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Recap: Bayesian Linear Regression

o Assume Gaussian likelihood: p(y|X,w, ) = HnNle(yn|wa,,75_1) = N(y|Xw, 37 1y)

o Assume zero-mean spherical Gaussian prior: p(w|\) = H?:l N(wyl0, A7) = N (w0, A7 1p)
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Recap: Bayesian Linear Regression

o Assume Gaussian likelihood: p(y|X,w, ) = HnNle(yn|wa,,75_1) = N(y|Xw, 37 1y)

o Assume zero-mean spherical Gaussian prior: p(w|\) = H?:l N(wyl0, A7) = N (w0, A7 1p)
o Assuming hyperparameters as fixed, the posterior is Gaussian

p(wly,X,8,A) = N(uy,En)
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Recap: Bayesian Linear Regression

o Assume Gaussian likelihood: p(y|X,w, ) = HnNle(yn|wa,,75_1) = N(y|Xw, 37 1y)

o Assume zero-mean spherical Gaussian prior: p(w|\) = H?:l N(wyl0, A7) = N (w0, A7 1p)

o Assuming hyperparameters as fixed, the posterior is Gaussian

p(wly,X,8,7) = N(py, En)
N
Xy = (B Zx,,x: +Alp) ™t = (BXTX 4+ Alp) ™! (posterior's covariance matrix)
n=1
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Recap: Bayesian Linear Regression

o Assume Gaussian likelihood: p(y|X,w, ) = HnNle(yn|wa,,75_1) = N(y|Xw, 37 1y)

o Assume zero-mean spherical Gaussian prior: p(w|\) = H?:l N(wyl0, A7) = N (w0, A7 1p)

o Assuming hyperparameters as fixed, the posterior is Gaussian

p(wly,X,8,7) = N(py, En)
N
Xy = (B Zx,,x: +Alp) ™t = (BXTX 4+ Alp) ™! (posterior's covariance matrix)
n=1
N A
uy = Xy {ﬁZy,,x,,} =3y {ﬁXTy] = (XTX + EID)_IXTy (posterior's mean)
n—1
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Recap: Bayesian Linear Regression

Assume Gaussian likelihood: p(y|X, w, 8) = [T"_, N'(yalw xn, B71) = N'(y|Xw, 5711y)

©

o Assume zero-mean spherical Gaussian prior: p(w|\) = H?:l N(wyl0, A7) = N (w0, A7 1p)

o Assuming hyperparameters as fixed, the posterior is Gaussian
p(wly,X,8,%) = N(uy, En)
Xy = (B XN: x,,an +Alp) ™t = (BXTX 4+ Alp) ™! (posterior's covariance matrix)
n=1 .
uy = Xy {ﬁ z;y,,x,,} =3y {ﬁXTy] = (XTX + %ID)_IXTy (posterior's mean)

o The posterior predictive distribution is also Gaussian

p(yslxe, X, y,8,) = / p(ye|w, x., B)p(wly, X, B, \)dw = N (pyx., " + x. Znx.)
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Recap: Bayesian Linear Regression

o Assume Gaussian likelihood: p(y|X, w, 8) = [T, N'(yalw xn, B71) = N'(y|Xw, 5711)
o Assume zero-mean spherical Gaussian prior: p(w|\) = H?:l N(wyl0, A7) = N (w0, A7 1p)

o Assuming hyperparameters as fixed, the posterior is Gaussian

p(wly,X,8,7) = N(py, En)
N
Xy = (B Zx,,x: +Alp) ™t = (BXTX 4+ Alp) ™! (posterior's covariance matrix)
n=1
N A
uy = Xy {ﬁZy,,x,,} =3y {ﬁXTy] = (XTX + EID)_IXTy (posterior's mean)
n—1

o The posterior predictive distribution is also Gaussian
P(y*‘x*:x»y,ﬂ7A) = /P(Y*|W7X*7/3)P(W‘.Y7X:57>\)dW:N(H;X*wg 1+XIZNX*)
o Gives both predictive mean and predictive variance (imp: pred-var is different for each input)
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A Visualization of Uncertainty in Bayesian Linear Regression

o Posterior p(w|X, y) and lines (wp intercept, wy slope) corresponding to some random w's
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A Visualization of Uncertainty in Bayesian Linear Regression

o Posterior p(w|X, y) and lines (wp intercept, wy slope) corresponding to some random w's
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o A visualization of the posterior predictive of a Bayesian linear regression model
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A Visualization of Uncertainty (Contd)

o We can similarly visualize a Bayesian nonlinear regression model
o Figures below: Green curve is the true function and blue circles are observations (x,, y,)

o Posterior of the nonlinear regression model: Some curves drawn from the posterior
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A Visualization of Uncertainty (Contd)

o We can similarly visualize a Bayesian nonlinear regression model
o Figures below: Green curve is the true function and blue circles are observations (x,, y,)

o Posterior of the nonlinear regression model: Some curves drawn from the posterior
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o Posterior predictive: Red curve is predictive mean, shaded region denotes predictive uncertainty
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Estimating Hyperparameters for
Bayesian Linear Regression
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Learning Hyperparameters in Probabilistic Models

o Can treat hyperparams as just a bunch of additional unknowns

o Can be learned using a suitable inference algorithm (point estimation or fully Bayesian)
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Learning Hyperparameters in Probabilistic Models

o Can treat hyperparams as just a bunch of additional unknowns
o Can be learned using a suitable inference algorithm (point estimation or fully Bayesian)

o Example: For the linear regression model, the full set of parameters would be (w, A, 3)

@—@ pw)
p(yIxw)
EO—T®®
N
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Learning Hyperparameters in Probabilistic Models

©

Can treat hyperparams as just a bunch of additional unknowns

©

Can be learned using a suitable inference algorithm (point estimation or fully Bayesian)

©

Example: For the linear regression model, the full set of parameters would be (w, A, )

@—@ pw)
p(yIxw)
EO—T®®
N

o Can assume priors on all these parameters and infer their “joint” posterior distribution

_ p(yIX,w, B, \)p(w, A\, B) pyIX, w, B, \)p(w|\)p(B)p(N)
plw, B, 21X, y) = p(yIX) = To01X, w, B)p(w\)p(5)p(N) dw drdB
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Learning Hyperparameters in Probabilistic Models

©

Can treat hyperparams as just a bunch of additional unknowns

©

Can be learned using a suitable inference algorithm (point estimation or fully Bayesian)

©

Example: For the linear regression model, the full set of parameters would be (w, A, )

@——@ pw)
p(yIxw)
EO—T®®
N

o Can assume priors on all these parameters and infer their “joint” posterior distribution

_ p(yIX,w, B, \)p(w, A\, B) pyIX, w, B, \)p(w|\)p(B)p(N)
plw, B, 21X, y) = p(yIX) = To01X, w, B)p(w\)p(5)p(N) dw drdB

©

Infering the above is usually intractable (rare to have conjugacy).
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Learning Hyperparameters in Probabilistic Models

o Can treat hyperparams as just a bunch of additional unknowns

o Can be learned using a suitable inference algorithm (point estimation or fully Bayesian)

©

Example: For the linear regression model, the full set of parameters would be (w, A, )

@——@ pw)
p(yIxw)
EO—T®®
N

o Can assume priors on all these parameters and infer their “joint” posterior distribution

_ p(yIX,w, B, \)p(w, A\, B) pyIX, w, B, \)p(w|\)p(B)p(N)
plw, B, 21X, y) = p(yIX) = To01X, w, B)p(w\)p(5)p(N) dw drdB

©

Infering the above is usually intractable (rare to have conjugacy). Requires approximations.

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Linear Regression (Hyperparameter Estimation, Sparse Priors), Bayesian Logistic Regression



Learning Hyperparameters in Probabilistic Models

o Can treat hyperparams as just a bunch of additional unknowns

o Can be learned using a suitable inference algorithm (point estimation or fully Bayesian)

©

Example: For the linear regression model, the full set of parameters would be (w, A, )

@——@ pw)
p(yIxw)
EO—T®®
N

o Can assume priors on all these parameters and infer their “joint” posterior distribution

_ p(yIX,w, B, \)p(w, A\, B) pyIX, w, B, \)p(w|\)p(B)p(N)
plw, B, 21X, y) = p(yIX) = To01X, w, B)p(w\)p(5)p(N) dw drdB

©

Infering the above is usually intractable (rare to have conjugacy). Requires approximations. Also,
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Learning Hyperparameters in Probabilistic Models

o Can treat hyperparams as just a bunch of additional unknowns

o Can be learned using a suitable inference algorithm (point estimation or fully Bayesian)

©

Example: For the linear regression model, the full set of parameters would be (w, A, )

@——@ pw)
p(yIxw)
EO—T®®
N

o Can assume priors on all these parameters and infer their “joint” posterior distribution

_ p(yIX,w, B, \)p(w, A\, B) pyIX, w, B, \)p(w|\)p(B)p(N)
plw, B, 21X, y) = p(yIX) = To01X, w, B)p(w\)p(5)p(N) dw drdB

©

Infering the above is usually intractable (rare to have conjugacy). Requires approximations. Also,

o What priors (or “hyperpriors”) to choose for 5 and A?
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Learning Hyperparameters in Probabilistic Models

o Can treat hyperparams as just a bunch of additional unknowns

o Can be learned using a suitable inference algorithm (point estimation or fully Bayesian)

©

Example: For the linear regression model, the full set of parameters would be (w, A, )

@—@ pw)
p(yIxw)
EO—T®®
N

o Can assume priors on all these parameters and infer their “joint” posterior distribution

_ p(yIX,w, B, \)p(w, A\, B) pyIX, w, B, \)p(w|\)p(B)p(N)
plw, B, 21X, y) = p(yIX) = To01X, w, B)p(w\)p(5)p(N) dw drdB

©

Infering the above is usually intractable (rare to have conjugacy). Requires approximations. Also,

o What priors (or “hyperpriors”) to choose for 5 and A?
o What about the hyperparameters of those priors?
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Learning Hyperparameters via Point Estimation

o One popular way to estimate hyperparameters is by maximizing the marginal likelihood
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Learning Hyperparameters via Point Estimation

o One popular way to estimate hyperparameters is by maximizing the marginal likelihood

o For our linear regression model, this quantity (a function of the hyperparams) will be

p(yIX. 5. )) = / p(yIX. w, 8)p(w|N)dw
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Learning Hyperparameters via Point Estimation

o One popular way to estimate hyperparameters is by maximizing the marginal likelihood

o For our linear regression model, this quantity (a function of the hyperparams) will be

p(yIX. 5. )) = / p(yIX. w, 8)p(w|N)dw

o The “optimal” hyperparameters in this case can be then found by

~

B,A=arg max log p(y|X. 5, A)
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Learning Hyperparameters via Point Estimation

©

One popular way to estimate hyperparameters is by maximizing the marginal likelihood

©

For our linear regression model, this quantity (a function of the hyperparams) will be

p(yIX. 5. )) = / p(yIX. w, 8)p(w|N)dw

o The “optimal” hyperparameters in this case can be then found by

~

B,A=arg max log p(y|X. 5, A)

©

This is called MLE-II or (log) evidence maximization
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Learning Hyperparameters via Point Estimation

©

One popular way to estimate hyperparameters is by maximizing the marginal likelihood

©

For our linear regression model, this quantity (a function of the hyperparams) will be

p(yIX. 5. )) = / p(yIX. w, 8)p(w|N)dw

o The “optimal” hyperparameters in this case can be then found by

~

B,A=arg max log p(y|X. 5, A)

©

This is called MLE-II or (log) evidence maximization

o Akin to doing MLE to estimate the hyperparameters where the “main” parameter (in this case w) has
been integrated out from the model’s likelihood function
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Learning Hyperparameters via Point Estimation

©

One popular way to estimate hyperparameters is by maximizing the marginal likelihood

©

For our linear regression model, this quantity (a function of the hyperparams) will be

p(yIX. 5. )) = / p(yIX. w, 8)p(w|N)dw

o The “optimal” hyperparameters in this case can be then found by

~

B,A=arg max log p(y|X. 5, A)

©

This is called MLE-II or (log) evidence maximization

o Akin to doing MLE to estimate the hyperparameters where the “main” parameter (in this case w) has
been integrated out from the model’s likelihood function

o Note: If the likelihood and prior are conjugate then marginal likelihood is available in closed form
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What is MLE-Il Doing?

o For linear regression case, would ideally like the posterior over all unknowns, i.e., p(w, A, 3|X,y)

p(w, B, \[X,y) = p(w|X,y, 3, \)p(B,A|X,y)  (from product rule)
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What is MLE-Il Doing?

o For linear regression case, would ideally like the posterior over all unknowns, i.e., p(w, A, 3|X,y)
p(w,B,AX,y) = p(w|X,y, 3, A)p(B,AIX,y)  (from product rule)

o Note that p(w|X,y, 8, \) is easy if A, 5 are known
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What is MLE-Il Doing?
o For linear regression case, would ideally like the posterior over all unknowns, i.e., p(w, A, 3|X,y)
p(w, B, AX,y) = p(w|X,y, B, \)p(B, A\ X, y) (from product rule)
o Note that p(w|X,y, 8, \) is easy if A, 5 are known

o However p(3,A\|X,y) = W is hard
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What is MLE-Il Doing?
o For linear regression case, would ideally like the posterior over all unknowns, i.e., p(w, A, 3|X,y)
p(w, B, AX,y) = p(w|X,y, B, \)p(B, A\ X, y) (from product rule)
o Note that p(w|X,y, 8, \) is easy if A, 5 are known

o However p(8,\|X,y) = W is hard (lack of conjugacy, intractable denominator)
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What is MLE-Il Doing?

o For linear regression case, would ideally like the posterior over all unknowns, i.e., p(w, A, 3|X,y)
p(w,B,AX,y) = p(w|X,y, 3, A)p(B,AIX,y)  (from product rule)

o Note that p(w|X,y, 8, \) is easy if A, 5 are known
o However p(8,\|X,y) = W is hard (lack of conjugacy, intractable denominator)
o Let's approximate it by a point function ¢ at the mode of p(5, A|X, y)

p(B, \X,y) = 6(3, )
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What is MLE-Il Doing?

o For linear regression case, would ideally like the posterior over all unknowns, i.e., p(w, A, 3|X,y)
p(w,B,AX,y) = p(w|X,y, 3, A)p(B,AIX,y)  (from product rule)

o Note that p(w|X,y, 8, \) is easy if A, 5 are known
o However p(8,\|X,y) = W is hard (lack of conjugacy, intractable denominator)

o Let's approximate it by a point function ¢ at the mode of p(5, A|X, y)

P(B,AIX, y) = 8(B,8)  where 3, A = argmax p(5, A|X, y) = argmax p(y|X, 8, A)p(\)p(8)
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What is MLE-Il Doing?

o For linear regression case, would ideally like the posterior over all unknowns, i.e., p(w, A, 3|X,y)

p(w, B, \[X,y) = p(w|X,y, 3, \)p(B,A|X,y)  (from product rule)

(]

Note that p(w|X,y, 3, A) is easy if A, 3 are known

However p(3, \|X,y) = W is hard (lack of conjugacy, intractable denominator)

©

©

Let's approximate it by a point function  at the mode of p(3, A|X,y)

P(B,AIX, y) = 8(B,8)  where 3, A = argmax p(5, A|X, y) = argmax p(y|X, 8, A)p(\)p(8)

Moreover, if p(3), p()) are uniform/uninformative priors then

(4]

A A

B\ =arg %aAXP(yIX,@ A)
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What is MLE-Il Doing?

o For linear regression case, would ideally like the posterior over all unknowns, i.e., p(w, A, 3|X,y)

p(w, B, \[X,y) = p(w|X,y, 3, \)p(B,A|X,y)  (from product rule)

(]

Note that p(w|X,y, 3, A) is easy if A, 3 are known

©

However p(3, \|X,y) = W is hard (lack of conjugacy, intractable denominator)

©

Let's approximate it by a point function  at the mode of p(3, A|X,y)
P(B,AIX, y) = 8(B,8)  where 3, A = argmax p(5, A|X, y) = argmax p(y|X, 8, A)p(\)p(8)
Moreover, if p(3), p()) are uniform/uninformative priors then
B4 = argmaxp(y|X, 3, 3)

Thus MLE-II is approximating the posterior of hyperparams by their point estimate assuming
uniform priors (therefore we don't need to worry about a prior over the hyperparams)

(4]

©
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MLE-II for Linear Regression

o For the linear regression case, the marginal likelihood is defined as

p(yIX, 5, )) = / p(yIX, w, B)p(w|\)dw
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MLE-II for Linear Regression

o For the linear regression case, the marginal likelihood is defined as
pyIX. 5.3) = [ plyIX, w. 5)p(wix)dw
o Since p(y|X,w, 3) = N(y|Xw, 37 1y) and p(w|\) = N (w|0, \"1p), the marginal likelihood

p(yIX,8,2) = N(y|0,8 1+ A7xxT)
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MLE-II for Linear Regression

o For the linear regression case, the marginal likelihood is defined as
pyIX. 5.3) = [ plyIX, w. 5)p(wix)dw
o Since p(y|X,w, 3) = N(y|Xw, 37 1y) and p(w|\) = N (w|0, \"1p), the marginal likelihood
pyIX,B,%) = N(y[0,871+271xx")

_ 1 -1 1y T —1/2 1+ L1y Ty—1
= W\B T+ 27" XX | exp(—iy BT+ AT XX ) y)
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MLE-II for Linear Regression

o For the linear regression case, the marginal likelihood is defined as
p(yIX,8,A) = /p(y|X, w, B)p(w|\)dw

o Since p(y|X,w, 3) = N(y|Xw, 37 1y) and p(w|\) = N (w|0, \"1p), the marginal likelihood

plyIX, 8,2) = N(y[0,8 1+ A7'xxT)
1 g —lyxT|—1/2 1 151 —lyy Ty—1
= I XX _z I XX
@m P A |7 exp(=gy (BT 1+ ) ly)

o MLE-II maximizes log p(y|X, 8, A) w.r.t. 5 and X to estimate these hyperparams
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MLE-II for Linear Regression

o For the linear regression case, the marginal likelihood is defined as
pyIX. 5.3) = [ plyIX, w. 5)p(wix)dw
o Since p(y|X,w, 3) = N(y|Xw, 37 1y) and p(w|\) = N (w|0, \"1p), the marginal likelihood
pyIX, 8,0) = N(y[0, 87+ A7xXT)
= ;\Bfll+A*lxxTrl/zexp(—%yT(ﬂ*H+A*1xxT)*1y)

@m)N/2

o MLE-II maximizes log p(y|X, 8, A) w.r.t. 5 and X to estimate these hyperparams

o This objective doesn't have a closed form solution

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Linear Regression (Hyperparameter Estimation, Sparse Priors), Bayesian Logistic Regression



MLE-II for Linear Regression

o For the linear regression case, the marginal likelihood is defined as
pyIX. 5.3) = [ plyIX, w. 5)p(wix)dw
o Since p(y|X,w, 3) = N(y|Xw, 37 1y) and p(w|\) = N (w|0, \"1p), the marginal likelihood
pyIX, 8,0) = N(y[0, 87+ A7xXT)
= ;\Bfll+A*lxxTrl/zexp(—%yT(ﬂ*H+A*1xxT)*1y)

@m)N/2

o MLE-II maximizes log p(y|X, 8, A) w.r.t. 5 and X to estimate these hyperparams

o This objective doesn't have a closed form solution

o Solved using iterative/alternating optimization
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MLE-II for Linear Regression

o For the linear regression case, the marginal likelihood is defined as
pyIX. 5.3) = [ plyIX, w. 5)p(wix)dw
o Since p(y|X,w, 3) = N(y|Xw, 37 1y) and p(w|\) = N (w|0, \"1p), the marginal likelihood
pyIX, 8,0) = N(y[0, 87+ A7xXT)
= ;\Bfll+A*lxxTrl/zexp(—%yT(ﬂ*H+A*1xxT)*1y)

@m)N/2

o MLE-II maximizes log p(y|X, 8, A) w.r.t. 5 and X to estimate these hyperparams

o This objective doesn't have a closed form solution
o Solved using iterative/alternating optimization

o PRML Chapter 3 contains the iterative update equations
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MLE-II for Linear Regression

o For the linear regression case, the marginal likelihood is defined as
pyIX. 5.3) = [ plyIX, w. 5)p(wix)dw
o Since p(y|X,w, 3) = N(y|Xw, 37 1y) and p(w|\) = N (w|0, \"1p), the marginal likelihood
pyIX, 8,0) = N(y[0, 87+ A7xXT)
= ;\Bfll+A*lxxTrl/zexp(—%yT(ﬂ*H+A*1xxT)*1y)

@m)N/2

o MLE-II maximizes log p(y|X, 8, A) w.r.t. 5 and X to estimate these hyperparams

o This objective doesn't have a closed form solution
o Solved using iterative/alternating optimization

o PRML Chapter 3 contains the iterative update equations

o Note: Can also do “MAP-II" using a suitable prior on these hyperparams (e.g., gamma)
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MLE-II for Linear Regression

o For the linear regression case, the marginal likelihood is defined as
p(yIX,8,A) = /p(y|X, w, B)p(w|\)dw

Since p(y|X,w,8) = N(y|Xw, 37 1y) and p(w|\) = N (w|0,\"1p), the marginal likelihood

©

p(yIX,8,2) = N(y|0,8 1+ A7xxT)

_ 1 -1 1y T —1/2 1+ L1y Ty—1
= W\B T+ 27" XX | exp(—iy BT+ AT XX ) y)

o MLE-II maximizes log p(y|X, 8, A) w.r.t. 5 and X to estimate these hyperparams
o This objective doesn't have a closed form solution
o Solved using iterative/alternating optimization

o PRML Chapter 3 contains the iterative update equations

(+]

Note: Can also do “MAP-II" using a suitable prior on these hyperparams (e.g., gamma)

©

Note: Can also use different Ay for each wy
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Using MLE-II Estimates for Making Prediction

o With the MLE-Il approximation p(53, A\|X,y) = 5(3,3\) the posterior over unknowns

p(w, B, A\IX,y) = p(w|X,y, 3, \)p(B,AIX, y)
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Using MLE-II Estimates for Making Prediction

o With the MLE-Il approximation p(53, A\|X,y) = 5(3,3\) the posterior over unknowns
p(w, B, X, y) = p(w|X,y, 8, \)p(8, AIX, y) ~ p(w|X,y, 3, })
o The posterior predictive distribution can also be approximated as

pyelxa. X,y) = /::(y*\x*,wﬂ)p(w,ﬁwx,y) dw df dA
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Using MLE-II Estimates for Making Prediction

o With the MLE-Il approximation p(53, A\|X,y) = 5(3,3\) the posterior over unknowns
p(w, B, X, y) = p(w|X,y, 8, \)p(8, AIX, y) ~ p(w|X,y, 3, })

o The posterior predictive distribution can also be approximated as

P(ye X2, X, ¥) /p(y*\x*, w, B)p(w, B, X, y) dw dB dX

[ P w B)p(wIX. ., 5. A5 A, y)d dA dw

Q

/p(y*\x*, w, B)p(w|X, y, 5, %) dw
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Using MLE-II Estimates for Making Prediction

o With the MLE-Il approximation p(53, A\|X,y) = 5(3,3\) the posterior over unknowns
p(w, B, X, y) = p(w|X,y, 8, \)p(8, AIX, y) ~ p(w|X,y, 3, })

o The posterior predictive distribution can also be approximated as

P(ye X2, X, ¥) /p(y*\x*, w, B)p(w, B, X, y) dw dB dX

[ P w B)p(wIX. ., 5. A5 A, y)d dA dw

Q

/p(y*\x*, w, B)p(w|X, y, 5, %) dw

o This is also the same as the usual posterior predictive distribution we have seen earlier, except we
are treating the hyperparams B  fixed at their MLE-1I based estimates
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Modeling Sparse Weights
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Modeling Sparse Weights

o Many probabilistic models consist of weights that are given zero-mean Gaussian priors, e.g.,

D

u(x) = Z WaXd (mean of a prob. lin reg model)
d=1
N

u(x) = Z Wik(Xn, X) (mean of a prob. kernel based nonlin reg model)
n=1
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Modeling Sparse Weights

o Many probabilistic models consist of weights that are given zero-mean Gaussian priors, e.g.,

D
w(x) = Z W4 Xd (mean of a prob. lin reg model)
d=1

I
M=

u(x) Wik(Xn, X) (mean of a prob. kernel based nonlin reg model)

n=1

o A zero-mean prior is of the form p(wg) = N (0, A7) or p(wg) = N(0, A1)
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Modeling Sparse Weights

o Many probabilistic models consist of weights that are given zero-mean Gaussian priors, e.g.,

D
w(x) = Z W4 Xd (mean of a prob. lin reg model)
d=1

I
M=

u(x) Wik(Xn, X) (mean of a prob. kernel based nonlin reg model)

n=1

o A zero-mean prior is of the form p(wg) = N (0, A7) or p(wg) = N(0, A1)

o Precision \ or \y specifies our belief about how close to zero wy is (like regularization hyperparam)
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Modeling Sparse Weights

o Many probabilistic models consist of weights that are given zero-mean Gaussian priors, e.g.,

D
w(x) = Z W4 Xd (mean of a prob. lin reg model)
d=1

M=

u(x) = Wik(Xn, X) (mean of a prob. kernel based nonlin reg model)

n=1

o A zero-mean prior is of the form p(wg) = N (0, A7) or p(wg) = N(0, A1)

o Precision \ or \y specifies our belief about how close to zero wy is (like regularization hyperparam)

o However, such a prior usually gives small weights but not very strong sparsity
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Modeling Sparse Weights
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Many probabilistic models consist of weights that are given zero-mean Gaussian priors, e.g.,

D
w(x) = Z W4 Xd (mean of a prob. lin reg model)
d=1

M=

u(x) = Wik(Xn, X) (mean of a prob. kernel based nonlin reg model)

n=1

A zero-mean prior is of the form p(wy) = N'(0, A7) or p(wy) = N(0,\;1)

Precision A or A\, specifies our belief about how close to zero wy is (like regularization hyperparam)
However, such a prior usually gives small weights but not very strong sparsity

Putting a gamma prior on precision can give sparsity (will soon see why)
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Many probabilistic models consist of weights that are given zero-mean Gaussian priors, e.g.,

D

u(x) = Z WaXd (mean of a prob. lin reg model)
d=1
N

u(x) = Z Wik(Xn, X) (mean of a prob. kernel based nonlin reg model)
n=1

A zero-mean prior is of the form p(wy) = N'(0, A7) or p(wy) = N(0,\;1)
Precision A or A\, specifies our belief about how close to zero wy is (like regularization hyperparam)
However, such a prior usually gives small weights but not very strong sparsity

Putting a gamma prior on precision can give sparsity (will soon see why)

Sparsity of weights will be a very useful thing to have in many models, e.g.,
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Many probabilistic models consist of weights that are given zero-mean Gaussian priors, e.g.,

D
w(x) = Z W4 Xd (mean of a prob. lin reg model)
d=1

M=

u(x) = Wik(Xn, X) (mean of a prob. kernel based nonlin reg model)

n=1

A zero-mean prior is of the form p(wy) = N'(0, A7) or p(wy) = N(0,\;1)

Precision A or A\, specifies our belief about how close to zero wy is (like regularization hyperparam)
However, such a prior usually gives small weights but not very strong sparsity
Putting a gamma prior on precision can give sparsity (will soon see why)

Sparsity of weights will be a very useful thing to have in many models, e.g.,

o For linear model, this helps learn relevance of each feature x4
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Modeling Sparse Weights
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Many probabilistic models consist of weights that are given zero-mean Gaussian priors, e.g.,

D
w(x) = Z W4 Xd (mean of a prob. lin reg model)
d=1

M=

u(x) = Wik(Xn, X) (mean of a prob. kernel based nonlin reg model)

n=1

A zero-mean prior is of the form p(wy) = N'(0, A7) or p(wy) = N(0,\;1)

Precision A or A\, specifies our belief about how close to zero wy is (like regularization hyperparam)
However, such a prior usually gives small weights but not very strong sparsity

Putting a gamma prior on precision can give sparsity (will soon see why)

Sparsity of weights will be a very useful thing to have in many models, e.g.,

o For linear model, this helps learn relevance of each feature x4

o For kernel based model, this helps learn the relevance of each input x, (Relevance Vector Machine)
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Sparsity via a Hierarchical Prior

o Consider linear regression with prior p(wg|\g) = N(0,\;') on each weight

o Let's treat precision Ay as unknown and use a gamma (shape = a, rate = b) prior on it
ba

p(Ag) = Gamma(a, b) = @

)\271 exp(—bAqg)
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Sparsity via a Hierarchical Prior

o Consider linear regression with prior p(wg|\g) = N(0,\;') on each weight

o Let's treat precision Ay as unknown and use a gamma (shape = a, rate = b) prior on it
ba

p(Ag) = Gamma(a, b) = @

)\371 exp(—bAqg)

o Marginalizing the precision leads to a Student-t prior on each wy

p(wy) = /p(wd|)\d)p()\d)d)\d - %*ré/)z)(ﬂ w2/2)~ (172

Student-t
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Sparsity via a Hierarchical Prior

o Consider linear regression with prior p(wg|\g) = N(0,\;') on each weight

o Let's treat precision Ay as unknown and use a gamma (shape = a, rate = b) prior on it
ba

p(Ag) = Gamma(a, b) = @

)\371 exp(—bAqg)

o Marginalizing the precision leads to a Student-t prior on each wy

p(wy) = /p(Wde)p()\d)d)\d - %}Z)z)(“ w2/2)~ (172

Student-t

o Note: Can make the prior an uninformative prior by setting a and b to be very small (e.g., 107%)
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Sparsity via a Hierarchical Prior

o Consider linear regression with prior p(wg|\g) = N(0,\;') on each weight

o Let's treat precision Ay as unknown and use a gamma (shape = a, rate = b) prior on it
ba

p(Ag) = Gamma(a, b) = @

)\371 exp(—bAqg)

o Marginalizing the precision leads to a Student-t prior on each wy

p(wy) = /p(Wde)p()\d)d)\d - %}Z)z)(“ w2/2)~ (172

Student-t

o Note: Can make the prior an uninformative prior by setting a and b to be very small (e.g., 107%)
o Note: Some other priors on Ay (e.g., exponential distribution) also result in sparse priors on wy
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Bayesian Linear Regression with Sparse Prior on Weights

o Posterior inference for w not straightforward since p(w) = HdD:1 p(wy) is no longer Gaussian

o Approximate inference is usually needed for inferring the full posterior
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Bayesian Linear Regression with Sparse Prior on Weights

o Posterior inference for w not straightforward since p(w) = HdD:1 p(wy) is no longer Gaussian
o Approximate inference is usually needed for inferring the full posterior

o Many approaches exist (which we will see later)
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Bayesian Linear Regression with Sparse Prior on Weights

o Posterior inference for w not straightforward since p(w) = HdD:1 p(wy) is no longer Gaussian

o Approximate inference is usually needed for inferring the full posterior

©

Many approaches exist (which we will see later)

©

Such approaches are mostly in form of alternating estimation of w and A
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Bayesian Linear Regression with Sparse Prior on Weights

o Posterior inference for w not straightforward since p(w) = HdD:1 p(wy) is no longer Gaussian

o Approximate inference is usually needed for inferring the full posterior

©

Many approaches exist (which we will see later)

©

Such approaches are mostly in form of alternating estimation of w and A

o Estimate Ay given wy, estimate wy given Ay
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Bayesian Linear Regression with Sparse Prior on Weights

o Posterior inference for w not straightforward since p(w) = HdD:1 p(wy) is no longer Gaussian

o Approximate inference is usually needed for inferring the full posterior

o Many approaches exist (which we will see later)

o Such approaches are mostly in form of alternating estimation of w and A
o Estimate Ay given wy, estimate wy given Ay

o Popular approaches: EM, Gibbs sampling, variational inference, etc
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Bayesian Linear Regression with Sparse Prior on Weights

o Posterior inference for w not straightforward since p(w) = HdD:1 p(wy) is no longer Gaussian

o Approximate inference is usually needed for inferring the full posterior

©

Many approaches exist (which we will see later)

©

Such approaches are mostly in form of alternating estimation of w and A

o Estimate Ay given wy, estimate wy given Ay

©

Popular approaches: EM, Gibbs sampling, variational inference, etc

©

Working with such sparse priors is known as Sparse Bayesian Learning
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Bayesian Linear Regression with Sparse Prior on Weights

o Posterior inference for w not straightforward since p(w) = HdD:1 p(wy) is no longer Gaussian

o Approximate inference is usually needed for inferring the full posterior

©

Many approaches exist (which we will see later)

©

Such approaches are mostly in form of alternating estimation of w and A

o Estimate Ay given wy, estimate wy given Ay

©

Popular approaches: EM, Gibbs sampling, variational inference, etc

©

Working with such sparse priors is known as Sparse Bayesian Learning

o Used in many models where we want to have sparsity in the weights (very few non-zero weights)
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Bayesian Linear Regression with Sparse Prior on Weights

o Posterior inference for w not straightforward since p(w) = HdD:1 p(wy) is no longer Gaussian

o Approximate inference is usually needed for inferring the full posterior

©

Many approaches exist (which we will see later)

©

Such approaches are mostly in form of alternating estimation of w and A

o Estimate Ay given wy, estimate wy given Ay

©

Popular approaches: EM, Gibbs sampling, variational inference, etc

©

Working with such sparse priors is known as Sparse Bayesian Learning

o Used in many models where we want to have sparsity in the weights (very few non-zero weights)

©

Note: We will later look at other ways of getting sparsity (e.g., spike-and-slab priors defined by
binary switch variables for each weight)
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Bayesian Logistic Regression

(..a simple, single-parameter, yet non-conjugate model)
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Probabilistic Models for Classification

o The goal is to learn p(y|x). Here p(y|x) will be a discrete distribution (e.g., Bernoulli, multinoulli)
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Probabilistic Models for Classification

o The goal is to learn p(y|x). Here p(y|x) will be a discrete distribution (e.g., Bernoulli, multinoulli)

o Usually two approaches to learn p(y|x): Discriminative Classification and Generative Classification
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Probabilistic Models for Classification

o The goal is to learn p(y|x). Here p(y|x) will be a discrete distribution (e.g., Bernoulli, multinoulli)
o Usually two approaches to learn p(y|x): Discriminative Classification and Generative Classification

o Discriminative Classification: Model and learn p(y|x) directly
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Probabilistic Models for Classification

o The goal is to learn p(y|x). Here p(y|x) will be a discrete distribution (e.g., Bernoulli, multinoulli)
o Usually two approaches to learn p(y|x): Discriminative Classification and Generative Classification
o Discriminative Classification: Model and learn p(y|x) directly

o This approach does not model the distribution of the inputs x
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Probabilistic Models for Classification

©

©

©

©

The goal is to learn p(y|x). Here p(y|x) will be a discrete distribution (e.g., Bernoulli, multinoulli)
Usually two approaches to learn p(y|x): Discriminative Classification and Generative Classification
Discriminative Classification: Model and learn p(y|x) directly

o This approach does not model the distribution of the inputs x

Generative Classification: Model and learn p(y|x) “indirectly”
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The goal is to learn p(y|x). Here p(y|x) will be a discrete distribution (e.g., Bernoulli, multinoulli)
Usually two approaches to learn p(y|x): Discriminative Classification and Generative Classification
Discriminative Classification: Model and learn p(y|x) directly

o This approach does not model the distribution of the inputs x

Generative Classification: Model and learn p(y|x) “indirectly”as p(y|x) = %
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The goal is to learn p(y|x). Here p(y|x) will be a discrete distribution (e.g., Bernoulli, multinoulli)
Usually two approaches to learn p(y|x): Discriminative Classification and Generative Classification
Discriminative Classification: Model and learn p(y|x) directly

o This approach does not model the distribution of the inputs x

Generative Classification: Model and learn p(y|x) “indirectly”as p(y|x) = %

o Called generative because, via p(x|y), we model how the inputs x of each class are generated
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Probabilistic Models for Classification

o The goal is to learn p(y|x). Here p(y|x) will be a discrete distribution (e.g., Bernoulli, multinoulli)
o Usually two approaches to learn p(y|x): Discriminative Classification and Generative Classification
o Discriminative Classification: Model and learn p(y|x) directly

o This approach does not model the distribution of the inputs x
o Generative Classification: Model and learn p(y|x) “indirectly” as p(y|x) = %

o Called generative because, via p(x|y), we model how the inputs x of each class are generated

o The approach requires first learning class-marginal p(y) and class-conditional distributions p(x|y)

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Linear Regression (Hyperparameter Estimation, Sparse Priors), Bayesian Logistic Regression 16



Probabilistic Models for Classification

©
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©

The goal is to learn p(y|x). Here p(y|x) will be a discrete distribution (e.g., Bernoulli, multinoulli)
Usually two approaches to learn p(y|x): Discriminative Classification and Generative Classification
Discriminative Classification: Model and learn p(y|x) directly

o This approach does not model the distribution of the inputs x

Generative Classification: Model and learn p(y|x) “indirectly”as p(y|x) = %

o Called generative because, via p(x|y), we model how the inputs x of each class are generated
o The approach requires first learning class-marginal p(y) and class-conditional distributions p(x|y)

o Usually harder to learn than discriminative but also has some advantages (more on this later)
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Probabilistic Models for Classification
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The goal is to learn p(y|x). Here p(y|x) will be a discrete distribution (e.g., Bernoulli, multinoulli)
Usually two approaches to learn p(y|x): Discriminative Classification and Generative Classification
Discriminative Classification: Model and learn p(y|x) directly

o This approach does not model the distribution of the inputs x

Generative Classification: Model and learn p(y|x) “indirectly”as p(y|x) = %

o Called generative because, via p(x|y), we model how the inputs x of each class are generated
o The approach requires first learning class-marginal p(y) and class-conditional distributions p(x|y)

o Usually harder to learn than discriminative but also has some advantages (more on this later)

Both approaches can be given a non-Bayesian or Bayesian treatment

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Linear Regression (Hyperparameter Estimation, Sparse Priors), Bayesian Logistic Regression



Probabilistic Models for Classification

©

©

©

©

(+]

The goal is to learn p(y|x). Here p(y|x) will be a discrete distribution (e.g., Bernoulli, multinoulli)
Usually two approaches to learn p(y|x): Discriminative Classification and Generative Classification
Discriminative Classification: Model and learn p(y|x) directly

o This approach does not model the distribution of the inputs x

Generative Classification: Model and learn p(y|x) “indirectly”as p(y|x) = %

o Called generative because, via p(x|y), we model how the inputs x of each class are generated

o The approach requires first learning class-marginal p(y) and class-conditional distributions p(x|y)

o Usually harder to learn than discriminative but also has some advantages (more on this later)
Both approaches can be given a non-Bayesian or Bayesian treatment

o The Bayesian treatment won't rely on point estimates but infer the posterior over unknowns
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Discriminative Classification via Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}
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Discriminative Classification via Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}

o Logistic Regression models x to y relationship using the sigmoid function
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Discriminative Classification via Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}

o Logistic Regression models x to y relationship using the sigmoid function

ply = 1|x, w)
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Discriminative Classification via Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}

o Logistic Regression models x to y relationship using the sigmoid function

ply =1|x,w) =p
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Discriminative Classification via Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}

o Logistic Regression models x to y relationship using the sigmoid function

ply = 1ix,w) = = o(w" x)
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Discriminative Classification via Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}

o Logistic Regression models x to y relationship using the sigmoid function
1

— — = Ty) —
p(y_]-'X? W)_:LL_U(W X)— 1+exp(—wa)
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Discriminative Classification via Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}
o Logistic Regression models x to y relationship using the sigmoid function

1  exp(w'x)
1+exp(—wTx) 1+exp(wx)

ply =1x,w) =p=o(w'x) =
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Discriminative Classification via Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}
o Logistic Regression models x to y relationship using the sigmoid function

1  exp(w'x)
1+exp(—wTx) 1+exp(wx)

ply =1x,w) =p=o(w'x) =

where w € RP is the weight vector.
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Discriminative Classification via Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}
o Logistic Regression models x to y relationship using the sigmoid function

1  exp(w'x)
1+exp(—wTx) 1+exp(wx)

ply =1x,w) =p=o(w'x) =

where w € RP is the weight vector. Also note that p(y = 0|x,w) =1—p
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Discriminative Classification via Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}
o Logistic Regression models x to y relationship using the sigmoid function

1  exp(w'x)
1+exp(—wTx) 1+exp(wx)

ply =1x,w) =p=o(w'x) =

where w € RP is the weight vector. Also note that p(y = 0|x,w) =1—p

Sigmoid
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Discriminative Classification via Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}
o Logistic Regression models x to y relationship using the sigmoid function

1  exp(w'x)
1+exp(—wTx) 1+exp(wx)

ply =1x,w) =p=o(w'x) =

where w € RP is the weight vector. Also note that p(y = 0|x,w) =1—p

Sigmoid

T

o A large positive (negative) “score” w ' x means large probability of label being 1 (0)
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Discriminative Classification via Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}
o Logistic Regression models x to y relationship using the sigmoid function

1  exp(w'x)
1+exp(—wTx) 1+exp(wx)

ply =1x,w) =p=o(w'x) =

where w € RP is the weight vector. Also note that p(y = 0|x,w) =1—p

Sigmoid

T

o A large positive (negative) “score” w ' x means large probability of label being 1 (0)

o Is sigmoid the only way to convert the score into a probability?
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Discriminative Classification via Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}
o Logistic Regression models x to y relationship using the sigmoid function

1  exp(w'x)
1+exp(—wTx) 1+exp(wx)

ply =1x,w) =p=o(w'x) =

where w € RP is the weight vector. Also note that p(y = 0|x,w) =1—p

Sigmoid

o A large positive (negative) “score” w'

x means large probability of label being 1 (0)
o Is sigmoid the only way to convert the score into a probability?

o No, while LR does that, there exist models that define y in other ways
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Discriminative Classification via Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}
o Logistic Regression models x to y relationship using the sigmoid function

1  exp(w'x)
1+exp(—wTx) 1+exp(wx)

ply =1x,w) =p=o(w'x) =

where w € RP is the weight vector. Also note that p(y = 0|x,w) =1—p

Sigmoid

o A large positive (negative) “score” w'

x means large probability of label being 1 (0)
o Is sigmoid the only way to convert the score into a probability?
o No, while LR does that, there exist models that define x in other ways. E.g. Probit Regression

p=ply =1x,w) =d(w'x)
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Discriminative Classification via Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}
o Logistic Regression models x to y relationship using the sigmoid function

1  exp(w'x)
1+exp(—wTx) 1+exp(wx)

ply =1x,w) =p=o(w'x) =

where w € RP is the weight vector. Also note that p(y = 0|x,w) =1—p

Sigmoid

o A large positive (negative) “score” w'

x means large probability of label being 1 (0)
o Is sigmoid the only way to convert the score into a probability?

o No, while LR does that, there exist models that define x in other ways. E.g. Probit Regression
p=ply =1x,w) =d(w'x) (where ® denotes the CDF of N(0,1))
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o The LR classification rule is
ply = 1|x,w)

= p= o(w'x)=

1

_ exp(w'x)
1+exp(—wTx) 1+exp(w’x)

«O0>» «Fr «=» <« DA
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-



o The LR classification rule is

- I 1 __exp(w'x)
Py=1xw) = p= oW x) = T o W™ ~ 1+ exp(w )
1
— _ T e —
l-p=1-o(w x) 1+ exp(w'x)

p(y = 0|x, w)

«O0>» «Fr «=» <« 3 = DA



Logistic Regression

o The LR classification rule is
1 _ exp(w'x)

=1 = = T = =
Py = 1lx, w) n=o(w x) 1+exp(—wTx) 1+ exp(wTx)

1
- o Ty
ply=0x,w) = 1l—p=1-0o(w x) T ¥ exp(w™x)

o This implies a Bernoulli likelihood model for the labels

p(y|x, w) = Bernoulli(o(w " x))
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Logistic Regression

o The LR classification rule is
1 _ exp(w'x)
14+exp(—wTx)  1+exp(wTx)

1
B _ T
ply=0/x,w) = 1l—p=1-o0o(w x)_1 oxp(wTx)

ply=1xw) = p= ow'x)=

o This implies a Bernoulli likelihood model for the labels

exp(w ' x)
1+ exp(wTx)

p(ylx, w) = Bernoulli(a(wa)) =

1 (1=)
1+ exp(wTx)
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Logistic Regression

o The LR classification rule is
1 _ exp(w'x)
14+exp(—wTx)  1+exp(wTx)
1
-

ply =0x,w) = 1l-p=1-o(w X):W(WTX)

ply=1pxw) = p= o(w'x)=

o This implies a Bernoulli likelihood model for the labels

exp(w ' x)

p(y|x, w) = Bernoulli(o(w " x)) = 1+ exp(wTx)

1 (1=)
1+ exp(wTx)

o Given N observations (X,y) = {x,, y»}N_;, we can do point estimation for w by maximizing the
log-likelihood (or minimizing the negative log-likelihood).
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Logistic Regression

o The LR classification rule is
1 _ exp(w'x)
14+exp(—wTx)  1+exp(wTx)
1
-

ply =0x,w) = 1l-p=1-o(w X):W(WTX)

ply=1pxw) = p= o(w'x)=

o This implies a Bernoulli likelihood model for the labels

exp(w ' x)

p(y|x, w) = Bernoulli(o(w " x)) = 1+ exp(wTx)

1 (1=)
1+ exp(wTx)

o Given N observations (X,y) = {x,, y»}N_;, we can do point estimation for w by maximizing the
log-likelihood (or minimizing the negative log-likelihood). This is basically MLE.
N

WuMLE = arg mﬁxz log p(yn|xn, w)

n=1

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Linear Regression (Hyperparameter Estimation, Sparse Priors), Bayesian Logistic Regression 18



Logistic Regression

o The LR classification rule is
1 _ exp(w'x)
14+exp(—wTx)  1+exp(wTx)
1
-

ply =0x,w) = 1l-p=1-o(w X):W(WTX)

ply=1pxw) = p= o(w'x)=

o This implies a Bernoulli likelihood model for the labels

exp(w ' x)

p(y|x, w) = Bernoulli(o(w " x)) = 1+ exp(wTx)

1 (1=)
1+ exp(wTx)

o Given N observations (X,y) = {x,, y»}N_;, we can do point estimation for w by maximizing the
log-likelihood (or minimizing the negative log-likelihood). This is basically MLE.
N N

WuyLE = arg mﬁxz log p(yn|xn, w) = arg min — Z log p(yn|Xn, w)

n=1 n=1
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Logistic Regression

o The LR classification rule is
1 _ exp(w'x)
14+exp(—wTx)  1+exp(wTx)
1
-

ply =0x,w) = 1l-p=1-o(w X):W(WTX)

ply=1pxw) = p= o(w'x)=

o This implies a Bernoulli likelihood model for the labels

exp(w ' x)

p(y|x, w) = Bernoulli(o(w " x)) = 1+ exp(wTx)

1 (1=)
1+ exp(wTx)

o Given N observations (X,y) = {x,, y»}N_;, we can do point estimation for w by maximizing the
log-likelihood (or minimizing the negative log-likelihood). This is basically MLE.
N N

WuyLE = arg maxz log p(yn|xn, w) = arg min — Z log p(yn|xn, w) = arg min NLL(w)
w w w

n=1 n=1
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Logistic Regression

o The LR classification rule is
1 exp(w " x)
=1 = = T = =
Ply [ w) n=o(w x) 1+exp(—wTx) 1+ exp(wTx)
1
ply =0x,w) = l-p=1-0o(w'x)=

T 1+ exp(wTx)

©

This implies a Bernoulli likelihood model for the labels

exp(w ' x)

p(y|x, w) = Bernoulli(o(w " x)) = 1+ exp(wTx)

1 (1=)
1+ exp(wTx)

Given N observations (X, y) = {x,, y»};, we can do point estimation for w by maximizing the
log-likelihood (or minimizing the negative log-likelihood). This is basically MLE.
N N

©

WuyLE = arg maxz log p(yn|xn, w) = arg min — Z log p(yn|xn, w) = arg min NLL(w)
v n=1 v n=1 v
Convex loss function. Global minima. Both first order and second order methods widely used.

©
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Logistic Regression

o The LR classification rule is
1 _ exp(w'x)
14+exp(—wTx)  1+exp(wTx)

1
B _ T
ply=0/x,w) = 1l—p=1-o0o(w x)_1 oxp(wTx)

ply=1pxw) = p= o(w'x)=

o This implies a Bernoulli likelihood model for the labels

exp(w ' x)
1+ exp(wTx)

p(y|x, w) = Bernoulli(o(w ' x)) =

1 (1=)
1+ exp(wTx)

o Given N observations (X,y) = {x,, y»}N_;, we can do point estimation for w by maximizing the
log-likelihood (or minimizing the negative log-likelihood). This is basically MLE.
N N

WuyLE = arg maxz log p(yn|xn, w) = arg min — Z log p(yn|xn, w) = arg min NLL(w)
v n=1 v n=1 w
o Convex loss function. Global minima. Both first order and second order methods widely used.

o Can also add a regularizer on w to prevent overfitting. This corresponds to doing MAP estimation
with a prior on w, i.e., wyap = arg max.,.,[z:f:’:1 log p(yn|xn, w)+ log p(w)]
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Bayesian Logistic Regression

o MLE/MAP only gives a point estimate. We would like to infer the full posterior over w
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Bayesian Logistic Regression
o MLE/MAP only gives a point estimate. We would like to infer the full posterior over w
o Recall that the likelihood model is Bernoulli

exp(w " x)
1+ exp(wTx)

(1=y)
1
=B Ili Tx)) =
p(y|x, w) ernoulli(o(w ' x)) i exp(wa)}
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Bayesian Logistic Regression
o MLE/MAP only gives a point estimate. We would like to infer the full posterior over w
o Recall that the likelihood model is Bernoulli

exp(w " x)
1+ exp(wTx)

(1=y)
1
=B Ili Tx)) =
p(y|x, w) ernoulli(o(w ' x)) i exp(wa)}

o Just like the Bayesian linear regression case, let's use a Gausian prior on w

p(w) = N(0,\ 1p) o exp(—%wTw)
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Bayesian Logistic Regression

©

©

©

MLE/MAP only gives a point estimate. We would like to infer the full posterior over w

Recall that the likelihood model is Bernoulli

exp(w " x)
1+ exp(wTx)

(1=y)
1
=B Ili Tx)) =
p(y|x, w) ernoulli(o(w ' x)) i exp(wa)}

Just like the Bayesian linear regression case, let's use a Gausian prior on w

p(w) = N(0,\ 1p) o exp(—%wTw)
Given N observations (X, y) = {x,, y»}"_,, where X is N x D and y is N x 1, the posterior over w

p(w|X, y) p(yIX, w)p(w)

[ py|X, w)p(w)dw
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Bayesian Logistic Regression

©

©

©

MLE/MAP only gives a point estimate. We would like to infer the full posterior over w

Recall that the likelihood model is Bernoulli

exp(w " x)
1+ exp(wTx)

(1=y)
1
=B Ili Tx)) =
p(y|x, w) ernoulli(o(w ' x)) i exp(wa)}

Just like the Bayesian linear regression case, let's use a Gausian prior on w

p(w) = N(0,\ 1p) o exp(—%wTw)
Given N observations (X, y) = {x,, y»}"_,, where X is N x D and y is N x 1, the posterior over w

p(wlX.y) = - PUXwlpw) __ TIs, plyslxo, w)p(w)

[ pyIX,w)p(w)dw [ TTY, p(ya|xn, w)p(w)dw
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Bayesian Logistic Regression

©

©

©

©

MLE/MAP only gives a point estimate. We would like to infer the full posterior over w

Recall that the likelihood model is Bernoulli

exp(w " x)
1+ exp(wTx)

(1=y)
1
=B Ili Tx)) =
p(y|x, w) ernoulli(o(w ' x)) i exp(wa)}

Just like the Bayesian linear regression case, let's use a Gausian prior on w

p(w) = N(0,\ 1p) o exp(—%wTw)
Given N observations (X, y) = {x,, y»}"_,, where X is N x D and y is N x 1, the posterior over w

WX o) = PO wIp(w)  TTuy p(yalxa, w)p(w)
PUWIXy) = Ty K wyp(w)dw — [T p(yalxm, w)p(w)dw

The denominator is intractable in general (logistic-Bernoulli and Gaussian are not conjugate)
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Bayesian Logistic Regression

©

©

©

©

MLE/MAP only gives a point estimate. We would like to infer the full posterior over w

Recall that the likelihood model is Bernoulli

exp(w " x)
1+ exp(wTx)

(1=y)
1
=B Ili Tx)) =
p(y|x, w) ernoulli(o(w ' x)) i exp(wa)}

Just like the Bayesian linear regression case, let's use a Gausian prior on w

p(w) = N(0,\ 1p) o exp(—%wTw)
Given N observations (X, y) = {x,, y»}"_,, where X is N x D and y is N x 1, the posterior over w

WX o) = PO wIp(w)  TTuy p(yalxa, w)p(w)
PUWIXy) = Ty K wyp(w)dw — [T p(yalxm, w)p(w)dw

The denominator is intractable in general (logistic-Bernoulli and Gaussian are not conjugate)

o Can't get a closed form expression for p(w|X,y). Must approximate it!
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Bayesian Logistic Regression

©

©

©

©

MLE/MAP only gives a point estimate. We would like to infer the full posterior over w

Recall that the likelihood model is Bernoulli

exp(w " x)
1+ exp(wTx)

(1=y)
1
=B Ili Tx)) =
p(y|x, w) ernoulli(o(w ' x)) i exp(wa)}

Just like the Bayesian linear regression case, let's use a Gausian prior on w

p(w) = N(0,\ 1p) o exp(—%wTw)
Given N observations (X, y) = {x,, y»}"_,, where X is N x D and y is N x 1, the posterior over w

WX o) = PO wIp(w)  TTuy p(yalxa, w)p(w)
PUWIXy) = Ty K wyp(w)dw — [T p(yalxm, w)p(w)dw

The denominator is intractable in general (logistic-Bernoulli and Gaussian are not conjugate)

o Can't get a closed form expression for p(w|X,y). Must approximate it!

o Several ways to do it, e.g., MCMC, variational inference, Laplace approximation (next class)
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Next Class

©

Laplace approximation

©

©

Computing posterior and posterior predictive for logistic regression

Properties/benefits of Bayesian logistic regression

o Bayesian approach to generative classification
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