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Recap: Bayesian Linear Regression

Assume Gaussian likelihood: p(y |X,w , β) =
∏N

n=1N (yn|w>xn, β
−1) = N (y |Xw , β−1IN)

Assume zero-mean spherical Gaussian prior: p(w |λ) =
∏D

d=1N (wd |0, λ−1) = N (w |0, λ−1ID)

Assuming hyperparameters as fixed, the posterior is Gaussian

p(w |y ,X, β, λ) = N (µN ,ΣN )

ΣN = (β
N∑

n=1

xnx
>
n + λID )−1 = (βX>X + λID )−1 (posterior’s covariance matrix)

µN = ΣN

[
β

N∑
n=1

ynxn

]
= ΣN

[
βX>y

]
= (X>X +

λ

β
ID )−1X>y (posterior’s mean)

The posterior predictive distribution is also Gaussian

p(y∗|x∗,X, y , β, λ) =

∫
p(y∗|w , x∗, β)p(w |y ,X, β, λ)dw = N (µ>N x∗, β−1 + x>∗ ΣNx∗)

Gives both predictive mean and predictive variance (imp: pred-var is different for each input)
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A Visualization of Uncertainty in Bayesian Linear Regression

Posterior p(w |X, y) and lines (w0 intercept, w1 slope) corresponding to some random w ’s

Prior (N=0) Posterior (N=1) Posterior (N=2) Posterior (N=20)

A visualization of the posterior predictive of a Bayesian linear regression model

y

x

Large predictive
variance here

Small predictive
variance hereLine showing

predictive mean
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A Visualization of Uncertainty (Contd)

We can similarly visualize a Bayesian nonlinear regression model

Figures below: Green curve is the true function and blue circles are observations (xn, yn)

Posterior of the nonlinear regression model: Some curves drawn from the posterior

y y y y

x x x x

Posterior predictive: Red curve is predictive mean, shaded region denotes predictive uncertainty

y y y y

x x x x
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Estimating Hyperparameters for
Bayesian Linear Regression
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Learning Hyperparameters in Probabilistic Models

Can treat hyperparams as just a bunch of additional unknowns

Can be learned using a suitable inference algorithm (point estimation or fully Bayesian)

Example: For the linear regression model, the full set of parameters would be (w , λ, β)

Can assume priors on all these parameters and infer their “joint” posterior distribution

p(w , β, λ|X, y) =
p(y |X,w , β, λ)p(w , λ, β)

p(y |X)
=

p(y |X,w , β, λ)p(w |λ)p(β)p(λ)∫
p(y |X,w , β)p(w |λ)p(β)p(λ) dw dλdβ

Infering the above is usually intractable (rare to have conjugacy). Requires approximations. Also,

What priors (or “hyperpriors”) to choose for β and λ?

What about the hyperparameters of those priors?
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Learning Hyperparameters via Point Estimation

One popular way to estimate hyperparameters is by maximizing the marginal likelihood

For our linear regression model, this quantity (a function of the hyperparams) will be

p(y |X, β, λ) =

∫
p(y |X,w , β)p(w |λ)dw

The “optimal” hyperparameters in this case can be then found by

β̂, λ̂ = arg max
β,λ

log p(y |X, β, λ)

This is called MLE-II or (log) evidence maximization

Akin to doing MLE to estimate the hyperparameters where the “main” parameter (in this case w) has
been integrated out from the model’s likelihood function

Note: If the likelihood and prior are conjugate then marginal likelihood is available in closed form
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What is MLE-II Doing?

For linear regression case, would ideally like the posterior over all unknowns, i.e., p(w , λ, β|X, y)

p(w , β, λ|X, y) = p(w |X, y , β, λ)p(β, λ|X, y) (from product rule)

Note that p(w |X, y , β, λ) is easy if λ, β are known

However p(β, λ|X, y) = p(y |X,β,α)p(β)p(λ)
p(y |X) is hard (lack of conjugacy, intractable denominator)

Let’s approximate it by a point function δ at the mode of p(β, λ|X, y)

p(β, λ|X, y) ≈ δ(β̂, λ̂) where β̂, λ̂ = arg max
β,λ

p(β, λ|X, y) = arg max
β,λ

p(y |X, β, λ)p(λ)p(β)

Moreover, if p(β), p(λ) are uniform/uninformative priors then

β̂, λ̂ = arg max
β,λ

p(y |X, β, λ)

Thus MLE-II is approximating the posterior of hyperparams by their point estimate assuming
uniform priors (therefore we don’t need to worry about a prior over the hyperparams)
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MLE-II for Linear Regression

For the linear regression case, the marginal likelihood is defined as

p(y |X, β, λ) =

∫
p(y |X,w , β)p(w |λ)dw

Since p(y |X,w , β) = N (y |Xw , β−1IN) and p(w |λ) = N (w |0, λ−1ID), the marginal likelihood

p(y |X, β, λ) = N (y |0, β−1I + λ
−1XX>)

=
1

(2π)N/2
|β−1I + λ

−1XX>|−1/2 exp(−
1

2
y>(β−1I + λ

−1XX>)−1y)

MLE-II maximizes log p(y |X, β, λ) w.r.t. β and λ to estimate these hyperparams

This objective doesn’t have a closed form solution

Solved using iterative/alternating optimization

PRML Chapter 3 contains the iterative update equations

Note: Can also do “MAP-II” using a suitable prior on these hyperparams (e.g., gamma)

Note: Can also use different λd for each wd
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Using MLE-II Estimates for Making Prediction

With the MLE-II approximation p(β, λ|X, y) ≈ δ(β̂, λ̂), the posterior over unknowns

p(w , β, λ|X, y) = p(w |X, y , β, λ)p(β, λ|X, y)

≈ p(w |X, y , β̂, λ̂)

The posterior predictive distribution can also be approximated as

p(y∗|x∗,X, y) =

∫
p(y∗|x∗,w , β)p(w , β, λ|X, y) dw dβ dλ

=

∫
p(y∗|x∗,w , β)p(w |X, y , β, λ)p(β, λ|X, y)dβ dλ dw

≈
∫

p(y∗|x∗,w , β)p(w |X, y , β̂, λ̂) dw

This is also the same as the usual posterior predictive distribution we have seen earlier, except we
are treating the hyperparams β̂, λ̂ fixed at their MLE-II based estimates
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Modeling Sparse Weights
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Modeling Sparse Weights

Many probabilistic models consist of weights that are given zero-mean Gaussian priors, e.g.,

µ(x) =
D∑

d=1

wdxd (mean of a prob. lin reg model)

µ(x) =
N∑

n=1

wnk(xn, x) (mean of a prob. kernel based nonlin reg model)

A zero-mean prior is of the form p(wd) = N (0, λ−1) or p(wd) = N (0, λ−1
d )

Precision λ or λd specifies our belief about how close to zero wd is (like regularization hyperparam)

However, such a prior usually gives small weights but not very strong sparsity

Putting a gamma prior on precision can give sparsity (will soon see why)

Sparsity of weights will be a very useful thing to have in many models, e.g.,

For linear model, this helps learn relevance of each feature xd

For kernel based model, this helps learn the relevance of each input xn (Relevance Vector Machine)
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Sparsity via a Hierarchical Prior

Consider linear regression with prior p(wd |λd) = N (0, λ−1
d ) on each weight

Let’s treat precision λd as unknown and use a gamma (shape = a, rate = b) prior on it

p(λd ) = Gamma(a, b) =
ba

Γ(a)
λ
a−1
d exp(−bλd )

Marginalizing the precision leads to a Student-t prior on each wd

p(wd ) =

∫
p(wd |λd )p(λd )dλd =

baΓ(a + 1/2)
√

2πΓ(a)
(b + w2

d/2)−(a+1/2)

w
1

w
2 w

2

w
1

Note: Can make the prior an uninformative prior by setting a and b to be very small (e.g., 10−4)

Note: Some other priors on λd (e.g., exponential distribution) also result in sparse priors on wd
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Bayesian Linear Regression with Sparse Prior on Weights

Posterior inference for w not straightforward since p(w) =
∏D

d=1 p(wd) is no longer Gaussian

Approximate inference is usually needed for inferring the full posterior

Many approaches exist (which we will see later)

Such approaches are mostly in form of alternating estimation of w and λ

Estimate λd given wd , estimate wd given λd

Popular approaches: EM, Gibbs sampling, variational inference, etc

Working with such sparse priors is known as Sparse Bayesian Learning

Used in many models where we want to have sparsity in the weights (very few non-zero weights)

Note: We will later look at other ways of getting sparsity (e.g., spike-and-slab priors defined by
binary switch variables for each weight)
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Bayesian Logistic Regression

(..a simple, single-parameter, yet non-conjugate model)
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Probabilistic Models for Classification

The goal is to learn p(y |x). Here p(y |x) will be a discrete distribution (e.g., Bernoulli, multinoulli)

Usually two approaches to learn p(y |x): Discriminative Classification and Generative Classification

Discriminative Classification: Model and learn p(y |x) directly

This approach does not model the distribution of the inputs x

Generative Classification: Model and learn p(y |x) “indirectly”as p(y |x) = p(y)p(x|y)
p(x)

Called generative because, via p(x |y), we model how the inputs x of each class are generated

The approach requires first learning class-marginal p(y) and class-conditional distributions p(x |y)

Usually harder to learn than discriminative but also has some advantages (more on this later)

Both approaches can be given a non-Bayesian or Bayesian treatment

The Bayesian treatment won’t rely on point estimates but infer the posterior over unknowns
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Generative Classification: Model and learn p(y |x) “indirectly”as p(y |x) = p(y)p(x|y)
p(x)

Called generative because, via p(x |y), we model how the inputs x of each class are generated

The approach requires first learning class-marginal p(y) and class-conditional distributions p(x |y)

Usually harder to learn than discriminative but also has some advantages (more on this later)

Both approaches can be given a non-Bayesian or Bayesian treatment

The Bayesian treatment won’t rely on point estimates but infer the posterior over unknowns

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Linear Regression (Hyperparameter Estimation, Sparse Priors), Bayesian Logistic Regression 16



Probabilistic Models for Classification

The goal is to learn p(y |x). Here p(y |x) will be a discrete distribution (e.g., Bernoulli, multinoulli)

Usually two approaches to learn p(y |x): Discriminative Classification and Generative Classification

Discriminative Classification: Model and learn p(y |x) directly

This approach does not model the distribution of the inputs x

Generative Classification: Model and learn p(y |x) “indirectly”as p(y |x) = p(y)p(x|y)
p(x)

Called generative because, via p(x |y), we model how the inputs x of each class are generated

The approach requires first learning class-marginal p(y) and class-conditional distributions p(x |y)

Usually harder to learn than discriminative but also has some advantages (more on this later)

Both approaches can be given a non-Bayesian or Bayesian treatment

The Bayesian treatment won’t rely on point estimates but infer the posterior over unknowns

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Linear Regression (Hyperparameter Estimation, Sparse Priors), Bayesian Logistic Regression 16



Discriminative Classification via Logistic Regression

Logistic Regression (LR) is an example of discriminative binary classification, i.e., y ∈ {0, 1}

Logistic Regression models x to y relationship using the sigmoid function

p(y = 1|x ,w) = µ = σ(w>x) =
1

1 + exp(−w>x)
=

exp(w>x)

1 + exp(w>x)

where w ∈ RD is the weight vector. Also note that p(y = 0|x ,w) = 1− µ

A large positive (negative) “score” w>x means large probability of label being 1 (0)

Is sigmoid the only way to convert the score into a probability?

No, while LR does that, there exist models that define µ in other ways. E.g. Probit Regression

µ = p(y = 1|x ,w) = Φ(w>x) (where Φ denotes the CDF of N (0, 1))
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Logistic Regression

The LR classification rule is

p(y = 1|x ,w) = µ = σ(w>x) =
1

1 + exp(−w>x)
=

exp(w>x)

1 + exp(w>x)

p(y = 0|x ,w) = 1− µ = 1− σ(w>x) =
1

1 + exp(w>x)

This implies a Bernoulli likelihood model for the labels

p(y |x ,w) = Bernoulli(σ(w>x)) =

[
exp(w>x)

1 + exp(w>x)

]y[
1

1 + exp(w>x)

](1−y)

Given N observations (X, y) = {xn, yn}Nn=1, we can do point estimation for w by maximizing the
log-likelihood (or minimizing the negative log-likelihood). This is basically MLE.

wMLE = arg max
w

N∑
n=1

log p(yn|xn,w) = arg min
w
−

N∑
n=1

log p(yn|xn,w) = arg min
w

NLL(w)

Convex loss function. Global minima. Both first order and second order methods widely used.

Can also add a regularizer on w to prevent overfitting. This corresponds to doing MAP estimation
with a prior on w , i.e., wMAP = arg maxw [

∑N
n=1 log p(yn|xn,w)+ log p(w)]

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Linear Regression (Hyperparameter Estimation, Sparse Priors), Bayesian Logistic Regression 18
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Bayesian Logistic Regression

MLE/MAP only gives a point estimate. We would like to infer the full posterior over w

Recall that the likelihood model is Bernoulli

p(y |x ,w) = Bernoulli(σ(w>x)) =

[
exp(w>x)

1 + exp(w>x)

]y[
1

1 + exp(w>x)

](1−y)

Just like the Bayesian linear regression case, let’s use a Gausian prior on w

p(w) = N (0, λ−1ID) ∝ exp(−λ
2
w>w)

Given N observations (X, y) = {xn, yn}Nn=1, where X is N ×D and y is N × 1, the posterior over w

p(w |X, y) =
p(y |X,w)p(w)∫
p(y |X,w)p(w)dw

=

∏N
n=1 p(yn|xn,w)p(w)∫ ∏N
n=1 p(yn|xn,w)p(w)dw

The denominator is intractable in general (logistic-Bernoulli and Gaussian are not conjugate)

Can’t get a closed form expression for p(w |X, y). Must approximate it!

Several ways to do it, e.g., MCMC, variational inference, Laplace approximation (next class)
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Next Class

Laplace approximation

Computing posterior and posterior predictive for logistic regression

Properties/benefits of Bayesian logistic regression

Bayesian approach to generative classification
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