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Plan for today

o Exponential family distributions (a very important class of distributions)

P(X\9)=ﬁh(X)exp[9T¢(X)] = h(x)exp[8" é(x) — A(0)]

o Conditional models and parameter estimation for them (our example: Prob. Linear Regression)

p(yalw, xn, B) = N (yalw " x,,871)
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Exponential Family (Pitman, Darmois, Koopman, Late 1930s)

o Defines a class of distributions. An Exponential Family distribution is of the form

p(x[0) = h(x)expl0T¢(x)] = h(x)exp[0T ¢(x) — A0)]

1
Z(6)

0 x € X™ is the random variable being modeled (where X’ denotes some space, e.g., R or {0,1})
o 0 € RY: Natural parameters or canonical parameters defining the distribution

¢(x) € RY: Sufficient statistics (another random variable)

(+]

o Why “sufficient”: p(x|6) as a function of 8 depends on x only via ¢(x)
o Z(0) = [ h(x)exp[0T #(x)]dx: Partition function

o A(0) = log Z(0): Log-partition function (also called the cumulant function)

o h(x): A constant (doesn’t depend on 0)
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Expressing a Distribution in Exponential Family Form

o Recall the form of exp-fam distribution: h(x)exp[f' ¢(x) — A(0)]

o To write any exp-fam dist p() in the above form, write it as exp(log p()), e.g., for Binomial

exp (log Binomial(x|N, 1)) = exp (,og (’)‘(’) (1 u)”‘x>

o (i () 4 xtga -+ - gt )

_ (’;’) exp (xlog e Wiog(1 - u))

o Now compare the resulting expression with the exponential family form
p(x0) = h(x) exp(6 o(x) — A(6))

.. to identify the natural parameters, sufficient statistics, log-partition function, etc.
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(Univariate) Gaussian as Exponential Family

o Let's try to write a univariate Gaussian in the exponential family form
p(x18) = h(x) exp[tT o(x) — A(0)]

o Recall the standard definition of a univariate Gaussian (already has exp in it, so less work :))

x — p)? 2
N(x|p, 0%) = \/211_7exp {_( 202) :| \/%exp |:£x— 2(12)(2_ ;7 —Ioga}
_ £ 17 7x 2
o h(x) = \/% = mexp[[iﬁ] [Xz} — | 557 +logo
£ _ 0
[+] 9 = 0'21 = Hl , and ’uz — 20,
32 02 o — 35
X
° 600 = |3

2
o AB) = £ +logo = 7o — Llog(—262) — L log(2r)
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Other Examples

o Many other distribution belong to the exponential family

o Bernoulli

o Beta

o Gamma

o Multinoulli/Multinomial
o Dirichlet

o Multivariate Gaussian

o .. and many more ( https://en.wikipedia.org/wiki/Exponential_family )
o Note: Not all distributions belong to the exponential family, e.g.,

o Uniform distribution (x ~ Unif(a, b))

o Student-t distribution

o Mixture distributions (e.g., mixture of Gaussians)
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Log-Partition Function

o A(0) = log Z(0) = log [ h(x)exp[@" ¢(x)]dx is the log-partition function
o A(0) is also called the cumulant function
o Derivatives of A(6) can be used to generate the cumulants of the sufficient statistics ¢(x)

o Exercise: Assume 6 to be a scalar (thus ¢(x) is also scalar). Show that the first and the second
derivatives of A(f) are

% = Epxelo(x)]
LA , )
27 = B[ (0] = [Epgeio)[6(x)]]” = var[g(x)]

o Note: The above result also holds when 6 and ¢(x) are vector-valued (the “var” will be “covar”)

o Important: A(6) is a convex function of §. Why?
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MLE for Exponential Family Distributions

o Suppose we have data D = {x1,...,xy} drawn i.i.d. from an exponential family distribution

p(x|0) = h(x) exp [0 o(x) — A(6)]
To do MLE, we need the overall likelihood. This is simply a product of the individual likelihoods

©

p(D]6) = Hp xi|0) = [ﬁ h(x,-)} exp [GTXN: b(x:) — NA( 9)] {Hh x; } exp [e%(p) - NA(@)]
i=1

i=1

o To estimate 6 (as we'll see shortly), we only need ¢(D) = Z,N:l o(x;) and N

Size of ¢(D) = vazl @(x;) does not grow with N (same as the size of each ¢(x;))

©

©

Only exponential family distributions have finite-sized sufficient statistics

o No need to store all the data; can simply store and recursively update the sufficient statistics with
more and more data

o Very useful when doing probabilistic/Bayesian inference with large-scale data sets. Also useful in
online parameter estimation problems.
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MLE and Moment Matching

©

The likelihood is of the form p(D|) = {H,{V: . h(x,-)] exp [07 6(D) — NA(9)]

©

The log-likelihood is (ignoring constant w.r.t. 9): log p(D|0) = 607 ¢(D) — NA(6)

(]

Note: This is concave in 8 (since —A(6) is concave). Maximization will yield a global maxima of 6
o MLE for exp-fam distributions can also be seen as doing moment-matching. To see this, note that

N
Vo [eTqb(D)fNA(e)} = (D)= NV4[A(0)] = (D)= NEyo)[6(x)] = D (xi) — NEyxoy[6(x)]
i=1

©

Therefore, at the “optimal” (i.e., MLE) 9 where the derivative is 0, the following must hold

Eprin[6(0)] = 3 - 0(x)

o This is basically matching the expected moments of the distribution with empirical moments
(“empirical” here means what we compute using the observed data)
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Moment Matching: An Example

o Given N observations xq, ..., xy from a univariate Gaussian N(x|u,?), doing moment-matching
T
E[¢(x)] = N Z o(x;)
i=1
o The “true”, i.e., expected moments: E[¢(x)] = E
X
=[4-

o For a univariate Gaussian, note that E[x] = u and E[x?] = var[x] + E[x]? = 02 + u?

X

—

X} Therefore

N
% dim1 Xi]

1 N
N Dic1 Xi2

©

Thus we have two equations and two unknowns

o From the first equation, we immediately get p = % Z,N—1 Xj

©

From the second equation, we get 0 = E[x?] — p? = & Z, PP =1 Zf\lzl(x,- — p)?
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Bayesian Inference for Exponential Family Distributions

o We saw that the total likelihood given N i.i.d. observations D{x1,...,xn}
N
p(D]0) x exp [9%(@) - NA(@)] where  ¢(D) = 3 ¢(x:)
i=1

o Let's choose the following prior (note: it looks similar in terms of # within the exponent)

p(0]v0, T0) = h(8) exp [eTTO — A(0) — Ac(l/o,ro)]

o Ignoring the prior’s log-partition function Ac(vo, 7o) = log [, h(6) exp [0 T 70 — 10 A(0)] d6

p(8]vo, 7o) ox h(8) exp [9% - qu(o)]

o Comparing the prior's form with the likelihood, we notice that

o vy is like the number of “pseudo-observations” coming from the prior

o 79 is the total sufficient statistics of these 1y pseudo-observations
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The Posterior Distribution

o As we saw, the likelihood

is

N

p(D]6) o exp [9%(17) - NA(S)] where  ¢(D) = > (x))

o And the prior we chose is

o For this form of the prior,

i=1

p(8]vo, T0) o h(8) exp [(fro - VOA(e)]

the posterior p(8|D) x p(6)p(D|6) will be

P(OID) o h(8)exp [07 (10 + 6(D)) = (0 + N)A(D)]

o Note that the posterior has the same form as the prior; such a prior is called a conjugate prior
(note: all exponential family distributions have a conjugate prior having a form shown as above)

o Thus posterior hyperparams vq’, 7o’ are obtained by simply adding “stuff” to prior's hyperparams

1/0/ «— 1/0+N
7'0/ — To—l—qb(D)

(no. of pseudo-obs + no. of actual obs)

(total suff-stats from pseudo-obs + total suff-stats from actual obs)

o Note: Prior's log-partition function A.(1, 7o) updates to posterior's: A.(vo + N, 7o + ¢(D))
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The Posterior Distribution
o Assuming the prior p(6|vo, To) o h(#) exp [0 70 — 11 A(6)], the posterior was
p(OID) o h(68) exp [67 (70 + 4(D)) — (v + N)A(6)]
o Assuming 7y = 1yTp, we can also write the prior as p(8|vo, To) o exp [QTZ/()’T_'O - I/OA(G)]

o Can think of 7o = 79/14 as the average sufficient statistics per pseudo-observation

o The posterior can be written as
T D
p(0|D) x h(0) exp |:9T(V0 + N)M — (v + N)A(@)}
vo+ N
o Denoting ¢ = % as the average suff-stats per real observation, the posterior updates are

1/0/ — 1+ N
_ voTo + No
Fo T ¢
vy + N
o Note that the posterior hyperparam 7 is a convex combination of the average suff-stats 7y of the
Vo pseudo-observations and the average suff-stats ¢ of the N actual observations
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Posterior Predictive Distribution

o Assume some past (training) data D = {x1,...,xy} generated from an exp. family distribution

o Assme some test data D’ = {X1,..., Xy} from the same distribution (N’ > 1)

©

The posterior predictive distribution of D’ (probability distribution of new data given old data)

p(D'|D) = / p(D'|6)p(6]D)d6

o We've already seen some specific examples of computing the posterior predictive dist., e.g.,
o Beta-Bernoulli case: Posterior predictive distribution of next coin toss
o Dirichlet-Multinoulli case: Posterior predictive distribution of next dice roll
o Gaussian-Gaussian, Gaussian-1G, Gaussian-Gamma, Gaussian-NIG, Gaussian-NG case: Posterior
predictive distribution of the next observation
o Nice Property: If the likelihood is an exponential family distribution, prior is conjugate (and thus is

the posterior), the posterior predictive always has a closed form expression (shown next)
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Posterior Predictive Distribution

©

Recall the form of the likelihood p(D|6) for exp. family dist.

N

p(D|0) = [H h(x,-)} exp [07 6(D) — NA()]

i=1

©

The conjugate prior was

p(0lvo, T0) = h(0) exp [HTTO — 1HA(9) — Ac(Vo,To)}

©

For this choice of the conjugate prior, the posterior was shown to be
p(OID) = h(8)exp [07 (70 + 6(D)) — (0 + N)A(D) — Ac(vo + N, 70+ 6(D))]

For the test data D’, the likelihood will be

©

p(D'|0) = [H h(%; ] exp [9%(@’) - N’/—\(O)] where (D qu (%)
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Posterior Predictive Distribution

o Therefore the posterior predictive distribution will be

p0'D) = [ p(D'I0)p(0|D)de
N/
-/ {H h(xﬂ} exp [076(D') — N'A6)] (6) exp {y%wwn — (o + N)A(0) — Ac(vo + N, 70 + $(D)) | do
\ = constant w.r.t. 6

constant w.r.t. 6

o The above gets simplified further into

MWD)[ﬁﬁﬁﬂjwwnmwwm+mpm¢ﬂm)(w+N+meﬂw

exp [Ac(vo + N, To + ¢(D))]

M| Zevo + N+ N, 7o + $(D) + 6(D'))
[E ”(X')] exp [Ac(vo + N, o + 6(D))]

where Z.(vo + N+ N, 7o + ¢(D) + (D)) = [ h(6) exp [eT(TO + ¢(D) + ¢(D')) — (vo + N + N’)A(e)] de
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Posterior Predictive Distribution

o Since Ac = log Z. or Z. = exp(A¢), we can write the posterior predictive distribution as

, | Zeo £ N+ N 7o + 6(D) + $(D'))
P(D'D) {H ’7("")} Z(vo + N, 70 + 6(D)

i=1

N/
= {H h()”(,-):| exp [Ac(vo + N+ N, 79 + ¢(D) + ¢(D')) — Ac(vo + N, 70 + ¢(D))]

i=1
o Therefore the posterior predictive is proportional to ..

o .. the ratio of two partition functions of two “posterior distributions” (one with N + N’ examples and
the other with N examples)

o .. or exponential of the difference of the corresponding log-partition functions
o Note that the form of Z. (and A.) will simply depend on the chosen conjugate prior
o Very useful result. Also holds for N =0

o In the N =0 case, p(D’) = [ p(D'|0)p(0)d8 is simply the marginal likelihood of D’
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Summary

o Exp. family distributions are very useful for modeling diverse types of data/parameters
o Conjugate priors to exp. family distributions make parameter updates very simple
o Other quantities such as posterior predictive can be computed in closed form

o Useful in designing generative classification models. Choosing class-conditional from exponential
family with conjugate priors helps in parameter estimation

o Useful in designing generative models for unsupervised learning

o Uses in designing Generalized Linear Models (GLM): Model p(y|x) using exp. family distribution

o Linear regression (with Gaussian likelihood) and logistic regression are GLMs

o We will see several use cases when we discuss approximate inference algoritms (e.g., Gibbs
sampling, and especially variational inference)
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Estimating Conditional Models, e.g., p(y|x)

Our Example: Probabilistic/Bayesian Linear Regression
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Estimating Conditional Models

o Conditional models of the form p(y|x) are commonly used in supervised learning problems
o But more broadly applicable (basically any problem where data y depends on another quantity x)
o Conditional models can be estimated using one of the following two ways
@ Estimate the joint distribution p(x,y) and then use Bayes rule to get p(y|x)

p(x,y10)

p(x[6)

@ Estimate the conditional p(y|x) directly (used when we don’t care about modeling x), e.g.

plylx,0) =

p(y|x) = N(y|f.(x), f,2(x)) (params of p(y|x) will be functions of x)

©

Approach 1 is called generative approach, approach 2 is called discriminative approach

(+]

For pros/cons, refer to CS771 lecture slides and readings

o For now, we will focus on learning (2) using fully Bayesian inference

©

Today's focus will be on regression problems (y is real-valued response for the input x)
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Linear Regression: A Probabilistic Setup

o Given: N training examples {x,, y,}_,, features: x, € RP, response y, € R

o Assume a “noisy” linear model with regression weight vector w = [wy, wa, ..., wp] € RP
T
Yn=W X, + €n
where €, ~ N(0,371), B: precision (inverse variance) of Gaussian (assumed known)

o Therefore p(ya|Xn, w, 8) = N (yalw " x,, 577

Mean Variance

Yo~ Nw e, 57

o Note: Some books (e.g., PRML) use ¢(x,) to denote the features where ¢ is some transformation
of the original features x, (we will only use this notation when talking about nonlinear regression)

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Exponential Family Distributions and Conditional Models

21



The Likelihood Model

Notation: X = [x;...xn]": N x D feature matrix, y = [y1...yn]": N x 1 response vector

(+]

©

Assuming independent observations, the likelihood model

N N
pylw, X, 8) = [T pyalw, xn, 8) = [[N(alw xs, 87"
n=1 n=1
N
= g \/ g exp {_g()/n - WTXn)2i|
N N
= (%) " exp [—g D - wan)Z]

n=1

©

Note that NLL = sum of squared errors! Minimizing w.r.t. w will give MLE/least squares solution!

o For brevity, can also write the likelihood p(y|w, X) as an N-dim multivariate Gaussian

p(yIX, w, B) = N(y|Xw, 87 y) = (%) T ep [—g(y - Xw) "(y - XW)}
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The Prior

o Assume the entries in w are i.i.d. with zero mean Gaussian priors. Therefore

2 A
exp [2WTW

D D N
p(w) = ] p(wa) = [T N (wal0,A7%) = N (w]0, A" p) = (zﬂ>
d=1 d=1

PWa)= N (wyg|0,A71)

o This prior promotes the entries in w to be small (close to zero)

o Also, the negative of log-prior is the same as an £, regularizer on w

o This prior is conjugate to the likelihood (Gaussian) which makes posterior inference easy
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The Prior

©

©

©

©

©

PWa)= N (wql0, A1)

The role of the precision hyperparam X in the prior is important

Large values of A\ would more aggressively encourage wy to be close to zero
Can think of X as the regularization hyperparam for the weights
Important: Can infer A as well (will see later how to do this)

Can even have different \ for each wy, i.e., p(w|{\s}5_)) = ngl N(wg|0, ;1)

o Useful in sparse regression/classification models in which very few features are relevant which can be
identified by inferring {\4}5_;. Popularly known as sparse Bayesian learning (more on this later).
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Inference Tasks for Bayesian Linear Regression

@ pw)
Pylx,w)
“ ©,

(Hyperparameters A,3 not shown as they are fixed /known)
Want to infer the posterior distribution over w (for now, assume § and A to be known)

©

p(w[N)p(ylw, X, B)

(X, 8,3) =
p(wly, X, 8, ) p(y[X, B, A)

o Want to infer the posterior predictive distribution
P(Y*|X*7X7,Vaﬂ»>\) - /P(Y*‘W7X*75)P(W|X»yyﬂ7/\)dW

Likelihood p(y|w, x, 3) and prior p(w|X) are Gaussians, so above computations are easy!

©

©

o D x 1 Gaussian r.v. w transformed via N x D matrix X to produce N x 1 vector y
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Bayesian Linear Regression: The Posterior

o The posterior over w (for now, assume hyperparams 3 and X to be known)

p(w|\)p(y|w, X, B)

o) PWplylw. X, 5)

p(wly,X,3,A) =

o Computing p(w|X,y, 8, )
p(wly, X, 8,7) o N (w|0, A ) x N (y|Xw, B~ 1)

o Using the “completing the squares” trick (or directly using Gaussian conditioning formula)

P(W‘y,X:@)\) - N(F’NyzN)
N
where Xy = (BZX,,X,,T +Ap) = (BX X+ Alp)~!  (posterior's covariance matrix)
n=1
u A
Uy = Xy BZynx,, =Xy [BXTy] = (XTX + BID)AXTy (posterior's mean)
n=1
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The Posterior: A Visualization

o Assume a linear regression problem with ground truth w = [wp, wy] with wp = —0.3, w; = 0.5
o Assume data generated by a linear regression model y = wy + wix + “noise”
o Note: It's actually 1-D regression (wp is just a bias term), or 2-D reg. with feature [1, x]

o Figures below show the “data space” and posterior of w for different number of observations
(note: with no observations, the posterior = prior)

Yy Yy y
data
SpaCe o0 0

wy

Posterior o

-1
-1

0 o ! -1 0 g ! -1 0 g 1 -1 0w !

o The “data space” (red lines) shown above denotes various possible linear regression datasets with

data of the form y = wy + wyx generated using w drawn from the current posterior of w

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Exponential Family Distributions and Conditional Models 27



Bayesian Linear Regression: Posterior Predictive Distribution

©

©

©

©

Given the posterior p(w|y, X, 3, \) = N(upy, Xn), how to make prediction y, for a new input x,?

The posterior predictive distribution will be

P(Y*|X*7Xay7ﬂ»)\) - /P(Y*‘X*: Wyﬁ)P(W|X,y7ﬁ7>\)dW

Using Gaussian predictive/marginal formula, the posterior predictive will be another Gaussian

p(yalX, X, ¥, 8, X) = N(ppy X, B x] Znx.)

So we get a predictive mean uﬁx* and an input-specific predictive variance 371 4 x] Xy x,

o In contrast, MLE and MAP make “plug-in" predictions (using the point estimate of w)

o Important: Unlike MLE/MAP, the variance of y, also depends on the input x, (this, as we will see

later, will be very usefu

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK)

P(ys|Xu, Wwhmie) = N'(WELEX*, 8™ Y - MLE prediction
P(ys|Xs, wnap) = N(WEAPX*,,B_I) - MAP prediction

| in sequential decision-making problems such as active learning)

Exponential Family Distributions and Conditional Models
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Posterior Predictive Distribution: An lllustration

Black dots are training examples

Width of the shaded region at any x denotes the predictive uncertainty at that x (+/- one std-dev)

Regions with more training examples have smaller predictive variance
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Nonlinear Regression?

o Can extend the linear regression model to handle nonlinear regression problems

o One way is to replace the feature vectors x by a nonlinear mapping &(x)
plylx, w) = N(w'¢(x),57)
The nonlinear mapping can be defined directly, e.g., for a one-dimensional feature x

¢(X) = [1’X7 X2]

©

o Alternatively, a kernel function can be used to implicitly define the nonlinear mapping

o More on nonlinear regression when we discuss Gaussian Processes
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What about the hyperparameters of the regression model?

©

If hyperparameters are to be estimated, we will have a hierarchical /multiparameter model

©

Posterior inference in slightly more involved in this case
o lterative methods required to learn the weight vector and the hyperparameters, e.g.,

o Marginal likelihood maximization for hyperparameter estimation
o Expectation maximization (EM)

o MCMC or variational inference

©

We will discuss more when we talk about inference in hierarchical/multiparameter models
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Summary and What Lies Ahead..

o Seen Bayesian inference for several models with a single unknown parameter (and another simple
case where we had two unknown parameters - Gaussian with unknown mean and precision)

©

Focused on the cases where the likelihood and prior are conjugate

(+]

Both posterior as well as posterior predictive are computable easily in such cases

o Saw various nice properties of exponential family distributions and parameter estimation for such
distributions. Also saw estimation in a conditional model (linear regression)

©

Things become more challenging/interesting for more complex models, e.g.,
o Multiple unknown parameters (e.g., hyperparameters, latent variables, hierarchical models etc)

o Likelihood and prior are not conjugate

©

The basic ideas we have seen will turn out to be useful in more complex models as well

o Conditionally-conjugate models

o Approximate inference methods (e.g., EM, Gibbs sampling, etc) that resemble alternating
optimization techniques
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