Bayesian Inference for Some Basic Models

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

Jan 12, 2019

Recap: Bayesian Inference

• Given data **X** from a model *m* with parameters θ , the posterior over the parameters θ

$$p(\theta|\mathbf{X}, m) = \frac{p(\mathbf{X}, \theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta, m)p(\theta|m)}{\int p(\mathbf{X}|\theta, m)p(\theta|m)d\theta} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$

• Can use the posterior for various purposes, e.g.,

- Getting point estimates e.g., mode (though, for this, directly doing point estimation is often easier)
- Uncertaintly in our estimates of θ (variance, credible intervals, etc)
- Computing the posterior predictive distribution (PPD) for new data, e.g.,

$$p(\mathbf{x}_*|\mathbf{X},m) = \int p(\mathbf{x}_*|\theta,m) p(\theta|\mathbf{X},m) d\theta$$

• Caveat: Computing the posterior/PPD is in general hard (due to the intractable integrals involved)

Recap: Marginal Likelihood and Its Usefulness

• Likelihood vs Marginal Likelihood: $p(\mathbf{X}|\theta, m) \underline{vs} p(\mathbf{X}|m)$

• Prob. of X for a single θ under model m vs prob. of X averaged over all θ 's under model m

• Can use marginal likelihood $p(\mathbf{X}|m)$ to select the best model from a finite set of models

$$\hat{m} = \arg \max_{m} p(m|\mathbf{X}) = \arg \max_{m} p(\mathbf{X}|m)p(m) = \arg \max_{m} p(\mathbf{X}|m), \text{ if } p(m) \text{ is uniform}$$

• Also useful for estimating hyperparam of the assumed model (if we consider *m* as the hyperparams)

- Suppose hyperparams of likelihood are α_ℓ and that of prior are α_p (so here $m = \{\alpha_\ell, \alpha_p\}$)
- Assuming $p(\alpha_{\ell}, \alpha_{\rho})$ is uniform, hyperparams can be estimated via MLE-II (a.k.a. empirical Bayes)

$$\{\hat{\alpha}_{\ell}, \hat{\alpha}_{p}\} = \arg \max_{\alpha_{\ell}, \alpha_{p}} p(\mathbf{X} | \alpha_{\ell}, \alpha_{p}) = \arg \max_{\alpha_{\ell}, \alpha_{p}} \int p(\mathbf{X} | \theta, \alpha_{\ell}) p(\theta | \alpha_{p}) d\theta$$

· Again, note that the integral here may be intractable and may need to be approximated

• Can also compute $p(m|\mathbf{X})$ and do Bayesian Model Averaging: $p(\mathbf{x}_*|\mathbf{X}) = \sum_{m=1}^{M} p(\mathbf{x}_*|\mathbf{X}, m) p(m|\mathbf{X})$

Recap: Bayesian Inference for a Beta-Bernoulli Model

- ${\, \circ \,}$ Saw the example of estimating the bias $\theta \in (0,1)$ of a coin using Bayesian inference
- ${\, \circ \,}$ Chose a Bernoulli likelihood for each coin toss and a conjugate Beta prior for θ

$$p(x_n|\theta) = \text{Bernoulli}(x_n|\theta) = \theta^{x_n}(1-\theta)^{1-x_n}$$

$$p(\theta|\alpha,\beta) = \text{Beta}(\theta|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha-1}(1-\theta)^{\beta-1}$$

Here, prior's hyperparams (assumed fixed here) control its shape; also act as pseudo-observations
 Assuming x_n's as i.i.d. given θ, posterior p(θ|X, α, β) ∝ p(X|θ)p(θ|α, β) turned out to be Beta
 p(θ|X, α, β) = Beta(θ|α + ∑_{n=1}^N x_n, β + N - ∑_{n=1}^N x_n) = Beta(θ|α + N₁, β + N₀)

• Note: Here posterior only depends on data $\mathbf{X} = \{x_1, \dots, x_N\}$ via sufficient statistics N_1 and N_0

$$p(\theta|\mathbf{X}, \alpha, \beta) = p(\theta|s(\mathbf{X}))$$

• We will see many other cases where the posterior depends on data only via some sufficient statistics

Recap: Making Predictions in the Beta-Bernoulli Model

• The posterior predictive distribution (averaging over all θ weighted by their posterior probabilities):

$$p(x_{N+1} = 1 | \mathbf{X}, \alpha, \beta) = \int_0^1 p(x_{N+1} = 1 | \theta) p(\theta | \mathbf{X}, \alpha, \beta) d\theta$$
$$= \int_0^1 \theta \times \text{Beta}(\theta | \alpha + N_1, \beta + N_0) d\theta$$
$$= \mathbb{E}[\theta | \mathbf{X}]$$
$$= \frac{\alpha + N_1}{\alpha + \beta + N}$$

• Therefore the posterior predictive distribution: $p(x_{N+1}|\mathbf{X}) = \text{Bernoulli}(x_{N+1} | \mathbb{E}[\theta|\mathbf{X}])$

• In contrast, the plug-in predictive distribution using a point estimate $\hat{\theta}$ (e.g., using MLE/MAP)

 $p(x_{N+1} = 1 | \mathbf{X}, \alpha, \beta) \approx p(x_{N+1} = 1 | \hat{\theta}) = \hat{\theta}$ or equivalently $p(x_{N+1} | \mathbf{X}) \approx \text{Bernoulli}(x_{N+1} | \hat{\theta})$

More Examples..

Bayesian Inference for Multinoulli/Multinomial

- Assume N discrete-valued observations $\{x_1, \ldots, x_N\}$ with each $x_n \in \{1, \ldots, K\}$, e.g.,
 - x_n represents the outcome of a dice roll with K faces
 - x_n represents the class label of the *n*-th example (total K classes)
 - x_n represents the identity of the *n*-th word in a sequence of words
- Assume likelihood to be multinoulli with unknown params $\pi = [\pi_1, \dots, \pi_K]$ s.t. $\sum_{k=1}^K \pi_k = 1$

$$p(x_n|\pi) =$$
multinoulli $(x_n|\pi) = \prod_{k=1}^n \pi_k^{\mathbb{I}[x_n=k]}$

- π is a vector of probabilities ("probability vector"), e.g.,
 - Biases of the K sides of the dice
 - Prior class probabilities in multi-class classification
 - Probabilities of observing each words in the vocabulary

• Assume a conjugate Dirichlet prior on π with hyperparams $\alpha = [\alpha_1, \ldots, \alpha_K]$ (also, $\alpha_k \ge 0, \forall k$)

$$p(\boldsymbol{\pi}|\boldsymbol{\alpha}) = \mathsf{Dirichlet}(\boldsymbol{\pi}|\alpha_1, \dots, \alpha_K) = \frac{\Gamma(\sum_{k=1}^K \alpha_k)}{\prod_{k=1}^K \Gamma(\alpha_k)} \prod_{k=1}^K \pi_k^{\alpha_k - 1} = \frac{1}{B(\boldsymbol{\alpha})} \prod_{k=1}^K \pi_k^{\alpha_k - 1}$$

Brief Detour: Dirichlet Distribution

Very important distribution: Models non-neg. vectors π that sum to one (e.g., probability vectors)
A random draw from Dirichlet will be a point under the probability simplex

• Hyperparams $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_K]$ control the shape of Dirichlet (akin to Beta's hyperparams)

- Can also be thought of as a multi-dimensional Beta distribution
- Note: Can also be seen as normalized version of K independent gamma random variables

Bayesian Inference for Multinoulli/Multinomial

• The posterior over π is easy to compute in this case due to conjugacy b/w multinoulli and Dirichlet

$$p(\pi|\mathbf{X}, lpha) = rac{p(\mathbf{X}|\pi, lpha)p(\pi|lpha)}{p(\mathbf{X}|lpha)} = rac{p(\mathbf{X}|\pi)p(\pi|lpha)}{p(\mathbf{X}|lpha)}$$

• Assuming x_n 's are i.i.d. given π , $p(\mathbf{X}|\pi) = \prod_{n=1}^N p(x_n|\pi)$, therefore

$$p(\boldsymbol{\pi}|\mathbf{X},\boldsymbol{\alpha}) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{k}^{\mathbb{I}[x_{n}=k]} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}-1} = \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}+\sum_{n=1}^{N} \mathbb{I}[x_{n}=k]-1}$$

Even without computing the normalization constant p(X|α), we can see that it's a Dirichlet! :-)
 Denoting N_k = ∑^N_{n=1} I[x_n = k], i.e., number of observations with value k, the posterior will be

$$p(\boldsymbol{\pi}|\mathbf{X}, \boldsymbol{\alpha}) = \mathsf{Dirichlet}(\boldsymbol{\pi}|\alpha_1 + N_1, \dots, \alpha_K + N_K)$$

• Note: N_1, \ldots, N_K are the sufficient statistics in this case

- Note: If we want, we can also get the MAP estimate of π (mode of the above Dirichlet)
 - MAP estimation via standard way will require solving a constraint opt. problem (via Lagrangian)

Bayesian Inference for Multinoulli/Multinomial

Finally, let's also look at the posterior predictive distribution (i.e., the probability distribution of a new observation x_{*} ∈ {1,..., K} given the previous observations X = {x₁,..., x_N})

$$p(x_*|\mathbf{X}, oldsymbollpha) = \int p(x_*|oldsymbol \pi) p(oldsymbol \pi|\mathbf{X}, oldsymbollpha) doldsymbol \pi$$

• Note that $p(x_*|\pi) =$ multinoulli $(x_*|\pi)$ and $p(\pi|\mathbf{X}, \alpha) =$ Dirichlet $(\pi|\alpha_1 + N_1, \dots, \alpha_K + N_K)$

• We can compute the posterior predictive for each possible outcome (K possibilities)

$$p(x_* = k | \mathbf{X}, \alpha) = \int p(x_* = k | \pi) p(\pi | \mathbf{X}, \alpha) d\pi$$

=
$$\int \pi_k \times \text{Dirichlet}(\pi | \alpha_1 + N_1, \dots, \alpha_K + N_K) d\pi$$

=
$$\frac{\alpha_k + N_k}{\sum_{k=1}^K \alpha_k + N} \quad \text{(expectation of } \pi_k \text{ under the Dirichlet posterior)}$$

- Therefore the posterior predictive distribution is multinoulli with posterior mean given as above
- Note that the predicted probabilities are smoothed (the effect of averaging over all possible π 's)
- Recall that the PPD for the Beta-Bernoulli model also had a similar form!

Applications?

- Both, Beta-Bernoulli and Dirichlet-Multinoulli/Multinomial models are widely used
- We now know how to do fully Bayesian inference if parts of our model have such components

- Some popular examples are
 - Models for text data: Each document can be modeled as a bag-of-words (Beta-Bernoulli) or a sequence of token (Dirichlet-Multinoulli)
 - Bayesian inference for class probabilities in classification models: Class labels of training examples are observations and class proabilities are to be estimated
 - Bayesian inference for mixture models: Cluster ids are our (latent) "observations" of Dir-Mult model and mixing proportions are to be estimated
 - .. and several others, which we will see later ..

Some More Examples..

Bayesian Inference for Mean of a Gaussian

• Consider N i.i.d. observations $\mathbf{X} = \{x_1, \dots, x_N\}$ drawn from a one-dim Gaussian $\mathcal{N}(x|\mu, \sigma^2)$

$$p(x_n|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2) \propto \exp\left[-\frac{(x_n-\mu)^2}{2\sigma^2}\right]$$
$$p(\mathbf{X}|\mu,\sigma^2) = \prod_{n=1}^{N} p(x_n|\mu,\sigma^2)$$

• Assume the mean $\mu \in \mathbb{R}$ of the Gaussian is unknown and assume variance σ^2 to be known/fixed

 ${\, \bullet \, }$ We wish to estimate the unknown μ given the data ${\bf X}$

- Let's do fully Bayesian inference for μ (not MLE/MAP)
- $\, \bullet \,$ We first need a prior distribution for the unknown param. μ
- Let's choose a Gaussian prior on μ , i.e., $p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$ with μ_0, σ_0^2 as fixed
- The prior basically says that the mean μ is close to μ_0 (with some uncertainty depending on σ_0^2)

Bayesian Inference for Mean of a Gaussian

 ${\, \bullet \, }$ The posterior distribution for the unknown mean parameter μ

$$p(\mu|\mathbf{X}) = \frac{p(\mathbf{X}|\mu)p(\mu)}{p(\mathbf{X})} \propto \prod_{n=1}^{N} \exp\left[-\frac{(x_n - \mu)^2}{2\sigma^2}\right] \times \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

• Simplifying the above (using completing the squares trick) gives $p(\mu|\mathbf{X}) \propto \exp\left[-\frac{(\mu-\mu_N)^2}{2\sigma_N^2}\right]$ with

$$\begin{aligned} \frac{1}{\sigma_N^2} &= \frac{1}{\sigma_0^2} + \frac{N}{\sigma^2} \\ \mu_N &= \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{x} \end{aligned} \qquad (\text{where } \bar{x} = \frac{\sum_{n=1}^N x_n}{N}) \end{aligned}$$

• Posterior and prior have the same form (not surprising; the prior was conjugate to the likelihood)

- Consider what happens as N (number of observations) grows very large?
 - $\,\circ\,$ The posterior's variance σ_{N}^{2} approaches σ^{2}/N (and goes to 0 as $N \to \infty)$
 - The posterior's mean μ_N approaches \bar{x} (which is also the MLE solution)

Bayesian Inference for Mean of a Gaussian

- What is the posterior predictive distribution $p(x_*|\mathbf{X})$ of a new observation x_* ?
- $\bullet\,$ Using the inferred posterior $p(\mu|\mathbf{X}),$ we can find the posterior predictive distribution

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu,\sigma^2)p(\mu|\mathbf{X})d\mu = \int \mathcal{N}(x_*|\mu,\sigma^2)\mathcal{N}(\mu|\mu_N,\sigma_N^2)d\mu = \mathcal{N}(x_*|\mu_N,\sigma^2+\sigma_N^2)d\mu$$

- Note; Can also get the above result by thinking of x_* as $x_* = \mu + \epsilon$ where $\mu \sim \mathcal{N}(\mu_N, \sigma_N^2)$, and $\epsilon \sim \mathcal{N}(0, \sigma^2)$ is independently added observation noise
- Note that, as per the above, the uncertainty in distribution of x_* now has two components
 - $\circ~\sigma^2:$ Due to the noisy observation model, $\sigma^2_{\it N}:$ Due to the uncertainty in μ
- In contrast, the plug-in predictive posterior, given a point estimate $\hat{\mu}$ (e.g., MLE/MAP) would be

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu,\sigma^2) p(\mu|\mathbf{X}) d\mu \approx p(x_*|\hat{\mu},\sigma^2) = \mathcal{N}(x_*|\hat{\mu},\sigma^2)$$

.. which doesn't incorporate the uncertainty in our estimate of μ (since we used a point estimate)

• Note that as $N \to \infty$, both approaches would give the same $p(x_*|\mathbf{X})$ since $\sigma_N^2 \to 0$

Bayesian Inference for Variance of a Gaussian

• Again consider N i.i.d. observations $\mathbf{X} = \{x_1, \dots, x_N\}$ drawn from a one-dim Gaussian $\mathcal{N}(x|\mu, \sigma^2)$ $p(x_n|\mu, \sigma^2) = \mathcal{N}(x|\mu, \sigma^2)$ and $p(\mathbf{X}|\mu, \sigma^2) = \prod_{n=1}^N p(x_n|\mu, \sigma^2)$

Assume the variance σ² ∈ ℝ₊ of the Gaussian is unknown and assume mean μ to be known/fixed
Let's estimate σ² given the data X using fully Bayesian inference (not MLE/MAP)
We first need a prior distribution for σ². What prior p(σ²) to choose in this case?
If we want a conjugate prior, it should have the same form as the likelihood

$$p(x_n|\mu,\sigma^2) \propto (\sigma^2)^{-1/2} \exp\left[-rac{(x_n-\mu)^2}{2\sigma^2}
ight]$$

• An inverse-gamma prior $IG(\alpha,\beta)$ has this form (α,β) are shape and scale hyperparams, resp)

$$p(\sigma^2) \propto (\sigma^2)^{-(lpha+1)} \exp\left[-rac{eta}{\sigma^2}
ight]$$
 (note: mean of $IG(lpha,eta) = rac{eta}{lpha-1}$)

• (Verify) The posterior $p(\sigma^2|\mathbf{X}) = IG(\alpha + \frac{N}{2}, \beta + \frac{\sum_{n=1}^{N}(x_n - \mu)^2}{2})$. Again IG due to conjugacy.

Working with Gaussians: Variance vs Precision

 $\,\circ\,$ Often, it is easier to work with the precision (=1/variance) rather than variance

$$p(x_n|\mu, \tau) = \mathcal{N}(x|\mu, \tau) = \sqrt{\frac{\tau}{2\pi}} \exp\left[-\frac{\tau}{2}(x_n - \mu)^2\right]$$

• If mean is known, for precision $\mathsf{Gamma}(lpha,eta)$ is a conjugate prior to $\mathsf{Gaussian}$ likelihood

$$p(au) \propto (au)^{(lpha-1)} \exp\left[-eta au
ight]$$
 (note: mean of Gamma $(lpha,eta) = rac{lpha}{eta}$)

.. where α and β are the shape and rate hyperparamers, respectively, for the Gamma

- (Verify) The posterior $p(\tau | \mathbf{X})$ will also be Gamma $\left(\alpha + \frac{N}{2}, \beta + \frac{\sum_{n=1}^{N} (x_n \mu)^2}{2}\right)$
- Note: Gamma distribution can be defined in terms of shape and scale or shape and rate parametrization (scale = 1/rate). Likewise, inverse Gamma can also be defined both shape and scale (which we saw) as well as shape and rate parametrizations.

Bayesian Inference for Both Parameters of a Gaussian!

• Gaussian with unknown scalar mean and unknown scalar precision (two parameters)

- Consider N i.i.d. observations $\mathbf{X} = \{x_1, \dots, x_N\}$ drawn from a one-dim Gaussian $\mathcal{N}(x|\mu, \lambda^{-1})$
- ${\, \bullet \,}$ Assume both mean μ and precision λ to be unknown. The likelihood will be

$$p(\mathbf{X}|\mu,\lambda) = \prod_{n=1}^{N} \sqrt{\frac{\lambda}{2\pi}} \exp\left[-\frac{\lambda}{2}(x_n-\mu)^2\right]$$
$$\propto \left[\lambda^{1/2} \exp\left(-\frac{\lambda\mu^2}{2}\right)\right]^N \exp\left[\lambda\mu\sum_{n=1}^{N} x_n - \frac{\lambda}{2}\sum_{n=1}^{N} x_n^2\right]$$

• If we want a conjugate joint prior $p(\mu, \lambda)$, it must have the same form as likelihood. Suppose

$$p(\mu,\lambda) \propto \left[\lambda^{1/2} \exp\left(-rac{\lambda\mu^2}{2}
ight)
ight]^{\kappa_0} \exp\left[\lambda\mu c - \lambda d
ight]$$

• What's this prior? A normal-gamma (Gaussian-gamma) distribution! (will see its form shortly)

- Can be used when we wish to estimate the unknown mean and unknown precision of a Gaussian
- Note: Its multivariate version is the Normal-Wishart (for multivariate mean and precision matrix)

Normal-gamma (Gaussian-gamma) Distribution

• We saw that the conjugate prior needed to have the form

$$p(\mu, \lambda) \propto \left[\lambda^{1/2} \exp\left(-\frac{\lambda\mu^2}{2}\right)\right]^{\kappa_0} \exp\left[\lambda\mu c - \lambda d\right]$$

=
$$\underbrace{\exp\left[-\frac{\kappa_0\lambda}{2}(\mu - c/\kappa_0)^2\right]}_{\text{prop. to a Gaussian}} \underbrace{\lambda^{\kappa_0/2} \exp\left[-\left(d - \frac{c^2}{2\kappa_0}\right)\lambda\right]}_{\text{prop. to a gamma}} \qquad \text{(re-arranging terms}$$

The above is product of a normal and a gamma distribution¹

$$p(\mu,\lambda) = \mathcal{N}(\mu|\mu_0,(\kappa_0\lambda)^{-1})\mathsf{Gamma}(\lambda|\alpha_0,\beta_0) = \mathsf{NG}(\mu_0,\kappa_0,\alpha_0,\beta_0)$$

where $\mu_0 = c/\kappa_0$, $\alpha_0 = 1 + \kappa_0/2$, $\beta_0 = d - c^2/2\kappa_0$ are prior's hyperparameters

• $p(\mu, \lambda) = NG(\mu_0, \kappa_0, \alpha_0, \beta_0)$ is a conjugate for the mean-precision pair (μ, λ)

• A useful prior in many problems involving Gaussians with unknown mean and precision

¹shape-rate parametrization assumed for the gamma

Joint Posterior

• Due to conjugacy, the joint posterior $p(\mu, \lambda | \mathbf{X})$ will also be normal-gamma

 $p(\mu,\lambda|\mathbf{X}) \propto p(\mathbf{X}|\mu,\lambda)p(\mu,\lambda)$

• Plugging in the expressions for $p(\mathbf{X}|\mu,\lambda)$ and $p(\mu,\lambda)$, we get

 $p(\mu,\lambda|\mathbf{X}) = \mathsf{NG}(\mu_N,\kappa_N,\alpha_N,\beta_N) = \mathcal{N}(\mu|\mu_N,(\kappa_N\lambda)^{-1})\mathsf{Gamma}(\lambda|\alpha_N,\beta_N)$

where the updated posterior hyperparameters are given by^2

$$\mu_N = \frac{\kappa_0 \mu_0 + N \bar{x}}{\kappa_0 + N}$$

$$\kappa_N = \kappa_0 + N$$

$$\alpha_N = \alpha_0 + N/2$$

$$\beta_N = \beta_0 + \frac{1}{2} \sum_{n=1}^N (x_n - \bar{x})^2 + \frac{\kappa_0 N (\bar{x} - \mu_0)^2}{2(\kappa_0 + N)}$$

²For full derivation, refer to "Conjugate Bayesian analysis of the Gaussian distribution" - Murphy (2007)

Bayesian Inference for Some Basic Models

20

Other Quantities of Interest³

Already saw that joint post. p(μ, λ|X) = NG(μ_N, κ_N, α_N, β_N) = N(μ|μ_N, (κ_Nλ)⁻¹)Gamma(λ|α_N, β_N)
 Marginal posteriors for μ and λ

$$p(\lambda|\mathbf{X}) = \int p(\mu, \lambda|\mathbf{X}) d\mu = \text{Gamma}(\lambda|\alpha_N, \beta_N)$$

$$p(\mu|\mathbf{X}) = \int p(\mu, \lambda|\mathbf{X}) d\lambda = \int p(\mu|\lambda, \mathbf{X}) p(\lambda|\mathbf{X}) d\lambda = \underbrace{t_{2\alpha_N}(\mu|\mu_N, \beta_N/(\alpha_N\kappa_N))}_{\text{t distribution}}$$

Exercise: What will be the conditional posteriors p(μ|λ, X) and p(λ|μ, X)?
Marginal likelihood of the model

$$p(\mathbf{X}) = \frac{\Gamma(\alpha_N)}{\Gamma(\alpha_0)} \frac{\beta_0^{\alpha_0}}{\beta_N^{\alpha_N}} \left(\frac{\kappa_0}{\kappa_N}\right)^{\frac{1}{2}} (2\pi)^{-N/2}$$

• Posterior predictive distribution of a new observation x_*

$$p(x_*|\mathbf{X}) = \int \underbrace{p(x_*|\mu, \lambda)}_{\text{Gaussian}} \underbrace{p(\mu, \lambda|\mathbf{X})}_{\text{Normal-Gamma}} d\mu d\lambda = t_{2\alpha_N} \left(x_*|\mu_N, \frac{\beta_N(\kappa_N + 1)}{\alpha_N \kappa_N} \right)$$

³For full derivations, refer to "Conjugate Bayesian analysis of the Gaussian distribution" - Murphy (2007)

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK)

Bayesian Inference for Some Basic Models

An Aside: general-t and Student-t distribution

• Equivalent to an infinite sum of Gaussian distributions, with same means but different precisions

• $\mu = 0, \sigma^2 = 1$ gives the Student-t distribution (t_{ν}) . Note: If $x \sim t_{\nu}(\mu, \sigma^2)$ then $\frac{x-\mu}{\sigma} \sim t_{\nu}$ • An illustration of student-t

• t distribution has a "fatter" tail than a Gaussian and also sharper around the mean

Also a useful prior for sparse modeling

Inferring Parameters of Gaussian: Some Other Cases

- We only considered the simple 1-D Gaussian distribution
- The approach also extends to inferring parameters of a multivariate Gaussian
 - For the unknown mean and precision matrix, normal-Wishart distribution can be used as prior
- Posterior updates have forms similar to that in the 1-D case
- When working with mean-variance, we can use normal-inverse gamma as conjugate prior (or normal-inverse Wishart when working with mean-covariance matrix in case of multivariate Gaussian distribution)
- Other priors can also be used as well when inferring parameters of Gaussians, e.g.,
 - $\, \circ \,$ normal-Inverse χ^2 distribution is commonly used in Statistics community for scalar mean-variance
 - Uniform priors can also be used
 - Look at BDA Chapter 3 for such examples
- Also refer to "Conjugate Bayesian analysis of the Gaussian distribution" Murphy (2007) for various examples and more detailed derivations

Next Class: More examples of Bayesian inference with Gaussians

