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Recap: Bayesian Inference

Given data X from a model m with parameters θ, the posterior over the parameters θ

p(θ|X,m) =
p(X, θ|m)

p(X|m)
=

p(X|θ,m)p(θ|m)∫
p(X|θ,m)p(θ|m)dθ

=
Likelihood× Prior

Marginal likelihood

Can use the posterior for various purposes, e.g.,

Getting point estimates e.g., mode (though, for this, directly doing point estimation is often easier)

Uncertaintly in our estimates of θ (variance, credible intervals, etc)

Computing the posterior predictive distribution (PPD) for new data, e.g.,

p(x∗|X,m) =

∫
p(x∗|θ,m)p(θ|X,m)dθ

Caveat: Computing the posterior/PPD is in general hard (due to the intractable integrals involved)
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Recap: Marginal Likelihood and Its Usefulness

Likelihood vs Marginal Likelihood: p(X|θ,m) vs p(X|m)

Prob. of X for a single θ under model m vs prob. of X averaged over all θ’s under model m

Can use marginal likelihood p(X|m) to select the best model from a finite set of models

m̂ = arg max
m

p(m|X) = arg max
m

p(X|m)p(m) = arg max
m

p(X|m), if p(m) is uniform

Also useful for estimating hyperparam of the assumed model (if we consider m as the hyperparams)

Suppose hyperparams of likelihood are α` and that of prior are αp (so here m = {α`, αp})

Assuming p(α`, αp) is uniform, hyperparams can be estimated via MLE-II (a.k.a. empirical Bayes)

{α̂`, α̂p} = arg max
α`,αp

p(X|α`, αp) = arg max
α`,αp

∫
p(X|θ, α`)p(θ|αp)dθ

Again, note that the integral here may be intractable and may need to be approximated

Can also compute p(m|X) and do Bayesian Model Averaging: p(x∗|X) =
∑M

m=1 p(x∗|X,m)p(m|X)
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Recap: Bayesian Inference for a Beta-Bernoulli Model

Saw the example of estimating the bias θ ∈ (0, 1) of a coin using Bayesian inference

Chose a Bernoulli likelihood for each coin toss and a conjugate Beta prior for θ

p(xn|θ) = Bernoulli(xn|θ) = θxn (1− θ)1−xn

p(θ|α, β) = Beta(θ|α, β) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

Here, prior’s hyperparams (assumed fixed here) control its shape; also act as pseudo-observations

Assuming xn’s as i.i.d. given θ, posterior p(θ|X, α, β) ∝ p(X|θ)p(θ|α, β) turned out to be Beta

p(θ|X, α, β) = Beta(θ|α +
N∑

n=1

xn, β + N −
N∑

n=1

xn) = Beta(θ|α + N1, β + N0)

Note: Here posterior only depends on data X = {x1, . . . , xN} via sufficient statistics N1 and N0

p(θ|X, α, β) = p(θ|s(X))

We will see many other cases where the posterior depends on data only via some sufficient statistics
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Recap: Making Predictions in the Beta-Bernoulli Model

The posterior predictive distribution (averaging over all θ weighted by their posterior probabilities):

p(xN+1 = 1|X, α, β) =

∫ 1

0

p(xN+1 = 1|θ)p(θ|X, α, β)dθ

=

∫ 1

0

θ × Beta(θ|α + N1, β + N0)dθ

= E[θ|X]

=
α + N1

α + β + N

Therefore the posterior predictive distribution: p(xN+1|X) = Bernoulli(xN+1 | E[θ|X])

In contrast, the plug-in predictive distribution using a point estimate θ̂ (e.g., using MLE/MAP)

p(xN+1 = 1|X, α, β) ≈ p(xN+1 = 1|θ̂) = θ̂ or equivalently p(xN+1|X) ≈ Bernoulli(xN+1 | θ̂)
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More Examples..
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Bayesian Inference for Multinoulli/Multinomial

Assume N discrete-valued observations {x1, . . . , xN} with each xn ∈ {1, . . . ,K}, e.g.,

xn represents the outcome of a dice roll with K faces

xn represents the class label of the n-th example (total K classes)

xn represents the identity of the n-th word in a sequence of words

Assume likelihood to be multinoulli with unknown params π = [π1, . . . , πK ] s.t.
∑K

k=1 πk = 1

p(xn|π) = multinoulli(xn|π) =
K∏

k=1

π
I[xn=k]
k

π is a vector of probabilities (“probability vector”), e.g.,

Biases of the K sides of the dice

Prior class probabilities in multi-class classification

Probabilities of observing each words in the vocabulary

Assume a conjugate Dirichlet prior on π with hyperparams α = [α1, . . . , αK ] (also, αk ≥ 0,∀k)

p(π|α) = Dirichlet(π|α1, . . . , αK ) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

π
αk−1
k =

1

B(α)

K∏
k=1

π
αk−1
k
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Brief Detour: Dirichlet Distribution

Very important distribution: Models non-neg. vectors π that sum to one (e.g., probability vectors)

A random draw from Dirichlet will be a point under the probability simplex

Red dots denote regions 
of high probability denity

PDF for a 3-dim Dirichlet 

Hyperparams α = [α1, . . . , αK ] control the shape of Dirichlet (akin to Beta’s hyperparams)

Can also be thought of as a multi-dimensional Beta distribution

Note: Can also be seen as normalized version of K independent gamma random variables
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Bayesian Inference for Multinoulli/Multinomial

The posterior over π is easy to compute in this case due to conjugacy b/w multinoulli and Dirichlet

p(π|X,α) =
p(X|π,α)p(π|α)

p(X|α)
=

p(X|π)p(π|α)

p(X|α)

Assuming xn’s are i.i.d. given π, p(X|π) =
∏N

n=1 p(xn|π), therefore

p(π|X,α) ∝
N∏

n=1

K∏
k=1

π
I[xn=k]
k

K∏
k=1

π
αk−1
k =

K∏
k=1

π
αk+

∑N
n=1 I[xn=k]−1

k

Even without computing the normalization constant p(X|α), we can see that it’s a Dirichlet! :-)

Denoting Nk =
∑N

n=1 I[xn = k], i.e., number of observations with value k, the posterior will be

p(π|X,α) = Dirichlet(π|α1 + N1, . . . , αK + NK )

Note: N1, . . . ,NK are the sufficient statistics in this case

Note: If we want, we can also get the MAP estimate of π (mode of the above Dirichlet)

MAP estimation via standard way will require solving a constraint opt. problem (via Lagrangian)
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Bayesian Inference for Multinoulli/Multinomial

Finally, let’s also look at the posterior predictive distribution (i.e., the probability distribution of a
new observation x∗ ∈ {1, . . . ,K} given the previous observations X = {x1, . . . , xN})

p(x∗|X,α) =

∫
p(x∗|π)p(π|X,α)dπ

Note that p(x∗|π) = multinoulli(x∗|π) and p(π|X,α) = Dirichlet(π|α1 + N1, . . . , αK + NK )

We can compute the posterior predictive for each possible outcome (K possibilities)

p(x∗ = k|X,α) =

∫
p(x∗ = k|π)p(π|X,α)dπ

=

∫
πk × Dirichlet(π|α1 + N1, . . . , αK + NK )dπ

=
αk + Nk∑K
k=1 αk + N

(expectation of πk under the Dirichlet posterior)

Therefore the posterior predictive distribution is multinoulli with posterior mean given as above

Note that the predicted probabilities are smoothed (the effect of averaging over all possible π’s)

Recall that the PPD for the Beta-Bernoulli model also had a similar form!
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Applications?

Both, Beta-Bernoulli and Dirichlet-Multinoulli/Multinomial models are widely used

We now know how to do fully Bayesian inference if parts of our model have such components

Some popular examples are

Models for text data: Each document can be modeled as a bag-of-words (Beta-Bernoulli) or a
sequence of token (Dirichlet-Multinoulli)

Bayesian inference for class probabilities in classification models: Class labels of training examples are
observations and class proabilities are to be estimated

Bayesian inference for mixture models: Cluster ids are our (latent) “observations” of Dir-Mult model
and mixing proportions are to be estimated

.. and several others, which we will see later..
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Some More Examples..
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Bayesian Inference for Mean of a Gaussian

Consider N i.i.d. observations X = {x1, . . . , xN} drawn from a one-dim Gaussian N (x |µ, σ2)

p(xn|µ, σ2) = N (x |µ, σ2) ∝ exp

[
− (xn − µ)2

2σ2

]
p(X|µ, σ2) =

N∏
n=1

p(xn|µ, σ2)

Assume the mean µ ∈ R of the Gaussian is unknown and assume variance σ2 to be known/fixed

We wish to estimate the unknown µ given the data X

Let’s do fully Bayesian inference for µ (not MLE/MAP)

We first need a prior distribution for the unknown param. µ

Let’s choose a Gaussian prior on µ, i.e., p(µ) = N (µ|µ0, σ
2
0) with µ0, σ

2
0 as fixed

The prior basically says that the mean µ is close to µ0 (with some uncertainty depending on σ2
0)
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Bayesian Inference for Mean of a Gaussian

The posterior distribution for the unknown mean parameter µ

p(µ|X) =
p(X|µ)p(µ)

p(X)
∝

N∏
n=1

exp

[
− (xn − µ)2

2σ2

]
× exp

[
− (µ− µ0)2

2σ2
0

]

Simplifying the above (using completing the squares trick) gives p(µ|X) ∝ exp
[
− (µ−µN )2

2σ2
N

]
with

1

σ2
N

=
1

σ2
0

+
N

σ2

µN =
σ2

Nσ2
0 + σ2

µ0 +
Nσ2

0

Nσ2
0 + σ2

x̄ (where x̄ =

∑N
n=1 xn

N
)

Posterior and prior have the same form (not surprising; the prior was conjugate to the likelihood)

Consider what happens as N (number of observations) grows very large?

The posterior’s variance σ2
N approaches σ2/N (and goes to 0 as N →∞)

The posterior’s mean µN approaches x̄ (which is also the MLE solution)
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Bayesian Inference for Mean of a Gaussian

What is the posterior predictive distribution p(x∗|X) of a new observation x∗?

Using the inferred posterior p(µ|X), we can find the posterior predictive distribution

p(x∗|X) =

∫
p(x∗|µ, σ2)p(µ|X)dµ =

∫
N (x∗|µ, σ2)N (µ|µN , σ

2
N)dµ = N (x∗|µN , σ

2 + σ2
N)

Note; Can also get the above result by thinking of x∗ as x∗ = µ+ ε where µ ∼ N (µN , σ
2
N), and

ε ∼ N (0, σ2) is independently added observation noise

Note that, as per the above, the uncertainty in distribution of x∗ now has two components

σ2: Due to the noisy observation model, σ2
N : Due to the uncertainty in µ

In contrast, the plug-in predictive posterior, given a point estimate µ̂ (e.g., MLE/MAP) would be

p(x∗|X) =

∫
p(x∗|µ, σ2)p(µ|X)dµ ≈ p(x∗|µ̂, σ2) = N (x∗|µ̂, σ2)

.. which doesn’t incorporate the uncertainty in our estimate of µ (since we used a point estimate)

Note that as N →∞, both approaches would give the same p(x∗|X) since σ2
N → 0
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Bayesian Inference for Variance of a Gaussian

Again consider N i.i.d. observations X = {x1, . . . , xN} drawn from a one-dim Gaussian N (x |µ, σ2)

p(xn|µ, σ2) = N (x |µ, σ2) and p(X|µ, σ2) =
N∏

n=1

p(xn|µ, σ2)

Assume the variance σ2 ∈ R+ of the Gaussian is unknown and assume mean µ to be known/fixed

Let’s estimate σ2 given the data X using fully Bayesian inference (not MLE/MAP)

We first need a prior distribution for σ2. What prior p(σ2) to choose in this case?

If we want a conjugate prior, it should have the same form as the likelihood

p(xn|µ, σ2) ∝ (σ2)−1/2 exp

[
− (xn − µ)2

2σ2

]
An inverse-gamma prior IG (α, β) has this form (α, β are shape and scale hyperparams, resp)

p(σ2) ∝ (σ2)−(α+1) exp

[
− β

σ2

]
(note: mean of IG(α, β) =

β

α− 1
)

(Verify) The posterior p(σ2|X) = IG (α + N
2 , β +

∑N
n=1(xn−µ)2

2 ). Again IG due to conjugacy.
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Working with Gaussians: Variance vs Precision

Often, it is easier to work with the precision (=1/variance) rather than variance

p(xn|µ, τ) = N (x |µ, τ) =

√
τ

2π
exp

[
−τ

2
(xn − µ)2

]

If mean is known, for precision Gamma(α, β) is a conjugate prior to Gaussian likelihood

p(τ) ∝ (τ)(α−1) exp [−βτ ] (note: mean of Gamma(α, β) =
α

β
)

.. where α and β are the shape and rate hyperparamers, respectively, for the Gamma

(Verify) The posterior p(τ |X) will also be Gamma(α + N
2 , β +

∑N
n=1(xn−µ)2

2 )

Note: Gamma distribution can be defined in terms of shape and scale or shape and rate
parametrization (scale = 1/rate). Likewise, inverse Gamma can also be defined both shape and
scale (which we saw) as well as shape and rate parametrizations.
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Bayesian Inference for Both Parameters of a Gaussian!

Gaussian with unknown scalar mean and unknown scalar precision (two parameters)

Consider N i.i.d. observations X = {x1, . . . , xN} drawn from a one-dim Gaussian N (x |µ, λ−1)

Assume both mean µ and precision λ to be unknown. The likelihood will be

p(X|µ, λ) =
N∏

n=1

√
λ

2π
exp

[
−λ

2
(xn − µ)2

]

∝
[
λ1/2 exp

(
−λµ

2

2

)]N
exp

[
λµ

N∑
n=1

xn −
λ

2

N∑
n=1

x2
n

]
If we want a conjugate joint prior p(µ, λ), it must have the same form as likelihood. Suppose

p(µ, λ) ∝
[
λ1/2 exp

(
−λµ

2

2

)]κ0

exp [λµc − λd ]

What’s this prior? A normal-gamma (Gaussian-gamma) distribution! (will see its form shortly)

Can be used when we wish to estimate the unknown mean and unknown precision of a Gaussian

Note: Its multivariate version is the Normal-Wishart (for multivariate mean and precision matrix)
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Normal-gamma (Gaussian-gamma) Distribution

We saw that the conjugate prior needed to have the form

p(µ, λ) ∝
[
λ1/2 exp

(
−λµ

2

2

)]κ0

exp [λµc − λd ]

= exp

[
−κ0λ

2
(µ− c/κ0)2

]
︸ ︷︷ ︸

prop. to a Gaussian

λκ0/2 exp

[
−
(
d − c2

2κ0

)
λ

]
︸ ︷︷ ︸

prop. to a gamma

(re-arranging terms)

The above is product of a normal and a gamma distribution1

p(µ, λ) = N (µ|µ0, (κ0λ)−1)Gamma(λ|α0, β0) = NG(µ0, κ0, α0, β0)

where µ0 = c/κ0, α0 = 1 + κ0/2, β0 = d − c2/2κ0 are prior’s hyperparameters

p(µ, λ) = NG(µ0, κ0, α0, β0) is a conjugate for the mean-precision pair (µ, λ)

A useful prior in many problems involving Gaussians with unknown mean and precision

1
shape-rate parametrization assumed for the gamma
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Joint Posterior

Due to conjugacy, the joint posterior p(µ, λ|X) will also be normal-gamma

p(µ, λ|X) ∝ p(X|µ, λ)p(µ, λ)

Plugging in the expressions for p(X|µ, λ) and p(µ, λ), we get

p(µ, λ|X) = NG(µN , κN , αN , βN) = N (µ|µN , (κNλ)−1)Gamma(λ|αN , βN)

where the updated posterior hyperparameters are given by2

µN =
κ0µ0 + Nx̄

κ0 + N
κN = κ0 + N

αN = α0 + N/2

βN = β0 +
1

2

N∑
n=1

(xn − x̄)2 +
κ0N(x̄ − µ0)2

2(κ0 + N)

2
For full derivation, refer to “Conjugate Bayesian analysis of the Gaussian distribution” - Murphy (2007)
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Other Quantities of Interest3

Already saw that joint post. p(µ, λ|X) = NG(µN , κN , αN , βN) = N (µ|µN , (κNλ)−1)Gamma(λ|αN , βN)

Marginal posteriors for µ and λ

p(λ|X) =

∫
p(µ, λ|X)dµ = Gamma(λ|αN , βN )

p(µ|X) =

∫
p(µ, λ|X)dλ =

∫
p(µ|λ,X)p(λ|X)dλ = t2αN

(µ|µN , βN/(αNκN ))︸ ︷︷ ︸
t distribution

Exercise: What will be the conditional posteriors p(µ|λ,X) and p(λ|µ,X)?

Marginal likelihood of the model

p(X) =
Γ(αN )

Γ(α0)

β
α0
0

β
αN
N

(
κ0

κN

) 1
2

(2π)−N/2

Posterior predictive distribution of a new observation x∗

p(x∗|X) =

∫
p(x∗|µ, λ)︸ ︷︷ ︸

Gaussian

p(µ, λ|X)︸ ︷︷ ︸
Normal-Gamma

dµdλ = t2αN

(
x∗|µN ,

βN (κN + 1)

αNκN

)

3
For full derivations, refer to “Conjugate Bayesian analysis of the Gaussian distribution” - Murphy (2007)
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An Aside: general-t and Student-t distribution

Equivalent to an infinite sum of Gaussian distributions, with same means but different precisions

p(x |µ, a, b) =

∫
N (x |µ, λ−1)Gamma(λ|a, b)dλ

= t2a(x |µ, b/a) = tν(x |µ, σ2) (general-t distribution)

µ = 0, σ2 = 1 gives the Student-t distribution (tν). Note: If x ∼ tν(µ, σ2) then x−µ
σ ∼ tν

An illustration of student-t

t distribution has a “fatter” tail than a Gaussian and also sharper around the mean

Also a useful prior for sparse modeling
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Inferring Parameters of Gaussian: Some Other Cases

We only considered the simple 1-D Gaussian distribution

The approach also extends to inferring parameters of a multivariate Gaussian

For the unknown mean and precision matrix, normal-Wishart distribution can be used as prior

Posterior updates have forms similar to that in the 1-D case

When working with mean-variance, we can use normal-inverse gamma as conjugate prior (or
normal-inverse Wishart when working with mean-covariance matrix in case of multivariate Gaussian
distribution)

Other priors can also be used as well when inferring parameters of Gaussians, e.g.,

normal-Inverse χ2 distribution is commonly used in Statistics community for scalar mean-variance

Uniform priors can also be used

Look at BDA Chapter 3 for such examples

Also refer to “Conjugate Bayesian analysis of the Gaussian distribution” - Murphy (2007) for
various examples and more detailed derivations
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Next Class: More examples of Bayesian inference
with Gaussians
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