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Plan for today

Exponential family distributions (a very important class of distributions)

p(x |θ) =
1

Z (θ)
h(x) exp[θ>φ(x)] = h(x) exp[θ>φ(x)− A(θ)]

Conditional models and parameter estimation for them (our example: Prob. Linear Regression)

p(yn|w , xn, β) = N (yn|w>xn, β
−1)
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Exponential Family (Pitman, Darmois, Koopman, Late 1930s)

Defines a class of distributions. An Exponential Family distribution is of the form

p(x |θ) =
1

Z (θ)
h(x) exp[θ>φ(x)] = h(x) exp[θ>φ(x)− A(θ)]

x ∈ Xm is the random variable being modeled (where X denotes some space, e.g., R or {0, 1})

θ ∈ Rd : Natural parameters or canonical parameters defining the distribution

φ(x) ∈ Rd : Sufficient statistics (another random variable)

Why “sufficient”: p(x |θ) as a function of θ depends on x only via φ(x)

Z (θ) =
∫
h(x) exp[θ>φ(x)]dx : Partition function

A(θ) = logZ (θ): Log-partition function (also called the cumulant function)

h(x): A constant (doesn’t depend on θ)
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Expressing a Distribution in Exponential Family Form

Recall the form of exp-fam distribution: h(x) exp[θ>φ(x)− A(θ)]

To write any exp-fam dist p() in the above form, write it as exp(log p()), e.g., for Binomial

exp (log Binomial(x |N, µ)) = exp

(
log

(
N

x

)
µx(1− µ)N−x

)
= exp

(
log

(
N

x

)
+ x logµ+ (N − x) log(1− µ)

)
=

(
N

x

)
exp

(
x log

µ

1− µ
− N log(1− µ)

)
Now compare the resulting expression with the exponential family form

p(x |θ) = h(x) exp(θ>φ(x)− A(θ))

.. to identify the natural parameters, sufficient statistics, log-partition function, etc.
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(Univariate) Gaussian as Exponential Family

Let’s try to write a univariate Gaussian in the exponential family form

p(x |θ) = h(x) exp[θ>φ(x)− A(θ)]

Recall the standard definition of a univariate Gaussian (already has exp in it, so less work :))

N (x|µ, σ2) =
1

√
2πσ2

exp

[
−

(x − µ)2

2σ2

]
=

1
√
2π

exp

[
µ

σ2
x −

1

2σ2
x2 −

µ2

2σ2
− log σ

]

=
1
√
2π

exp

[[ µ

σ2

− 1
2σ2

]>[
x
x2

]
−
(
µ2

2σ2
+ log σ

)]
h(x) = 1√

2π

θ =

[ µ
σ2

− 1
2σ2

]
=

[
θ1
θ2

]
, and

[
µ
σ2

]
=

[
− θ1

2θ2
− 1

2θ2

]
φ(x) =

[
x
x2

]
A(θ) = µ2

2σ2 + log σ =
−θ21
4θ2
− 1

2 log(−2θ2)− 1
2 log(2π)
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Other Examples

Many other distribution belong to the exponential family

Bernoulli

Beta

Gamma

Multinoulli/Multinomial

Dirichlet

Multivariate Gaussian

.. and many more ( https://en.wikipedia.org/wiki/Exponential_family )

Note: Not all distributions belong to the exponential family, e.g.,

Uniform distribution (x ∼ Unif(a, b))

Student-t distribution

Mixture distributions (e.g., mixture of Gaussians)
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Log-Partition Function

A(θ) = logZ (θ) = log
∫
h(x) exp[θ>φ(x)]dx is the log-partition function

A(θ) is also called the cumulant function

Derivatives of A(θ) can be used to generate the cumulants of the sufficient statistics φ(x)

Exercise: Assume θ to be a scalar (thus φ(x) is also scalar). Show that the first and the second
derivatives of A(θ) are

dA

dθ
= Ep(x|θ)[φ(x)]

d2A

dθ2
= Ep(x|θ)[φ

2(x)]−
[
Ep(x|θ)[φ(x)]

]2
= var[φ(x)]

Note: The above result also holds when θ and φ(x) are vector-valued (the “var” will be “covar”)

Important: A(θ) is a convex function of θ. Why?
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MLE for Exponential Family Distributions

Suppose we have data D = {x1, . . . , xN} drawn i.i.d. from an exponential family distribution

p(x |θ) = h(x) exp
[
θ>φ(x)− A(θ)

]
To do MLE, we need the overall likelihood. This is simply a product of the individual likelihoods

p(D|θ) =
N∏
i=1

p(x i |θ) =
[

N∏
i=1

h(x i )

]
exp

[
θ
>

N∑
i=1

φ(x i )− NA(θ)

]
=

[
N∏
i=1

h(x i )

]
exp
[
θ
>
φ(D)− NA(θ)

]

To estimate θ (as we’ll see shortly), we only need φ(D) =
∑N

i=1 φ(x i ) and N

Size of φ(D) =
∑N

i=1 φ(x i ) does not grow with N (same as the size of each φ(x i ))

Only exponential family distributions have finite-sized sufficient statistics

No need to store all the data; can simply store and recursively update the sufficient statistics with
more and more data

Very useful when doing probabilistic/Bayesian inference with large-scale data sets. Also useful in
online parameter estimation problems.
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MLE and Moment Matching

The likelihood is of the form p(D|θ) =
[∏N

i=1 h(x i )
]

exp
[
θ>φ(D)− NA(θ)

]
The log-likelihood is (ignoring constant w.r.t. θ): log p(D|θ) = θ>φ(D)− NA(θ)

Note: This is concave in θ (since −A(θ) is concave). Maximization will yield a global maxima of θ

MLE for exp-fam distributions can also be seen as doing moment-matching. To see this, note that

∇θ

[
θ
>
φ(D)− NA(θ)

]
= φ(D)− N∇θ [A(θ)] = φ(D)− NEp(x|θ)[φ(x)] =

N∑
i=1

φ(x i )− NEp(x|θ)[φ(x)]

Therefore, at the “optimal” (i.e., MLE) θ̂, where the derivative is 0, the following must hold

Ep(x|θ)[φ(x)] =
1

N

N∑
i=1

φ(x i )

This is basically matching the expected moments of the distribution with empirical moments
(“empirical” here means what we compute using the observed data)
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Moment Matching: An Example

Given N observations x1, . . . , xN from a univariate Gaussian N(x |µ, σ2), doing moment-matching

E[φ(x)] =
1

N

N∑
i=1

φ(xi )

The “true”, i.e., expected moments: E[φ(x)] = E
[
x
x2

]
. Therefore

E
[
x
x2

]
=

[
1
N

∑N
i=1 xi

1
N

∑N
i=1 x

2
i

]

For a univariate Gaussian, note that E[x ] = µ and E[x2] = var[x ] + E[x ]2 = σ2 + µ2

Thus we have two equations and two unknowns

From the first equation, we immediately get µ = 1
N

∑N
i=1 xi

From the second equation, we get σ2 = E[x2]− µ2 = 1
N

∑N
i=1 x

2
i − µ2 = 1

N

∑N
i=1(xi − µ)2
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Bayesian Inference for Exponential Family Distributions

We saw that the total likelihood given N i.i.d. observations D{x1, . . . , xN}

p(D|θ) ∝ exp
[
θ>φ(D)− NA(θ)

]
where φ(D) =

N∑
i=1

φ(x i )

Let’s choose the following prior (note: it looks similar in terms of θ within the exponent)

p(θ|ν0, τ 0) = h(θ) exp
[
θ>τ0 − ν0A(θ)− Ac(ν0, τ 0)

]
Ignoring the prior’s log-partition function Ac(ν0, τ 0) = log

∫
θ
h(θ) exp

[
θ>τ0 − ν0A(θ)

]
dθ

p(θ|ν0, τ 0) ∝ h(θ) exp
[
θ>τ0 − ν0A(θ)

]
Comparing the prior’s form with the likelihood, we notice that

ν0 is like the number of “pseudo-observations” coming from the prior

τ0 is the total sufficient statistics of these ν0 pseudo-observations

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Exponential Family Distributions and Conditional Models 11



The Posterior Distribution

As we saw, the likelihood is

p(D|θ) ∝ exp
[
θ
>
φ(D)− NA(θ)

]
where φ(D) =

N∑
i=1

φ(x i )

And the prior we chose is
p(θ|ν0, τ 0) ∝ h(θ) exp

[
θ
>
τ0 − ν0A(θ)

]
For this form of the prior, the posterior p(θ|D) ∝ p(θ)p(D|θ) will be

p(θ|D) ∝ h(θ) exp
[
θ>(τ0 + φ(D))− (ν0 + N)A(θ)

]
Note that the posterior has the same form as the prior; such a prior is called a conjugate prior
(note: all exponential family distributions have a conjugate prior having a form shown as above)

Thus posterior hyperparams ν0
′, τ0
′ are obtained by simply adding “stuff” to prior’s hyperparams

ν0
′ ← ν0 + N (no. of pseudo-obs + no. of actual obs)

τ0
′ ← τ0 + φ(D) (total suff-stats from pseudo-obs + total suff-stats from actual obs)

Note: Prior’s log-partition function Ac(ν0, τ 0) updates to posterior’s: Ac(ν0 + N, τ 0 + φ(D))
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The Posterior Distribution

Assuming the prior p(θ|ν0, τ 0) ∝ h(θ) exp
[
θ>τ0 − ν0A(θ)

]
, the posterior was

p(θ|D) ∝ h(θ) exp
[
θ>(τ0 + φ(D))− (ν0 + N)A(θ)

]
Assuming τ0 = ν0τ̄0, we can also write the prior as p(θ|ν0, τ̄0) ∝ exp

[
θ>ν0τ̄0 − ν0A(θ)

]
Can think of τ̄0 = τ0/ν0 as the average sufficient statistics per pseudo-observation

The posterior can be written as

p(θ|D) ∝ h(θ) exp

[
θ>(ν0 + N)

ν0τ̄ 0 + φ(D)

ν0 + N
− (ν0 + N)A(θ)

]
Denoting φ̄ = φ(D)

N as the average suff-stats per real observation, the posterior updates are

ν0
′ ← ν0 + N

τ̄ ′0 ← ν0τ̄0 + Nφ̄

ν0 + N

Note that the posterior hyperparam τ̄ ′0 is a convex combination of the average suff-stats τ̄0 of the
ν0 pseudo-observations and the average suff-stats φ̄ of the N actual observations
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Posterior Predictive Distribution

Assume some past (training) data D = {x1, . . . , xN} generated from an exp. family distribution

Assme some test data D′ = {x̃1, . . . , x̃N′} from the same distribution (N ′ ≥ 1)

The posterior predictive distribution of D′ (probability distribution of new data given old data)

p(D′|D) =

∫
p(D′|θ)p(θ|D)dθ

We’ve already seen some specific examples of computing the posterior predictive dist., e.g.,

Beta-Bernoulli case: Posterior predictive distribution of next coin toss

Dirichlet-Multinoulli case: Posterior predictive distribution of next dice roll

Gaussian-Gaussian, Gaussian-IG, Gaussian-Gamma, Gaussian-NIG, Gaussian-NG case: Posterior
predictive distribution of the next observation

Nice Property: If the likelihood is an exponential family distribution, prior is conjugate (and thus is
the posterior), the posterior predictive always has a closed form expression (shown next)
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Posterior Predictive Distribution

Recall the form of the likelihood p(D|θ) for exp. family dist.

p(D|θ) =

[
N∏
i=1

h(x i )

]
exp

[
θ>φ(D)− NA(θ)

]
The conjugate prior was

p(θ|ν0, τ 0) = h(θ) exp
[
θ>τ0 − ν0A(θ)− Ac(ν0, τ 0)

]
For this choice of the conjugate prior, the posterior was shown to be

p(θ|D) = h(θ) exp
[
θ>(τ0 + φ(D))− (ν0 + N)A(θ)− Ac(ν0 + N, τ 0 + φ(D))

]
For the test data D′, the likelihood will be

p(D′|θ) =

 N′∏
i=1

h(x̃ i )

 exp
[
θ>φ(D′)− N ′A(θ)

]
where φ(D′) =

N′∑
i=1

φ(x̃ i )
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Posterior Predictive Distribution

Therefore the posterior predictive distribution will be

p(D′|D) =

∫
p(D′|θ)p(θ|D)dθ

=

∫  N′∏
i=1

h(x̃ i )


︸ ︷︷ ︸
constant w.r.t. θ

exp
[
θ
>
φ(D′)− N′A(θ)

]
h(θ) exp

θ>(τ0 + φ(D))− (ν0 + N)A(θ)− Ac (ν0 + N, τ 0 + φ(D))︸ ︷︷ ︸
constant w.r.t. θ

dθ

The above gets simplified further into

p(D′|D) =

 N′∏
i=1

h(x̃ i )

 ∫ h(θ) exp
[
θ>(τ0 + φ(D) + φ(D′))− (ν0 + N + N ′)A(θ)

]
dθ

exp [Ac(ν0 + N, τ 0 + φ(D))]

=

 N′∏
i=1

h(x̃ i )

 Zc(ν0 + N + N ′, τ 0 + φ(D) + φ(D′))

exp [Ac(ν0 + N, τ 0 + φ(D))]

where Zc (ν0 + N + N′, τ 0 + φ(D) + φ(D′)) =
∫
h(θ) exp

[
θ>(τ0 + φ(D) + φ(D′))− (ν0 + N + N′)A(θ)

]
dθ
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Posterior Predictive Distribution

Since Ac = logZc or Zc = exp(Ac), we can write the posterior predictive distribution as

p(D′|D) =

 N′∏
i=1

h(x̃ i )

 Zc (ν0 + N + N′, τ 0 + φ(D) + φ(D′))
Zc (ν0 + N, τ 0 + φ(D))

=

 N′∏
i=1

h(x̃ i )

 exp
[
Ac (ν0 + N + N′, τ 0 + φ(D) + φ(D′))− Ac (ν0 + N, τ 0 + φ(D))

]

Therefore the posterior predictive is proportional to ..

.. the ratio of two partition functions of two “posterior distributions” (one with N + N ′ examples and
the other with N examples)

.. or exponential of the difference of the corresponding log-partition functions

Note that the form of Zc (and Ac) will simply depend on the chosen conjugate prior

Very useful result. Also holds for N = 0

In the N = 0 case, p(D′) =
∫
p(D′|θ)p(θ)dθ is simply the marginal likelihood of D′
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Summary

Exp. family distributions are very useful for modeling diverse types of data/parameters

Conjugate priors to exp. family distributions make parameter updates very simple

Other quantities such as posterior predictive can be computed in closed form

Useful in designing generative classification models. Choosing class-conditional from exponential
family with conjugate priors helps in parameter estimation

Useful in designing generative models for unsupervised learning

Uses in designing Generalized Linear Models (GLM): Model p(y |x) using exp. family distribution

Linear regression (with Gaussian likelihood) and logistic regression are GLMs

We will see several use cases when we discuss approximate inference algoritms (e.g., Gibbs
sampling, and especially variational inference)
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Estimating Conditional Models, e.g., p(y |x)

Our Example: Probabilistic/Bayesian Linear Regression
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Estimating Conditional Models

Conditional models of the form p(y |x) are commonly used in supervised learning problems

But more broadly applicable (basically any problem where data y depends on another quantity x)

Conditional models can be estimated using one of the following two ways

1 Estimate the joint distribution p(x , y) and then use Bayes rule to get p(y |x)

p(y |x , θ) =
p(x , y |θ)

p(x |θ)

2 Estimate the conditional p(y |x) directly (used when we don’t care about modeling x), e.g.

p(y |x) = N (y |fµ(x), fσ2(x)) (params of p(y |x) will be functions of x)

Approach 1 is called generative approach, approach 2 is called discriminative approach

For pros/cons, refer to CS771 lecture slides and readings

For now, we will focus on learning (2) using fully Bayesian inference

Today’s focus will be on regression problems (y is real-valued response for the input x)
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Linear Regression: A Probabilistic Setup

Given: N training examples {xn, yn}Nn=1, features: xn ∈ RD , response yn ∈ R

Assume a “noisy” linear model with regression weight vector w = [w1,w2, . . . ,wD ] ∈ RD

yn = w>xn + εn

where εn ∼ N (0, β−1), β: precision (inverse variance) of Gaussian (assumed known)

Therefore p(yn|xn,w , β) = N (yn|w>xn, β
−1)

Mean Variance

Gaussian

Note: Some books (e.g., PRML) use φ(xn) to denote the features where φ is some transformation
of the original features xn (we will only use this notation when talking about nonlinear regression)
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The Likelihood Model

Notation: X = [x1 . . . xN ]>: N × D feature matrix, y = [y1 . . . yN ]>: N × 1 response vector

Assuming independent observations, the likelihood model

p(y |w ,X, β) =
N∏

n=1

p(yn|w , xn, β) =
N∏

n=1

N (yn|w>xn, β
−1)

=
N∏

n=1

√
β

2π
exp

[
−
β

2
(yn − w>xn)

2
]

=

(
β

2π

) N
2
exp

[
−
β

2

N∑
n=1

(yn − w>xn)
2

]

Note that NLL = sum of squared errors! Minimizing w.r.t. w will give MLE/least squares solution!

For brevity, can also write the likelihood p(y |w ,X) as an N-dim multivariate Gaussian

p(y |X,w , β) = N (y |Xw , β−1IN ) =

(
β

2π

) N
2
exp

[
−
β

2
(y − Xw)>(y − Xw)

]
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The Prior

Assume the entries in w are i.i.d. with zero mean Gaussian priors. Therefore

p(w) =
D∏

d=1

p(wd) =
D∏

d=1

N (wd |0, λ−1) = N (w |0, λ−1ID) =

(
λ

2π

) D
2

exp

[
−λ

2
w>w

]

This prior promotes the entries in w to be small (close to zero)

Also, the negative of log-prior is the same as an `2 regularizer on w

This prior is conjugate to the likelihood (Gaussian) which makes posterior inference easy
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The Prior

The role of the precision hyperparam λ in the prior is important

Large values of λ would more aggressively encourage wd to be close to zero

Can think of λ as the regularization hyperparam for the weights

Important: Can infer λ as well (will see later how to do this)

Can even have different λ for each wd , i.e., p(w |{λd}Dd=1) =
∏D

d=1N (wd |0, λ−1d )

Useful in sparse regression/classification models in which very few features are relevant which can be
identified by inferring {λd}Dd=1. Popularly known as sparse Bayesian learning (more on this later).
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Inference Tasks for Bayesian Linear Regression

(Hyperparameters λ,β not shown as they are fixed/known)

Want to infer the posterior distribution over w (for now, assume β and λ to be known)

p(w |y ,X, β, λ) =
p(w |λ)p(y |w ,X, β)

p(y |X, β, λ)

Want to infer the posterior predictive distribution

p(y∗|x∗,X, y , β, λ) =

∫
p(y∗|w , x∗, β)p(w |X, y , β, λ)dw

Likelihood p(y |w , x , β) and prior p(w |λ) are Gaussians, so above computations are easy!

Also note that it’s also like a noisy linear Gaussian model: y = Xw + ε with noise ε = [ε1, . . . , εN ]

D × 1 Gaussian r.v. w transformed via N × D matrix X to produce N × 1 vector y
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Bayesian Linear Regression: The Posterior

The posterior over w (for now, assume hyperparams β and λ to be known)

p(w |y ,X, β, λ) =
p(w |λ)p(y |w ,X, β)

p(y |X, β, λ)
∝ p(w |λ)p(y |w ,X, β)

Computing p(w |X, y , β, λ)

p(w |y ,X, β, λ) ∝ N (w |0, λ−1ID)×N (y |Xw , β−1IN)

Using the “completing the squares” trick (or directly using Gaussian conditioning formula)

p(w |y ,X, β, λ) = N (µN ,ΣN)

where ΣN = (β
N∑

n=1

xnx>n + λID)−1 = (βX>X + λID)−1 (posterior’s covariance matrix)

µN = ΣN

[
β

N∑
n=1

ynxn

]
= ΣN

[
βX>y

]
= (X>X +

λ

β
ID)−1X>y (posterior’s mean)
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The Posterior: A Visualization

Assume a linear regression problem with ground truth w = [w0,w1] with w0 = −0.3,w1 = 0.5

Assume data generated by a linear regression model y = w0 + w1x + “noise”

Note: It’s actually 1-D regression (w0 is just a bias term), or 2-D reg. with feature [1, x ]

Figures below show the “data space” and posterior of w for different number of observations
(note: with no observations, the posterior = prior)

The “data space” (red lines) shown above denotes various possible linear regression datasets with
data of the form y = w0 + w1x generated using w drawn from the current posterior of w
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Bayesian Linear Regression: Posterior Predictive Distribution

Given the posterior p(w |y ,X, β, λ) = N (µN ,ΣN), how to make prediction y∗ for a new input x∗?

The posterior predictive distribution will be

p(y∗|x∗,X, y , β, λ) =

∫
p(y∗|x∗,w , β)p(w |X, y , β, λ)dw

Using Gaussian predictive/marginal formula, the posterior predictive will be another Gaussian

p(y∗|x∗,X, y , β, λ) = N (µ>N x∗, β−1+x>∗ ΣNx∗)

So we get a predictive mean µ>N x∗ and an input-specific predictive variance β−1 + x>∗ ΣNx∗

In contrast, MLE and MAP make “plug-in” predictions (using the point estimate of w)

p(y∗|x∗,wMLE ) = N (w>MLE x∗, β
−1) - MLE prediction

p(y∗|x∗,wMAP ) = N (w>MAPx∗, β
−1) - MAP prediction

Important: Unlike MLE/MAP, the variance of y∗ also depends on the input x∗ (this, as we will see
later, will be very useful in sequential decision-making problems such as active learning)
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Posterior Predictive Distribution: An Illustration

Black dots are training examples

Width of the shaded region at any x denotes the predictive uncertainty at that x (+/- one std-dev)

Regions with more training examples have smaller predictive variance
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Nonlinear Regression?

Can extend the linear regression model to handle nonlinear regression problems

One way is to replace the feature vectors x by a nonlinear mapping φ(x)

p(y |x ,w) = N (w>φ(x), β−1)

The nonlinear mapping can be defined directly, e.g., for a one-dimensional feature x

φ(x) = [1, x , x2]

Alternatively, a kernel function can be used to implicitly define the nonlinear mapping

More on nonlinear regression when we discuss Gaussian Processes
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What about the hyperparameters of the regression model?

If hyperparameters are to be estimated, we will have a hierarchical/multiparameter model

Posterior inference in slightly more involved in this case

Iterative methods required to learn the weight vector and the hyperparameters, e.g.,

Marginal likelihood maximization for hyperparameter estimation

Expectation maximization (EM)

MCMC or variational inference

We will discuss more when we talk about inference in hierarchical/multiparameter models
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Summary and What Lies Ahead..

Seen Bayesian inference for several models with a single unknown parameter (and another simple
case where we had two unknown parameters - Gaussian with unknown mean and precision)

Focused on the cases where the likelihood and prior are conjugate

Both posterior as well as posterior predictive are computable easily in such cases

Saw various nice properties of exponential family distributions and parameter estimation for such
distributions. Also saw estimation in a conditional model (linear regression)

Things become more challenging/interesting for more complex models, e.g.,

Multiple unknown parameters (e.g., hyperparameters, latent variables, hierarchical models etc)

Likelihood and prior are not conjugate

The basic ideas we have seen will turn out to be useful in more complex models as well

Conditionally-conjugate models

Approximate inference methods (e.g., EM, Gibbs sampling, etc) that resemble alternating
optimization techniques
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