactly identical, we usually scale a by a scalar t s.t. t2 = π/8

p(y∗ = 1|x∗,X, y) =

∫ ∞
−∞

Φ(ta)N (a|µa, σ
2
a)da = Φ

(
µa√

t−2 + σ2
a

)
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(
µa√

1 + σ2
a

)

Note that the variance σ2
a also “moderates” the probability of yn being 1 (MAP would give Φ(µa))

Since logistic and probit aren’t exactly identical, we usually scale a by a scalar t s.t. t2 = π/8

p(y∗ = 1|x∗,X, y) =

∫ ∞
−∞

Φ(ta)N (a|µa, σ
2
a)da = Φ

(
µa√

t−2 + σ2
a

)
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Bayesian Logistic Regression: Posterior over Linear Classifiers!

Figure courtesy: MLAPP (Murphy)

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Logistic Regression, Bayesian Generative Classification 13



Logistic Regression: Plug-in Prediction vs Bayesian Averaging

(Left) Predictive distribution when using a point estimate uses only a single linear hyperplane w

(Right) Posterior predictive distribution averages over many linear hyperplanes w
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Some Comments

We saw basic logistic regression model and some ways to perform Bayesian inference for this model

We assumed the hyperparameters (e.g., precision/variance of p(w) = N (0, λ−1I)) to be fixed.
However, these can also be learned if desired

LR is a linear classification model. Can be extended to nonlinear classification (more on this later)

Logistic Regression (and its Bayesian version) is widely used in probabilistic classification

Its multiclass extension is softmax regression (which again can be treated in a Bayesian manner)

LR and softmax some of the simplest models for discriminative classification but non-conjugate

The Laplace approximation is one of the simplest approximations to handle non-conjugacy

A variety of other approximate inference algorithms exist for these models

We will revisit LR when discussing such approximate inference methods
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Bayesian Generative Classification
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A Generative Model for Classification

Consider N labeled examples {(x i , yi )}Nn=1. Assume binary labels, i.e., yi ∈ {0, 1}

Goal: Classify a new example x by assigning a label y ∈ {0, 1} to it

We will assume a Generative Model for both labels y and and features x
What it means: We will have (probabilistic) observation models for both y as well as x

In contrast, in Bayesian linear regression model (and Bayesian logistic regression model), we didn’t
model x (there, we simply conditioned y on x , treating x as “fixed”)

When we don’t model x and simply model y as a function of x : Discriminative Model

Generative classification models have many benefits. E.g.,

Can also utilize unlabeled examples (semi-supervised learning)

Can handle missing/corrupted features in x
Can properly handle cases when features in x could be of mixed type (e.g., real, binary, count)

And many others (more on this later during the semester)
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Generative Classification: The Generative Story

Basic idea: Each x i is assumed generated conditioned on the value of corresponding label yi

The associated generative story is as follows

First draw (“generate”) a binary label yi ∈ {0, 1}

yi ∼ Bernoulli(π)

Now draw (“generate”) the feature vector x from a distribution specific to the value yi takes

x i |yi ∼ p(x |θyi )

The above generative model shown in “plate notation” (shaded = observed)
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A Generative Model for Classification

Our generative model for classification is

yi ∼ Bernoulli(π), x i |yi ∼ p(x |θyi )

Note: We have two distributions p(x |θ0) and p(x |θ1) for feature vector x (depending on its label)

These distributions are also known as “class-conditional distributions”

For now, we will not assume any specific form for the distriutions p(x |θ0) and p(x |θ1)

Depends on nature of x (real-valued vectors? binary vectors? count vectors?)

Model parameters to be learned here: (π, θ0, θ1)

Note: Can extend to more than 2 classes (e.g., by replacing the Bernoulli on y by multinoulli)

Note: When yi for each x i is a hidden variable, we can think of it as the cluster id of x
It then becomes a mixture model based data clustering problem (unsupervised learning)
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Predicting Labels in Generative Classification

Note: The generative model only defines p(y |π) and p(x |θy ). Doesn’t define p(y |x)

We combine these using Bayes rule to get p(y |x)

p(y |x) =
p(y |π)p(x |θy )

p(x)
=

p(y |π)p(x |θy )∑
y p(y |π)p(x |θy )

Parameters of distributions p(y |π) and p(x |θy ) are estimated from training data using point
estimation methods (MLE or MAP) or using fully Bayesian inference (discussed today)

Once these parameters π and θy are estimated (point estimates, or full posterior if doing Bayesian
inference), the above Bayes rule can be applied to a new input x̂ to compute p(ŷ |x̂)

Let’s now set up the parameter estimation for π and θy as a Bayesian inference problem

Note: As we will see in the end, in this approach, computing p(ŷ |x̂) for a new input x̂ will NOT use a
point estimate of the parameters π, θy but would use posterior averaging
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The Priors

Let us focus on the supervised, binary classification setting for now

In this case, we have three parameters to be learned: π, θ0, and θ1

Probability π ∈ (0, 1) of the Bernoulli. Can assume the following Beta prior

π ∼ Beta(a, b)

Parameters θ0, and θ1 of the class-conditional distributions. Will assume the same prior on both

θ0, θ1 ∼ p(θ)

Note: The actual form of p(θ) will depend on what the class conditional distributions p(x |θ0) and
p(x |θ1) are (e.g., if these are Gaussians and if we want to learn both mean and covariance matrix
of these Gaussians, then p(θ) will be some distribution over mean and covariance matrix, e.g., a
Normal-inverse Wishart distribution)

We will jointly denote the prior on π, θ0, and θ1 as p(π, θ0, θ1) = p(π)p(θ0)p(θ1)
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The Likelihood

Denote the N × D feature matrix by X and the N × 1 label vector by y

Since both X and y are being modeled here, the likelihood function will be
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The Posterior

We need to infer the following posterior distribution

Note: Ωθ denotes the domain of θ

Might look scary at first but it isn’t actually

Recall the prior p(π, θ0, θ1) = p(π)p(θ0)p(θ1). The likelihood also factorized over data points, i.e.,

p(X , y |π, θ1, θ0) =
N∏
i=1

p(xi |θyi )p(yi |π)

Thus, the posterior will be

But what about the normalization constant in the denominator?
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The Posterior

Luckily, in this case, the same factorization structure simplies the denominator as well

The above is just a product of three posterior distributions !

We also know what p(π|y) will be (recall the coin-toss example)

Form of posteriors on θ1 and θ2 will depend on p(x |θ1) and p(θ1), and p(x |θ0) and p(θ0), resp.
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The Predictive Posterior Distribution

We have already seen how to compute the parameter posterior p(π, θ1, θ0|y ,X ) for this model

Original goal is classification. We thus also want the predictive posterior for label of a new input,
i.e., p(ŷ |x̂), for which the more “complete” notation in this Bayesian setting would be p(ŷ |x̂ ,X , y)

Luckily, in this case, this too has a rather simple form. Using Bayes rule, we have

In order to compute this, we need p(x̂ |ŷ ,X , y) and p(ŷ |y)

p(x̂ |ŷ ,X , y): Marginal class-conditional distribution of the new input vector x̂

p(ŷ |y): Marginal probability of its label ŷ given the labels of training data
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Luckily, in this case, this too has a rather simple form. Using Bayes rule, we have

In order to compute this, we need p(x̂ |ŷ ,X , y) and p(ŷ |y)
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Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Logistic Regression, Bayesian Generative Classification 25



The Predictive Posterior Distribution

We have already seen how to compute the parameter posterior p(π, θ1, θ0|y ,X ) for this model

Original goal is classification. We thus also want the predictive posterior for label of a new input,
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The Predictive Posterior Distribution (Contd.)

Predictive posterior requires computing p(x̂ |ŷ ,X , y) and p(ŷ |y)

The marginal likelihood p(x̂ |ŷ ,X , y) of x̂ can be computed as

The above is simply the posterior predictive distribution of class ŷ . The final expression will depend
on the forms of p(x̂ |θŷ ) and p(θŷ |.). If exp-family, we will have closed form expression!

The marginal likelihood p(ŷ |y) is something we have already seen (recall Bernoulli coin-toss)

p(ŷ = 1|y) =

∫
p(ŷ = 1|π)p(π|y)dπ =

∫
πp(π|y)dπ =

a +
∑N

i=1 yi
a + b + N

.. and p(ŷ = 0|y) = 1− p(ŷ = 1|y) =
b+N−

∑N
i=1 yi

a+b+N
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The marginal likelihood p(x̂ |ŷ ,X , y) of x̂ can be computed as

The above is simply the posterior predictive distribution of class ŷ . The final expression will depend
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The marginal likelihood p(x̂ |ŷ ,X , y) of x̂ can be computed as

The above is simply the posterior predictive distribution of class ŷ . The final expression will depend
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A Simple/Special Case: Näıve Bayes Assumption

Usually the most critical choice in generative classification is that of class conditional p(x |θy )

Very complex p(x |θy ) with lots of parameters may make estimation difficult

Often however we can choose simple forms of p(x |θy ) to make estimation easier

The näıve Bayes assumption: The conditional distribution p(x |θy ) factorizes over individual
features (or over groups of features)

Suppose the features of x̂ can be partitioned into v groups x̂ = {x̂(j)}vj=1

Can also assume a similar partitioning for the parameters θŷ

This further simplifies calculation of marginal likelihood p(x̂ |ŷ ,X , y)

This modeling choice in a Bayesian setting gives rise to a “Bayesian näıve Bayes” model
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This further simplifies calculation of marginal likelihood p(x̂ |ŷ ,X , y)
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This modeling choice in a Bayesian setting gives rise to a “Bayesian näıve Bayes” model
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This modeling choice in a Bayesian setting gives rise to a “Bayesian näıve Bayes” model
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A Simple/Special Case: Näıve Bayes Assumption

In the Bayesian näıve Bayes model, we can still choose different types of class conditional p(x |θy )

Gaussian näıve Bayes: if x is modeled using a multivariate Gaussian (assumed factorized as per the
näıve Bayes assumption)

Multivariate Bernoulli näıve Bayes: if x is modeled using a multivariate Bernoulli (assumed factorized
as per the näıve Bayes assumption)

MLAPP (Murphy) Section 3.5.1.2 and 3.5.5 contains an example of Multivariate Bernoulli case
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