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Recap: Bayesian Inference

o Given data X from a model m with parameters 6, the posterior over the parameters 6

 p(X,0lm)
PLOX,m) = = X m)
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Recap: Bayesian Inference

o Given data X from a model m with parameters 6, the posterior over the parameters 6

oy = P&0Im) - p(X|0, m)p(0]m)
p(0|X, m) = p(X|m) [ p(X|6, m)p(6]m)dé
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Recap: Bayesian Inference

o Given data X from a model m with parameters 6, the posterior over the parameters 6

(01X, m) = p(X,0lm)  p(X[|0, m)p(6|m) Likelihood x Prior
PO = "5(Xm) ~ [ p(X|6, m)p(6]lm)dé ~ Marginal likelihood
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Recap: Bayesian Inference

o Given data X from a model m with parameters 6, the posterior over the parameters 6
p(X|0, m)p(6|m) Likelihood x Prior

_ p(X,0lm) _ =
p(O0|X, m) = p(X|m) [ p(X|0, m)p(0]m)dd — Marginal likelihood

b Posterior PD
p(01X)
\Obs. Likelihood-
p(XI0)

 PD)

Prio
p(0),
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Recap: Bayesian Inference

o Given data X from a model m with parameters 6, the posterior over the parameters 6
p(X|0, m)p(6|m) Likelihood x Prior

_ p(X,0lm) _ =
p(O0|X, m) = p(X|m) [ p(X|0, m)p(0]m)dd — Marginal likelihood

b Posterior PD
p(01X)
\Obs. Likelihood-
p(XI0)

 PD)

Prio
p(0),

o Can use the posterior for various purposes
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Recap: Bayesian Inference

o Given data X from a model m with parameters 6, the posterior over the parameters 6
p(X|0, m)p(6|m) Likelihood x Prior

_ p(X,0lm) _ =
p(O0|X, m) = p(X|m) [ p(X|0, m)p(0]m)dd — Marginal likelihood

o Can use the posterior for various purposes, e.g.,
o Getting point estimates e.g., mode (though, for this, directly doing point estimation is often easier)
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Recap: Bayesian Inference

o Given data X from a model m with parameters 6, the posterior over the parameters 6
p(X|0, m)p(6|m) Likelihood x Prior

_ p(X,0lm) _ =
p(O0|X, m) = p(X|m) [ p(X|0, m)p(0]m)dd — Marginal likelihood

o Can use the posterior for various purposes, e.g.,
o Getting point estimates e.g., mode (though, for this, directly doing point estimation is often easier)

o Uncertaintly in our estimates of 6 (variance, credible intervals, etc)
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Recap: Bayesian Inference

o Given data X from a model m with parameters 6, the posterior over the parameters 6

(01X, m) = p(X,0lm)  p(X[|0, m)p(6|m) Likelihood x Prior
PO = X m) J p(X|0, m)p(6)m)d6  Marginal likelihood

o Can use the posterior for various purposes, e.g.,
o Getting point estimates e.g., mode (though, for this, directly doing point estimation is often easier)

o Uncertaintly in our estimates of 6 (variance, credible intervals, etc)

o Computing the posterior predictive distribution (PPD) for new data, e.g.,

p(x«|X, m) = /p(x*\H7 m)p(0|X, m)do
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Recap: Bayesian Inference

o Given data X from a model m with parameters 6, the posterior over the parameters 6

(01X, m) = p(X,0lm)  p(X[|0, m)p(6|m) Likelihood x Prior
PO = "5(Xm) ~ [ p(X|6, m)p(6]lm)dé ~ Marginal likelihood

Posteror PO
P(61X)
0.4} \Obs. Likelihood-
p(X/6)

Prior PO}
Eoz p(0)

% ) 0 2 4

o Can use the posterior for various purposes, e.g.,
o Getting point estimates e.g., mode (though, for this, directly doing point estimation is often easier)

o Uncertaintly in our estimates of 6 (variance, credible intervals, etc)

o Computing the posterior predictive distribution (PPD) for new data, e.g.,

p(x«|X, m) = /p(x*\H, m)p(0|X, m)do

o Caveat: Computing the posterior/PPD is in general hard (due to the intractable integrals involved)
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Recap: Marginal Likelihood and Its Usefulness

o Likelihood vs Marginal Likelihood: p(X|8, m) vs p(X|m)
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Recap: Marginal Likelihood and Its Usefulness

o Likelihood vs Marginal Likelihood: p(X|8, m) vs p(X|m)

o Prob. of X for a single § under model m vs prob. of X averaged over all 8’s under model m
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Recap: Marginal Likelihood and Its Usefulness

o Likelihood vs Marginal Likelihood: p(X|8, m) vs p(X|m)
o Prob. of X for a single § under model m vs prob. of X averaged over all 8’s under model m

o Can use marginal likelihood p(X|m) to select the best model from a finite set of models

M = arg max p(m|X)
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Recap: Marginal Likelihood and Its Usefulness

o Likelihood vs Marginal Likelihood: p(X|8, m) vs p(X|m)
o Prob. of X for a single § under model m vs prob. of X averaged over all 8’s under model m

o Can use marginal likelihood p(X|m) to select the best model from a finite set of models

M = arg max p(m|X) = arg max p(X|m)p(m)
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Recap: Marginal Likelihood and Its Usefulness

o Likelihood vs Marginal Likelihood: p(X|8, m) vs p(X|m)
o Prob. of X for a single § under model m vs prob. of X averaged over all 8’s under model m

o Can use marginal likelihood p(X|m) to select the best model from a finite set of models

M = arg max p(m|X) = arg max p(X|m)p(m) = arg max p(X|m),if p(m) is uniform
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Recap: Marginal Likelihood and Its Usefulness

o Likelihood vs Marginal Likelihood: p(X|8, m) vs p(X|m)
o Prob. of X for a single § under model m vs prob. of X averaged over all 8’s under model m

o Can use marginal likelihood p(X|m) to select the best model from a finite set of models
M = arg max p(m|X) = arg max p(X|m)p(m) = arg max p(X|m),if p(m) is uniform

o Also useful for estimating hyperparam of the assumed model (if we consider m as the hyperparams)
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Recap: Marginal Likelihood and Its Usefulness

o Likelihood vs Marginal Likelihood: p(X|8, m) vs p(X|m)
o Prob. of X for a single § under model m vs prob. of X averaged over all 8’s under model m
o Can use marginal likelihood p(X|m) to select the best model from a finite set of models
m = arg m,gxp(m|X) =arg mne:xp(X\m)p(m) = arg max p(X|m),if p(m) is uniform
o Also useful for estimating hyperparam of the assumed model (if we consider m as the hyperparams)

o Suppose hyperparams of likelihood are ay and that of prior are a, (so here m = {ay, ap})
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Recap: Marginal Likelihood and Its Usefulness

o Likelihood vs Marginal Likelihood: p(X|8, m) vs p(X|m)
o Prob. of X for a single § under model m vs prob. of X averaged over all 8’s under model m
o Can use marginal likelihood p(X|m) to select the best model from a finite set of models
m = arg m,gxp(m|X) =arg mne:xp(X\m)p(m) = arg max p(X|m),if p(m) is uniform
o Also useful for estimating hyperparam of the assumed model (if we consider m as the hyperparams)

o Suppose hyperparams of likelihood are ay and that of prior are a, (so here m = {ay, ap})

o Assuming p(aw, ap) is uniform, hyperparams can be estimated via MLE-II (a.k.a. empirical Bayes)

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Inference for Some Basic Models



Recap: Marginal Likelihood and Its Usefulness

o Likelihood vs Marginal Likelihood: p(X|8, m) vs p(X|m)
o Prob. of X for a single § under model m vs prob. of X averaged over all 8’s under model m
o Can use marginal likelihood p(X|m) to select the best model from a finite set of models
m = arg m,gxp(m|X) =arg mne:xp(X\m)p(m) = arg max p(X|m),if p(m) is uniform
o Also useful for estimating hyperparam of the assumed model (if we consider m as the hyperparams)

o Suppose hyperparams of likelihood are ay and that of prior are a, (so here m = {ay, ap})

o Assuming p(aw, ap) is uniform, hyperparams can be estimated via MLE-II (a.k.a. empirical Bayes)

{OA‘@ é\‘P} = arg max p(X|ag7 aP)
Qyg,0p
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Recap: Marginal Likelihood and Its Usefulness

o Likelihood vs Marginal Likelihood: p(X|8, m) vs p(X|m)
o Prob. of X for a single § under model m vs prob. of X averaged over all 8’s under model m
o Can use marginal likelihood p(X|m) to select the best model from a finite set of models
m = arg m,gxp(m|X) =arg mne:xp(X\m)p(m) = arg max p(X|m),if p(m) is uniform
o Also useful for estimating hyperparam of the assumed model (if we consider m as the hyperparams)

o Suppose hyperparams of likelihood are ay and that of prior are a, (so here m = {ay, ap})

o Assuming p(aw, ap) is uniform, hyperparams can be estimated via MLE-II (a.k.a. empirical Bayes)

{60, &y} = arg max p(X|ar, ap) = arg max / p(X]6, ar)p(Blap)d
ag,ap Qg,p
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Recap: Marginal Likelihood and Its Usefulness

o Likelihood vs Marginal Likelihood: p(X|8, m) vs p(X|m)
o Prob. of X for a single § under model m vs prob. of X averaged over all 8’s under model m
o Can use marginal likelihood p(X|m) to select the best model from a finite set of models
m = arg m,gxp(m|X) =arg mne:xp(X\m)p(m) = arg max p(X|m),if p(m) is uniform
o Also useful for estimating hyperparam of the assumed model (if we consider m as the hyperparams)

o Suppose hyperparams of likelihood are ay and that of prior are a, (so here m = {ay, ap})

o Assuming p(aw, ap) is uniform, hyperparams can be estimated via MLE-II (a.k.a. empirical Bayes)

{60, &y} = arg max p(X|ar, ap) = arg max / p(X]6, ar)p(Blap)d
ag,ap Qg,p

o Again, note that the integral here may be intractable and may need to be approximated
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Recap: Marginal Likelihood and Its Usefulness

o Likelihood vs Marginal Likelihood: p(X|8, m) vs p(X|m)
o Prob. of X for a single § under model m vs prob. of X averaged over all 8’s under model m
o Can use marginal likelihood p(X|m) to select the best model from a finite set of models
m = arg m,gxp(m|X) =arg mne:xp(X\m)p(m) = arg max p(X|m),if p(m) is uniform
o Also useful for estimating hyperparam of the assumed model (if we consider m as the hyperparams)

o Suppose hyperparams of likelihood are ay and that of prior are a, (so here m = {ay, ap})

o Assuming p(aw, ap) is uniform, hyperparams can be estimated via MLE-II (a.k.a. empirical Bayes)

{465} = arg max p(Xlas, ) = arg max | p(XI0.ar)p(0]a)do
ag,ap Qg,p
o Again, note that the integral here may be intractable and may need to be approximated
o Can also compute p(m|X) and do Bayesian Model Averaging: p(x.|X) = Zf:’zl p(x«|X, m)p(m|X)
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Recap: Bayesian Inference for a Beta-Bernoulli Model

o Saw the example of estimating the bias 6 € (0, 1) of a coin using Bayesian inference

o Chose a Bernoulli likelihood for each coin toss and a conjugate Beta prior for 6

p(xal0) = Bernoulli(x,|0) = 6™ (1 — )™
polaB) = Beta(Ola5) = st N0 -0y
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Recap: Bayesian Inference for a Beta-Bernoulli Model

o Saw the example of estimating the bias 6 € (0, 1) of a coin using Bayesian inference

o Chose a Bernoulli likelihood for each coin toss and a conjugate Beta prior for 6

p(xal0) = Bernoulli(x,|0) = 6™ (1 — )™
polaB) = Beta(Ola5) = st N0 -0y

o Here, prior's hyperparams (assumed fixed here) control its shape; also act as pseudo-observations
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Recap: Bayesian Inference for a Beta-Bernoulli Model

o Saw the example of estimating the bias 6 € (0, 1) of a coin using Bayesian inference

o Chose a Bernoulli likelihood for each coin toss and a conjugate Beta prior for 6

p(xal0) = Bernoulli(x,|0) = 6™ (1 — )™
polaB) = Beta(Ola5) = st N0 -0y

o Here, prior's hyperparams (assumed fixed here) control its shape; also act as pseudo-observations

©

Assuming x,'s as i.i.d. given 6, posterior p(0|X, a, 8) o< p(X|0)p(0|c, ) turned out to be Beta
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Recap: Bayesian Inference for a Beta-Bernoulli Model

o Saw the example of estimating the bias 6 € (0, 1) of a coin using Bayesian inference

o Chose a Bernoulli likelihood for each coin toss and a conjugate Beta prior for 6

p(xal0) = Bernoulli(x,|0) = 6™ (1 — )™
— o (O‘+6) a=1l¢1 _ n\B-1

o Here, prior's hyperparams (assumed fixed here) control its shape; also act as pseudo-observations

©

Assuming x,'s as i.i.d. given 6, posterlor p(01X, o, B) p(X|t9) (6|c, B) turned out to be Beta
p(01X, «, B) = Beta 0\04—5—ZX,7,ﬂ+ N — an
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Recap: Bayesian Inference for a Beta-Bernoulli Model

o Saw the example of estimating the bias 6 € (0, 1) of a coin using Bayesian inference

o Chose a Bernoulli likelihood for each coin toss and a conjugate Beta prior for 6

p(xal0) = Bernoulli(x,|0) = 6™ (1 — )™
polaB) = Beta(Ola5) = st N0 -0y

o Here, prior's hyperparams (assumed fixed here) control its shape; also act as pseudo-observations

o Assuming x,'s as i.i.d. given 6, posterior p(0|X, «, 8) < p(X|0)p(0|c, 3) turned out to be Beta
N N
p(01X, a, B) = Beta(f|a + an,ﬁ + N - an) = Beta(f|a + Ny, B+ No)
n=1 n=1
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Recap: Bayesian Inference for a Beta-Bernoulli Model

o Saw the example of estimating the bias 6 € (0, 1) of a coin using Bayesian inference

o Chose a Bernoulli likelihood for each coin toss and a conjugate Beta prior for 6

p(xal0) = Bernoulli(x,|0) = 6™ (1 — )™
polaB) = Beta(Ola5) = st N0 -0y

o Here, prior's hyperparams (assumed fixed here) control its shape; also act as pseudo-observations

o Assuming x,'s as i.i.d. given 6, posterior p(0|X, «, 8) < p(X|0)p(0|c, 3) turned out to be Beta
N N
p(01X, a, B) = Beta(f|a + an,ﬁ + N - an) = Beta(f|a + Ny, B+ No)
n=1 n=1
o Note: Here posterior only depends on data X = {xy,...,xn} via sufficient statistics Ny and N

p(01X, o, ) = p(0]s(X))
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Recap: Bayesian Inference for a Beta-Bernoulli Model

o Saw the example of estimating the bias 6 € (0, 1) of a coin using Bayesian inference

o Chose a Bernoulli likelihood for each coin toss and a conjugate Beta prior for 6

p(xal0) = Bernoulli(x,|0) = 6™ (1 — )™
polaB) = Beta(Ola5) = st N0 -0y

o Here, prior's hyperparams (assumed fixed here) control its shape; also act as pseudo-observations

o Assuming x,'s as i.i.d. given 6, posterior p(0|X, «, 8) < p(X|0)p(0|c, 3) turned out to be Beta
N N
p(01X, a, B) = Beta(f|a + an,ﬁ + N - an) = Beta(f|a + Ny, B+ No)
n=1 n=1
o Note: Here posterior only depends on data X = {xy,...,xn} via sufficient statistics Ny and N

p(01X, o, ) = p(0]s(X))

o We will see many other cases where the posterior depends on data only via some sufficient statistics
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Recap: Making Predictions in the Beta-Bernoulli Model

o The posterior predictive distribution (averaging over all § weighted by their posterior probabilities):

1
P =1%.0,8) = [ ploawes = 16)p(6IX. ., 5)dt
0
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Recap: Making Predictions in the Beta-Bernoulli Model

o The posterior predictive distribution (averaging over all § weighted by their posterior probabilities):

1
P =1%.0,8) = [ ploawes = 16)p(6IX. ., 5)dt
0

1
/ 0 x Beta(f|a + Ni, 8+ No)do
0

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Inference for Some Basic Models



Recap: Making Predictions in the Beta-Bernoulli Model

o The posterior predictive distribution (averaging over all § weighted by their posterior probabilities):

1
P =1%.0,8) = [ ploawes = 16)p(6IX. ., 5)dt
0

1
/ 0 x Beta(f|a + Ni, 8+ No)do
0
E[0IX]
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Recap: Making Predictions in the Beta-Bernoulli Model

o The posterior predictive distribution (averaging over all § weighted by their posterior probabilities):

1
P =1%.0,8) = [ ploawes = 16)p(6IX. ., 5)dt
0

1
/ 0 x Beta(f|a + Ni, 8+ No)do
0

E[6]X]
o+ Ny
a+B+N
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Recap: Making Predictions in the Beta-Bernoulli Model

o The posterior predictive distribution (averaging over all § weighted by their posterior probabilities):

1
P =1%.0,8) = [ ploawes = 16)p(6IX. ., 5)dt
0

1
/ 0 x Beta(f|a + Ni, 8+ No)do
0

E[6]X]
o+ Ny
a+B+N

o Therefore the posterior predictive distribution: p(xy+1|X) = Bernoulli(xyt+1 | E[6]X])
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Recap: Making Predictions in the Beta-Bernoulli Model

o The posterior predictive distribution (averaging over all § weighted by their posterior probabilities):

1
P =1%.0,8) = [ ploawes = 16)p(6IX. ., 5)dt
0

1
/ 0 x Beta(f|a + Ni, 8+ No)do
0

E[6]X]
o+ Ny
a+B+N

o Therefore the posterior predictive distribution: p(xy+1|X) = Bernoulli(xyt+1 | E[6]X])
o In contrast, the plug-in predictive distribution using a point estimate 8 (e.g., using MLE/MAP)

p(XN+1 = 1‘X,O{,B) ~ p(XN+1 - 1|é) - é
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Recap: Making Predictions in the Beta-Bernoulli Model

o The posterior predictive distribution (averaging over all § weighted by their posterior probabilities):

1
P =1%.0,8) = [ ploawes = 16)p(6IX. ., 5)dt
0

1
/ 0 x Beta(f|a + Ni, 8+ No)do
0

E[6]X]
o+ Ny
a+B+N

o Therefore the posterior predictive distribution: p(xy+1|X) = Bernoulli(xyt+1 | E[6]X])
o In contrast, the plug-in predictive distribution using a point estimate 8 (e.g., using MLE/MAP)

plxni = 11X, a, B) =~ p(xni1 = 1|0) = 0 or equivalently p(xn+1|X) ~ Bernoulli(xy;1 | 6)
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More Examples..
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Bayesian Inference for Multinoulli/Multinomial

o Assume N discrete-valued observations {xi,...,xy} with each x, € {1,..., K}
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Bayesian Inference for Multinoulli/Multinomial

o Assume N discrete-valued observations {xi,...,xy} with each x, € {1,..., K}, e.g.,
o X, represents the outcome of a dice roll with K faces
o X, represents the class label of the n-th example (total K classes)

o X, represents the identity of the n-th word in a sequence of words
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Bayesian Inference for Multinoulli/Multinomial

o Assume N discrete-valued observations {xi,...,xy} with each x, € {1,..., K}, e.g.,
o X, represents the outcome of a dice roll with K faces
o X, represents the class label of the n-th example (total K classes)

o X, represents the identity of the n-th word in a sequence of words

o Assume likelihood to be multinoulli with unknown params 7 = [my,...,7k] s.t. Zle T =1
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Bayesian Inference for Multinoulli/Multinomial

o Assume N discrete-valued observations {xi,...,xy} with each x, € {1,..., K}, e.g.,
o X, represents the outcome of a dice roll with K faces
o X, represents the class label of the n-th example (total K classes)

o X, represents the identity of the n-th word in a sequence of words

o Assume likelihood to be multinoulli with unknown params 7 = [my,...,7k] s.t. Zle T =1

p(xn|m) = multinoulli(x,|7)
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Bayesian Inference for Multinoulli/Multinomial

o Assume N discrete-valued observations {xi,...,xy} with each x, € {1,..., K}, e.g.,
o X, represents the outcome of a dice roll with K faces
o X, represents the class label of the n-th example (total K classes)

o X, represents the identity of the n-th word in a sequence of words

o Assume likelihood to be multinoulli with unknown params ™= [m1,...,7K] s.t. Zle T =1

p(xp|7) = multinoulli(x,|7) = H WH[X":k]
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Bayesian Inference for Multinoulli/Multinomial

o Assume N discrete-valued observations {xi,...,xy} with each x, € {1,..., K}, e.g.,
o X, represents the outcome of a dice roll with K faces
o X, represents the class label of the n-th example (total K classes)

o X, represents the identity of the n-th word in a sequence of words

o Assume likelihood to be multinoulli with unknown params ™= [m1,...,7K] s.t. Zle T =1

p(xp|7) = multinoulli(x,|7) = H WH[X":k]

o 7 is a vector of probabilities (“probability vector”)
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Bayesian Inference for Multinoulli/Multinomial

o Assume N discrete-valued observations {xi,...,xy} with each x, € {1,...,

o X, represents the outcome of a dice roll with K faces
o X, represents the class label of the n-th example (total K classes)

o X, represents the identity of the n-th word in a sequence of words

o Assume likelihood to be multinoulli with unknown params 71' = [m,...,

p(xp|7) = multinoulli(x,|7) = H WH[X":k]

o 7 is a vector of probabilities (“probability vector”), e.g.,
o Biases of the K sides of the dice
o Prior class probabilities in multi-class classification

o Probabilities of observing each words in the vocabulary
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K}, eg.,
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Bayesian Inference for Multinoulli/Multinomial

o Assume N discrete-valued observations {xi,...,xy} with each x, € {1,..., K}, e.g.,
o X, represents the outcome of a dice roll with K faces
o X, represents the class label of the n-th example (total K classes)

o X, represents the identity of the n-th word in a sequence of words

o Assume likelihood to be multinoulli with unknown params ™= [m1,...,7K] s.t. Zle T =1
p(xp|7) = multinoulli(x,|7) = H WH[X":k]
o 7 is a vector of probabilities (“probability vector”), e.g.,

Biases of the K sides of the dice
o Prior class probabilities in multi-class classification

©

Probabilities of observing each words in the vocabulary

©

o Assume a conjugate Dirichlet prior on 7 with hyperparams & = [, ..., ak] (also, ax > 0,Vk)

p(m|a) = Dirichlet(w|az, . . ., ak)
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Bayesian Inference for Multinoulli/Multinomial

o Assume N discrete-valued observations {xi,...,xy} with each x, € {1,..., K}, e.g.,
o X, represents the outcome of a dice roll with K faces
o X, represents the class label of the n-th example (total K classes)

o X, represents the identity of the n-th word in a sequence of words

o Assume likelihood to be multinoulli with unknown params ™= [m1,...,7K] s.t. Zle T =1
p(xp|7) = multinoulli(x,|7) = H WH[X":k]
o 7 is a vector of probabilities (“probability vector”), e.g.,

Biases of the K sides of the dice
o Prior class probabilities in multi-class classification

©

Probabilities of observing each words in the vocabulary

©

o Assume a conjugate Dirichlet prior on 7 with hyperparams & = [, ..., ak] (also, ax > 0,Vk)

K
MK @) ] o

p(m|a) = Dirichlet(w|a, ..., ax) = =% A
e T

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Inference for Some Basic Models



Bayesian Inference for Multinoulli/Multinomial

o Assume N discrete-valued observations {xi,...,xy} with each x, € {1,..., K}, e.g.,
o X, represents the outcome of a dice roll with K faces
o X, represents the class label of the n-th example (total K classes)

o X, represents the identity of the n-th word in a sequence of words

o Assume likelihood to be multinoulli with unknown params ™= [m1,...,7K] s.t. Zle T =1
p(xp|7) = multinoulli(x,|7) = H WH[X":k]
o 7 is a vector of probabilities (“probability vector”), e.g.,

Biases of the K sides of the dice
o Prior class probabilities in multi-class classification

©

Probabilities of observing each words in the vocabulary

©

o Assume a conjugate Dirichlet prior on 7 with hyperparams & = [, ..., ak] (also, ax > 0,Vk)
g M o) 75 s L
p(w|a) = Dirichlet(w|aa, ..., ak) = K# ok 7H7Tak
k=1 M) k=1 B(a) iy
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Brief Detour: Dirichlet Distribution

o Very important distribution: Models non-neg. vectors 7 that sum to one (e.g., probability vectors)
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Brief Detour: Dirichlet Distribution

PDF for a 3-dim Dirichlet

Draws from a 3-dimensional Dirichlet with different o
a=(1,1,1)

o A random draw from Dirichlet will be a point under the probability simplex

=(2.2,2)

o Very important distribution: Models non-neg. vectors 7 that sum to one (e.g., probability vectors)

«= (10,10, 10)

1 K
—1
p(rla) = W H "
k=1
= Mean = [T@, o }
‘ A e e NA%@NWI\M:[ -1
«=(10,3,5)
Red dots denote regions
of high probability denity

a1 |y
' s o
SRk S k|

aplay — g
var(my) = k(ap = ak)

o Hyperparams a = [a,

ad(ag+1)
K
0= o

k=1
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Brief Detour: Dirichlet Distribution

o Very important distribution: Models non-neg. vectors 7 that sum to one (e.g., probability vectors)

o A random draw from Dirichlet will be a point under the probability simplex

Draws from a 3-dimensional Dirichlet with different o
PDF for a 3-dim Dirichlet o .2, a={10.10,10) ( ‘ ) 1 K ax—1
i) = —— H "
Bla) 24 F
2

k=1

a ax

Mean = | ——...., 2
S L1 Ok i1
o -1 ag-1

Sk -k

Mode = [ }m >1)

ag(ag — o)

. var(mg) = —5
Red dots denote regions ag(ag +1)
of high probability denity

K

=Y

k=1

5

SASAASA
Ll

o Hyperparams a = [a, . .., ak] control the shape of Dirichlet (akin to Beta's hyperparams)

o Can also be thought of as a multi-dimensional Beta distribution
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Brief Detour: Dirichlet Distribution

o Very important distribution: Models non-neg. vectors 7 that sum to one (e.g., probability vectors)

o A random draw from Dirichlet will be a point under the probability simplex

Draws from a 3-dimensional Dirichlet with different o

PDF for a 3-dim Dirichlet @=(10,10,10) o) 1 ﬁ ax—1
=— s
4 0 ey L
‘ ., Mean = [Z/f“‘w ..... L‘f‘”; ”J
var(my,) = —’xﬁ(g:?{,jﬁ)

Red dots denote regions

of high probability denity . IZA

5 XAAA

o Hyperparams a = [a, . .., ak] control the shape of Dirichlet (akin to Beta's hyperparams)
o Can also be thought of as a multi-dimensional Beta distribution

o Note: Can also be seen as normalized version of K independent gamma random variables
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Bayesian Inference for Multinoulli/Multinomial

o The posterior over 7 is easy to compute in this case due to conjugacy b/w multinoulli and Dirichlet

p(X|w, a)p(w|a) _ p(X|m)p(w|c)
p(X|ax) p(X|ax)

p(mX, o) =
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Bayesian Inference for Multinoulli/Multinomial

o The posterior over 7 is easy to compute in this case due to conjugacy b/w multinoulli and Dirichlet

p(X|w, a)p(w|a) _ p(X|m)p(w|c)
p(X|ax) p(X|ax)

o Assuming x,’s are i.i.d. given 7, p(X|m) =[], p(xa|7), therefore

N K K
p(m|X, o) o H Hﬂi[x“:k] Hﬂ'?k71
k=1

n=1 k=1

p(mX, o) =
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Bayesian Inference for Multinoulli/Multinomial

o The posterior over 7 is easy to compute in this case due to conjugacy b/w multinoulli and Dirichlet

p(X|w, a)p(w|a) _ p(X|m)p(w|c)
p(X|ax) p(X|ax)

p(mX, o) =

o Assuming x,'s are i.i.d. given T, p(X|7'r) =TI, p(xa|7r), therefore

p(7T|X,a HH J[Xn—k]H ﬁ ?kJrZ,’y:lH[xn:k]fl

n=1 k=1 k=1
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Bayesian Inference for Multinoulli/Multinomial

o The posterior over 7 is easy to compute in this case due to conjugacy b/w multinoulli and Dirichlet

p(X|w, a)p(w|a) _ p(X|m)p(w|c)
p(X|ax) p(X|ax)

p(m|X, )

o Assuming x,'s are i.i.d. given T, p(X|7'r) =TI, p(xa|7r), therefore

p(7T|X,a HH J[Xn—k]H ﬁ ?kJrZ,’y:lH[xn:k]fl

n=1 k=1 k=1

o Even without computing the normalization constant p(X|a), we can see that it's a Dirichlet! :-)
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Bayesian Inference for Multinoulli/Multinomial

o The posterior over 7 is easy to compute in this case due to conjugacy b/w multinoulli and Dirichlet

p(X|w, a)p(w|a) _ p(X|m)p(w|c)
p(X|ax) p(X|ax)

p(m|X, )

o Assuming x,'s are i.i.d. given T, p(X|7'r) =TI, p(xa|7r), therefore

p(7T|X,a HH H[Xn—k]H ﬁ ?kJrZ,’y:lH[xn:k]fl

n=1 k=1 k=1
o Even without computing the normalization constant p(X|a), we can see that it's a Dirichlet! :-)

o Denoting Nx = SN | T[x, = k], i.e., number of observations with value k, the posterior will be

p(w|X, o) = Dirichlet(w|as + Ni, ..., ax + Nk)
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Bayesian Inference for Multinoulli/Multinomial

o The posterior over 7 is easy to compute in this case due to conjugacy b/w multinoulli and Dirichlet

p(X|w, a)p(w|a) _ p(X|m)p(w|c)
p(X|ax) p(X|ax)

p(m|X, )

o Assuming x,'s are i.i.d. given T, p(X|7'r) =TI, p(xa|7r), therefore

p(7T|X,a HH H[Xn—k]H ﬁ ?kJrZ,’y:lH[xn:k]fl

n=1 k=1 k=1

o Even without computing the normalization constant p(X|a), we can see that it's a Dirichlet! :-)

o Denoting Nx = SN | T[x, = k], i.e., number of observations with value k, the posterior will be
p(w|X, o) = Dirichlet(w|as + Ni, ..., ax + Nk)

o Note: Ny, ..., Nk are the sufficient statistics in this case
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Bayesian Inference for Multinoulli/Multinomial

o The posterior over 7 is easy to compute in this case due to conjugacy b/w multinoulli and Dirichlet

p(X|w, a)p(w|a) _ p(X|m)p(w|c)
p(X|ax) p(X|ax)

p(m|X, )

o Assuming x,'s are i.i.d. given T, p(X|7'r) =TI, p(xa|7r), therefore

p(7T|X,a HH H[Xn—k]H ﬁ ?kJrZ,’y:lH[xn:k]fl

n=1 k=1 k=1

o Even without computing the normalization constant p(X|a), we can see that it's a Dirichlet! :-)

o Denoting Nx = SN | T[x, = k], i.e., number of observations with value k, the posterior will be
p(w|X, o) = Dirichlet(w|as + Ni, ..., ax + Nk)

o Note: Ny, ..., Nk are the sufficient statistics in this case

o Note: If we want, we can also get the MAP estimate of 7 (mode of the above Dirichlet)
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Bayesian Inference for Multinoulli/Multinomial

o The posterior over 7 is easy to compute in this case due to conjugacy b/w multinoulli and Dirichlet

p(X|w, a)p(w|a) _ p(X|m)p(w|c)

p(m|X, ) = p(X|a) B p(X|)

o Assuming x,'s are i.i.d. given T, p(X|7'r) =TI, p(xa|7r), therefore

p(7T|X,a HH H[Xn—k]H ﬁ ?kJrZ,’y:lH[xn:k]fl

n=1 k=1 k=1

o Even without computing the normalization constant p(X|a), we can see that it's a Dirichlet! :-)

o Denoting Nx = SN | T[x, = k], i.e., number of observations with value k, the posterior will be
p(w|X, o) = Dirichlet(w|as + Ni, ..., ax + Nk)

o Note: Ny, ..., Nk are the sufficient statistics in this case

o Note: If we want, we can also get the MAP estimate of 7 (mode of the above Dirichlet)
o MAP estimation via standard way will require solving a constraint opt. problem (via Lagrangian)
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Bayesian Inference for Multinoulli/Multinomial

o Finally, let's also look at the posterior predictive distribution (i.e., the probability distribution of a
new observation x, € {1,..., K} given the previous observations X = {x1,...,xn})

p(x.|X, ) = / p(x.[m)p(m|X, @)dr
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Bayesian Inference for Multinoulli/Multinomial

o Finally, let's also look at the posterior predictive distribution (i.e., the probability distribution of a
new observation x, € {1,..., K} given the previous observations X = {x1,...,xn})

p(x.|X, ) = / p(x.[m)p(m|X, @)dr

o Note that p(x.|7) = multinoulli(x.|7) and p(7|X, &) = Dirichlet(w|ay + Ny, ..., ax + Nk)
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Bayesian Inference for Multinoulli/Multinomial

o Finally, let's also look at the posterior predictive distribution (i.e., the probability distribution of a
new observation x, € {1,..., K} given the previous observations X = {x1,...,xn})

plxc|X.0) = [ plx|m)p(m(X, o)
o Note that p(x.|7) = multinoulli(x.|7) and p(7|X, &) = Dirichlet(w|ay + Ny, ..., ax + Nk)

o We can compute the posterior predictive for each possible outcome (K possibilities)

plx = kX, @) = / p(x. = k|m)p(x|X, o) d
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Bayesian Inference for Multinoulli/Multinomial

o Finally, let's also look at the posterior predictive distribution (i.e., the probability distribution of a
new observation x, € {1,..., K} given the previous observations X = {x1,...,xn})

plxc|X.0) = [ plx|m)p(m(X, o)
o Note that p(x.|7) = multinoulli(x.|7) and p(7|X, &) = Dirichlet(w|ay + Ny, ..., ax + Nk)

o We can compute the posterior predictive for each possible outcome (K possibilities)
p(x. = kX, @) = /p(x* — k|m)p(m|X, @)dm

= /Wk x Dirichlet(mw|aq + Ni, ..., ak + Nk)dm
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Bayesian Inference for Multinoulli/Multinomial

o Finally, let's also look at the posterior predictive distribution (i.e., the probability distribution of a
new observation x, € {1,..., K} given the previous observations X = {x1,...,xn})

p(x:|X, ) = /p(x*\7r)p(7r|X7 a)drw
o Note that p(x.|7) = multinoulli(x.|7) and p(7|X, &) = Dirichlet(w|ay + Ny, ..., ax + Nk)
o We can compute the posterior predictive for each possible outcome (K possibilities)
p(x. = kX, @) = /p(x* — k|m)p(m|X, @)dm

= /Wk x Dirichlet(mw|aq + Ni, ..., ak + Nk)dm

ok + Ny

—————— (expectation of 7, under the Dirichlet posterior)
ZkK:l ok + N
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Bayesian Inference for Multinoulli/Multinomial

o Finally, let's also look at the posterior predictive distribution (i.e., the probability distribution of a
new observation x, € {1,..., K} given the previous observations X = {x1,...,xn})

p(x:|X, ) = /p(x*\7r)p(7r|X7 a)drw
o Note that p(x.|7) = multinoulli(x.|7) and p(7|X, &) = Dirichlet(w|ay + Ny, ..., ax + Nk)
o We can compute the posterior predictive for each possible outcome (K possibilities)
p(x. = kX, @) = /p(x* — k|m)p(m|X, @)dm

= /Wk x Dirichlet(mw|aq + Ni, ..., ak + Nk)dm

ok + Ny
ZkK:l akx+ N

o Therefore the posterior predictive distribution is multinoulli with posterior mean given as above

(expectation of 7k under the Dirichlet posterior)
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Bayesian Inference for Multinoulli/Multinomial

o Finally, let's also look at the posterior predictive distribution (i.e., the probability distribution of a
new observation x, € {1,..., K} given the previous observations X = {x1,...,xn})

p(x.|X, ) = / p(x.[m)p(m|X, @)dr

Note that p(x.|7) = multinoulli(x.|m) and p(7|X, ) = Dirichlet(m|a; + Ny, ..., ax + Nk)

©

o We can compute the posterior predictive for each possible outcome (K possibilities)
p(x. = kX, @) = /p(x* — k|m)p(m|X, @)dm

= /Wk x Dirichlet(mw|aq + Ni, ..., ak + Nk)dm

ok + Ny
ZkK:l akx+ N

o Therefore the posterior predictive distribution is multinoulli with posterior mean given as above

(expectation of 7k under the Dirichlet posterior)

o Note that the predicted probabilities are smoothed (the effect of averaging over all possible 7r's)
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Bayesian Inference for Multinoulli/Multinomial

o Finally, let's also look at the posterior predictive distribution (i.e., the probability distribution of a
new observation x, € {1,..., K} given the previous observations X = {x1,...,xn})

p(x.|X, ) = / p(x.[m)p(m|X, @)dr

Note that p(x.|7) = multinoulli(x.|m) and p(7|X, ) = Dirichlet(m|a; + Ny, ..., ax + Nk)

©

o We can compute the posterior predictive for each possible outcome (K possibilities)
p(x. = kX, @) = /p(x* — k|m)p(m|X, @)dm

= /Wk x Dirichlet(mw|aq + Ni, ..., ak + Nk)dm

ok + Ny
ZkK:l akx+ N

o Therefore the posterior predictive distribution is multinoulli with posterior mean given as above

(expectation of 7k under the Dirichlet posterior)

o Note that the predicted probabilities are smoothed (the effect of averaging over all possible 7r's)

o Recall that the PPD for the Beta-Bernoulli model also had a similar form!
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o Both, Beta-Bernoulli and Dirichlet-Multinoulli/Multinomial models are widely used



Applications?

o Both, Beta-Bernoulli and Dirichlet-Multinoulli/Multinomial models are widely used

o We now know how to do fully Bayesian inference if parts of our model have such components

Ul
|
«+-O-E—@ @,
d
D
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Applications?

o Both, Beta-Bernoulli and Dirichlet-Multinoulli/Multinomial models are widely used

o We now know how to do fully Bayesian inference if parts of our model have such components

UROSNO

Ny

o Some popular examples are

o Models for text data: Each document can be modeled as a bag-of-words (Beta-Bernoulli) or a

sequence of token (Dirichlet-Multinoulli)
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Applications?
o Both, Beta-Bernoulli and Dirichlet-Multinoulli/Multinomial models are widely used

o We now know how to do fully Bayesian inference if parts of our model have such components

n
|

(@ E— @)

Ny

o Some popular examples are

o Models for text data: Each document can be modeled as a bag-of-words (Beta-Bernoulli) or a
sequence of token (Dirichlet-Multinoulli)

o Bayesian inference for class probabilities in classification models: Class labels of training examples are
observations and class proabilities are to be estimated
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Applications?
o Both, Beta-Bernoulli and Dirichlet-Multinoulli/Multinomial models are widely used

o We now know how to do fully Bayesian inference if parts of our model have such components

n
|

(@ E— @)

Ny

o Some popular examples are
o Models for text data: Each document can be modeled as a bag-of-words (Beta-Bernoulli) or a
sequence of token (Dirichlet-Multinoulli)
o Bayesian inference for class probabilities in classification models: Class labels of training examples are
observations and class proabilities are to be estimated
o Bayesian inference for mixture models: Cluster ids are our (latent) “observations” of Dir-Mult model
and mixing proportions are to be estimated
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Applications?
o Both, Beta-Bernoulli and Dirichlet-Multinoulli/Multinomial models are widely used

o We now know how to do fully Bayesian inference if parts of our model have such components

n
|

(@ E— @)

Ny

o Some popular examples are
o Models for text data: Each document can be modeled as a bag-of-words (Beta-Bernoulli) or a
sequence of token (Dirichlet-Multinoulli)
o Bayesian inference for class probabilities in classification models: Class labels of training examples are
observations and class proabilities are to be estimated
o Bayesian inference for mixture models: Cluster ids are our (latent) “observations” of Dir-Mult model

and mixing proportions are to be estimated

o .. and several others, which we will see later..
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Bayesian Inference for Mean of a Gaussian

o Consider N i.i.d. observations X = {xq,...,xy} drawn from a one-dim Gaussian A (x|u, 0?)

_ 2
pxalp,0®) = N(x|u,0%) o exp {_%}

p(X|u, 0?) 11 PGl o)

n=1
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Bayesian Inference for Mean of a Gaussian

o Consider N i.i.d. observations X = {xq,...,xy} drawn from a one-dim Gaussian A (x|u, 0?)
2 2 (xn — :u')2
p(xnlp,0%) = N(x|p,0%) o< exp {—T}
N
p(Xlp, %) =[] pCulu,o?
n=1

o Assume the mean 1 € R of the Gaussian is unknown and assume variance o2 to be known /fixed
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Bayesian Inference for Mean of a Gaussian

o Consider N i.i.d. observations X = {xq,...,xy} drawn from a one-dim Gaussian A (x|u, 0?)
2 2 (xn — :u')2
p(xnlp,0%) = N(x|p,0%) o< exp {—T}
N
p(Xlp, %) =[] pCulu,o?
n=1

o Assume the mean 1 € R of the Gaussian is unknown and assume variance o2 to be known /fixed

o We wish to estimate the unknown p given the data X
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Bayesian Inference for Mean of a Gaussian

o Consider N i.i.d. observations X = {xq,...,xy} drawn from a one-dim Gaussian A (x|u, 0?)
2 2 (xn — :u')2
p(xnlp,0%) = N(x|p,0%) o< exp {—T}
N
p(Xlp, %) =[] pCulu,o?
n=1

o Assume the mean 1 € R of the Gaussian is unknown and assume variance o2 to be known /fixed
o We wish to estimate the unknown p given the data X

o Let’s do fully Bayesian inference for 1 (not MLE/MAP)
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Bayesian Inference for Mean of a Gaussian

o Consider N i.i.d. observations X = {xq,...,xy} drawn from a one-dim Gaussian A (x|u, 0?)
2 2 (xn — :u')2
p(xnlp,0%) = N(x|p,0%) o< exp {—T}
N
p(Xlp, %) =[] pCulu,o?
n=1

Assume the mean 1 € R of the Gaussian is unknown and assume variance o2 to be known /fixed

©

(+]

We wish to estimate the unknown p given the data X

Let's do fully Bayesian inference for y (not MLE/MAP)

(+]

©

We first need a prior distribution for the unknown param. u
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Bayesian Inference for Mean of a Gaussian

o Consider N i.i.d. observations X = {xq,...,xy} drawn from a one-dim Gaussian A (x|u, 0?)
2 2 (xn — :u')2
p(xnlp,0%) = N(x|p,0%) o< exp {—T}
N
p(Xlp, %) =[] pCulu,o?
n=1

©

Assume the mean 1 € R of the Gaussian is unknown and assume variance o2 to be known /fixed

(+]

We wish to estimate the unknown p given the data X

Let's do fully Bayesian inference for y (not MLE/MAP)

(+]

©

We first need a prior distribution for the unknown param. u

o Let's choose a Gaussian prior on y, i.e., p(u) = N (pu|po, 03) with g, 03 as fixed
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Bayesian Inference for Mean of a Gaussian

o Consider N i.i.d. observations X = {xy,...,xy} drawn from a one-dim Gaussian N (x|u, o?)
_ 2
p(xali,0®) = N(x|p,0%) < exp {—%}
p(Xlp,0%) =[] POl o?)
n=1
o Assume the mean 1 € R of the Gaussian is unknown and assume variance o2 to be known /fixed

(+]

We wish to estimate the unknown p given the data X

Let's do fully Bayesian inference for y (not MLE/MAP)

(+]

©

We first need a prior distribution for the unknown param. u

o Let's choose a Gaussian prior on y, i.e., p(u) = N (pu|po, 03) with g, 03 as fixed

©

The prior basically says that the mean p is close to o (with some uncertainty depending on o3)

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Inference for Some Basic Models



Bayesian Inference for Mean of a Gaussian

o The posterior distribution for the unknown mean parameter p

plulx) = PR [le [f%}mp [f

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Inference for Some Basic Models
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Bayesian Inference for Mean of a Gaussian

o The posterior distribution for the unknown mean parameter p

o Simplifying the above (using completing the squares trick) gives p(u|X) o exp [f(’*;gii”)z} with
N

N

o2

1 1
2 -2
oy oL
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Bayesian Inference for Mean of a Gaussian

o The posterior distribution for the unknown mean parameter p

p(pIX)

_ PXImp(n) ﬁexp {7&2—7;)2} X oxp {7(# - uo)g}

2
20¢

p(X)

o Simplifying the above (using completing the squares trick) gives p(u|X) o exp [f(’*;gii”)z} with
N

zqw‘ =

BN

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK)

1 N
o2 o?
2 2 N
g NO'O _ - E =1 Xn
h = n=
NoZ+ 02" T NoZ+ 02" (where X = =y —)
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Bayesian Inference for Mean of a Gaussian

o The posterior distribution for the unknown mean parameter p

o Simplifying the above (using completing the squares trick) gives p(u|X) o exp [f(’*;gii”)z} with
N

1 1 N
o2 o2 o?
2 2 N
g NO'O _ — E =1 Xn
= h = =n=1_
s N3+ 02 T NoZ+ 02 (where X = =y —)

o Posterior and prior have the same form (not surprising; the prior was conjugate to the likelihood)
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Bayesian Inference for Mean of a Gaussian

o The posterior distribution for the unknown mean parameter p

o Simplifying the above (using completing the squares trick) gives p(u|X) o exp [f(’*;gii”)z} with
N

1 1 N
o2 o2 o?
2 2 N
g NO'O _ — E =1 Xn
= h = =n=1_
s N3+ 02 T NoZ+ 02 (where X = =y —)

o Posterior and prior have the same form (not surprising; the prior was conjugate to the likelihood)

o Consider what happens as N (number of observations) grows very large?
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Bayesian Inference for Mean of a Gaussian

o The posterior distribution for the unknown mean parameter p

o Simplifying the above (using completing the squares trick) gives p(u|X) o exp [f(’*;gii”)z} with
N

11 N
o2 T a2 o2
2 2 N
g NO'O _ — E =1 Xn
= h = =n=1_
s N3+ 02 T NoZ+ 02 (where X = =y —)

o Posterior and prior have the same form (not surprising; the prior was conjugate to the likelihood)
o Consider what happens as N (number of observations) grows very large?

o The posterior’s variance o3 approaches 02/N (and goes to 0 as N — o0)
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Bayesian Inference for Mean of a Gaussian

o The posterior distribution for the unknown mean parameter p

o Simplifying the above (using completing the squares trick) gives p(u|X) o exp [f(’*;gii”)z} with
N

11 N
o2 T a2 o2
2 2 N
g NO'O _ — E =1 Xn
= h = =n=1_
s N3+ 02 T NoZ+ 02 (where X = =y —)

o Posterior and prior have the same form (not surprising; the prior was conjugate to the likelihood)
o Consider what happens as N (number of observations) grows very large?

o The posterior’s variance o3 approaches 02/N (and goes to 0 as N — o0)
o The posterior's mean uy approaches X (which is also the MLE solution)
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Bayesian Inference for Mean of a Gaussian

o What is the posterior predictive distribution p(x.|X) of a new observation x,?

o Using the inferred posterior p(u|X), we can find the posterior predictive distribution

p(x.]X) = / P 0%)p(11X)dps
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Bayesian Inference for Mean of a Gaussian

o What is the posterior predictive distribution p(x.|X) of a new observation x,?

o Using the inferred posterior p(u|X), we can find the posterior predictive distribution

p(x.]X) = / P, %) p(lX)djt = / N (el W (ol o3
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Bayesian Inference for Mean of a Gaussian

o What is the posterior predictive distribution p(x.|X) of a new observation x,?

o Using the inferred posterior p(u|X), we can find the posterior predictive distribution

p(x.]X) = / p(xel 11, 2)p(ulX)dp = / N (el 02N (ul s, o) s = N (o, 0° + 03)
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Bayesian Inference for Mean of a Gaussian

o What is the posterior predictive distribution p(x.|X) of a new observation x,?

o Using the inferred posterior p(u|X), we can find the posterior predictive distribution
(%) = [ s o)p(ulX) e = [ N, o WA oo, 7R = N (s aw. o+ )

o Note; Can also get the above result by thinking of x, as x. = p + € where yu ~ N(uy,0%), and
€ ~ N(0,0?) is independently added observation noise
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Bayesian Inference for Mean of a Gaussian

©

What is the posterior predictive distribution p(x.|X) of a new observation x,?

(+]

Using the inferred posterior p(:|X), we can find the posterior predictive distribution
(%) = [ s o)p(ulX) e = [ N, o WA oo, 7R = N (s aw. o+ )

o Note; Can also get the above result by thinking of x, as x. = p + € where yu ~ N(uy,0%), and
€ ~ N(0,0?) is independently added observation noise

(+]

Note that, as per the above, the uncertainty in distribution of x, now has two components
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Bayesian Inference for Mean of a Gaussian

o What is the posterior predictive distribution p(x.|X) of a new observation x,?

o Using the inferred posterior p(u|X), we can find the posterior predictive distribution
(%) = [ s o)p(ulX) e = [ N, o WA oo, 7R = N (s aw. o+ )

o Note; Can also get the above result by thinking of x, as x. = p + € where yu ~ N(uy,0%), and
€ ~ N(0,0?) is independently added observation noise

o Note that, as per the above, the uncertainty in distribution of x, now has two components

o 02 Due to the noisy observation model, o%: Due to the uncertainty in p
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Bayesian Inference for Mean of a Gaussian

©

What is the posterior predictive distribution p(x.|X) of a new observation x,?

(+]

Using the inferred posterior p(:|X), we can find the posterior predictive distribution
(%) = [ s o)p(ulX) e = [ N, o WA oo, 7R = N (s aw. o+ )

o Note; Can also get the above result by thinking of x, as x. = p + € where yu ~ N(uy,0%), and
€ ~ N(0,0?) is independently added observation noise

(+]

Note that, as per the above, the uncertainty in distribution of x, now has two components

o 02 Due to the noisy observation model, o%: Due to the uncertainty in p

o In contrast, the plug-in predictive posterior, given a point estimate ji (e.g., MLE/MAP) would be

p<X) = [ bl o%)p(uiX)dp ~ plx. .
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Bayesian Inference for Mean of a Gaussian

©

What is the posterior predictive distribution p(x.|X) of a new observation x,?

(+]

Using the inferred posterior p(:|X), we can find the posterior predictive distribution
(%) = [ s o)p(ulX) e = [ N, o WA oo, 7R = N (s aw. o+ )

o Note; Can also get the above result by thinking of x, as x. = p + € where yu ~ N(uy,0%), and
€ ~ N(0,0?) is independently added observation noise

(+]

Note that, as per the above, the uncertainty in distribution of x, now has two components

o 02 Due to the noisy observation model, o%: Due to the uncertainty in p

o In contrast, the plug-in predictive posterior, given a point estimate ji (e.g., MLE/MAP) would be

p(X) = [ b, 0" (1K) ~ plx..0%) = N(x. . ")
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Bayesian Inference for Mean of a Gaussian

©

What is the posterior predictive distribution p(x.|X) of a new observation x,?

(+]

Using the inferred posterior p(:|X), we can find the posterior predictive distribution
(%) = [ s o)p(ulX) e = [ N, o WA oo, 7R = N (s aw. o+ )

o Note; Can also get the above result by thinking of x, as x. = p + € where yu ~ N(uy,0%), and
€ ~ N(0,0?) is independently added observation noise

(+]

Note that, as per the above, the uncertainty in distribution of x, now has two components

o 02 Due to the noisy observation model, o%: Due to the uncertainty in p

o In contrast, the plug-in predictive posterior, given a point estimate ji (e.g., MLE/MAP) would be
p(X) = [ b, 0" (1K) ~ plx..0%) = N(x. . ")

. which doesn't incorporate the uncertainty in our estimate of p (since we used a point estimate)
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Bayesian Inference for Mean of a Gaussian

©

What is the posterior predictive distribution p(x.|X) of a new observation x,?

(+]

Using the inferred posterior p(:|X), we can find the posterior predictive distribution
(%) = [ s o)p(ulX) e = [ N, o WA oo, 7R = N (s aw. o+ )

o Note; Can also get the above result by thinking of x, as x. = p + € where yu ~ N(uy,0%), and
€ ~ N(0,0?) is independently added observation noise

(+]

Note that, as per the above, the uncertainty in distribution of x, now has two components

o 02 Due to the noisy observation model, o%: Due to the uncertainty in p
o In contrast, the plug-in predictive posterior, given a point estimate ji (e.g., MLE/MAP) would be
p(X) = [ b, 0" (1K) ~ plx..0%) = N(x. . ")
. which doesn't incorporate the uncertainty in our estimate of p (since we used a point estimate)
o Note that as N — oo, both approaches would give the same p(x.|X) since o3 — 0
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Bayesian Inference for Variance of a Gaussian

o Again consider N i.i.d. observations X = {xi,...,xy} drawn from a one-dim Gaussian N(x|u, o?)
N

p(xalp, 0%) = N(x|p,0%) and  p(X|u,0%) = [ [ p(xalps, o)

n=1
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Bayesian Inference for Variance of a Gaussian

o Again consider N i.i.d. observations X = {xi,...,xy} drawn from a one-dim Gaussian N(x|u, o?)
N
p(xalp, 0%) = N(x|p,0%) and  p(X|u,0%) = [ [ p(xalps, o)
n=1

o Assume the variance 02 € R, of the Gaussian is unknown and assume mean 1 to be known /fixed
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Bayesian Inference for Variance of a Gaussian

o Again consider N i.i.d. observations X = {xi,...,xy} drawn from a one-dim Gaussian N(x|u, o?)
N
p(xalp, 0%) = N(x|p,0%) and  p(X|u,0%) = [ [ p(xalps, o)
n=1

o Assume the variance 02 € R, of the Gaussian is unknown and assume mean 1 to be known /fixed

o Let's estimate o2 given the data X using fully Bayesian inference (not MLE/MAP)
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Bayesian Inference for Variance of a Gaussian

o Again consider N i.i.d. observations X = {xi,...,xy} drawn from a one-dim Gaussian N(x|u, o?)
N
p(xalp, 0%) = N(x|p,0%) and  p(X|u,0%) = [ [ p(xalps, o)
n=1

o Assume the variance 02 € R, of the Gaussian is unknown and assume mean 1 to be known /fixed
o Let's estimate o2 given the data X using fully Bayesian inference (not MLE/MAP)

o We first need a prior distribution for 2. What prior p(c2) to choose in this case?
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Bayesian Inference for Variance of a Gaussian

o Again consider N i.i.d. observations X = {xi,...,xy} drawn from a one-dim Gaussian N(x|u, o?)
N
p(xalp, 0%) = N(x|p,0%) and  p(X|u,0%) = [ [ p(xalps, o)

n=1

Assume the variance 02 € R, of the Gaussian is unknown and assume mean y to be known /fixed

©

(+]

Let's estimate o2 given the data X using fully Bayesian inference (not MLE/MAP)

©

We first need a prior distribution for 0. What prior p(c2) to choose in this case?

©

If we want a conjugate prior, it should have the same form as the likelihood

e

2 2\—1/2 B
Pl o) x (0") 2 exp |- o
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Bayesian Inference for Variance of a Gaussian

o Again consider N i.i.d. observations X = {xi,...,xy} drawn from a one-dim Gaussian N(x|u, o?)
N
p(xalp, 0%) = N(x|p,0%) and  p(X|u,0%) = [ [ p(xalps, o)

n=1

Assume the variance 02 € R, of the Gaussian is unknown and assume mean y to be known /fixed

©

(+]

Let's estimate o2 given the data X using fully Bayesian inference (not MLE/MAP)

©

We first need a prior distribution for 0. What prior p(c2) to choose in this case?

©

If we want a conjugate prior, it should have the same form as the likelihood

e

2 2\—1/2 B
Pl o) x (0") 2 exp |- o

o An inverse-gamma prior /G(a, 3) has this form («, S are shape and scale hyperparams, resp)

ple") x (+2) D exp |- I

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Inference for Some Basic Models 16



Bayesian Inference for Variance of a Gaussian

o Again consider N i.i.d. observations X = {xi,...,xy} drawn from a one-dim Gaussian N(x|u, o?)
N
p(xalp, 0%) = N(x|p,0%) and  p(X|u,0%) = [ [ p(xalps, o)

n=1

Assume the variance 02 € R, of the Gaussian is unknown and assume mean y to be known /fixed

©

(+]

Let's estimate o2 given the data X using fully Bayesian inference (not MLE/MAP)

©

We first need a prior distribution for 0. What prior p(c2) to choose in this case?

©

If we want a conjugate prior, it should have the same form as the likelihood

> =172 (xn — p1)?
Pl o) x (0") H2exp |- o)
o An inverse-gamma prior /G(a, 3) has this form («, S are shape and scale hyperparams, resp)

P(UZ) x (52)7((”1) exp [—g} (note: mean of IG(a, 8) = %)
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Bayesian Inference for Variance of a Gaussian

o Again consider N i.i.d. observations X = {xi,...,xy} drawn from a one-dim Gaussian N(x|u, o?)
N
p(xalp, 0%) = N(x|p,0%) and  p(X|u,0%) = [ [ p(xalps, o)
n=1
o Assume the variance 02 € R, of the Gaussian is unknown and assume mean 1 to be known /fixed
o Let's estimate o2 given the data X using fully Bayesian inference (not MLE/MAP)
o We first need a prior distribution for 2. What prior p(c2) to choose in this case?
o If we want a conjugate prior, it should have the same form as the likelihood
_ 2
p(xalpt, 0%) o (07) % exp {—7()("202”) ]

o An inverse-gamma prior /G(a, 3) has this form («, S are shape and scale hyperparams, resp)

P(UZ) x (52)7((”1) exp [—g} (note: mean of IG(a, 8) = %)

o (Verify) The posterior p(c?|X) = IG(a + %,B + M) Again IG due to conjugacy.
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Working with Gaussians: Variance vs Precision

o Often, it is easier to work with the precision (=1/variance) rather than variance

ploalit. ™) = N(xlpe. ™) = [ 5 e [~ (x0 = )?
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Working with Gaussians: Variance vs Precision

o Often, it is easier to work with the precision (=1/variance) rather than variance

ploalit. ™) = N(xlpe. ™) = [ 5 e [~ (x0 = )?

o If mean is known, for precision Gamma(c, 3) is a conjugate prior to Gaussian likelihood

p(r) o (1)1 Vexp [-p7]
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Working with Gaussians: Variance vs Precision

o Often, it is easier to work with the precision (=1/variance) rather than variance

ploalit. ™) = N(xlpe. ™) = [ 5 e [~ (x0 = )?

o If mean is known, for precision Gamma(c, 3) is a conjugate prior to Gaussian likelihood

)

=2
B

.. where « and 3 are the shape and rate hyperparamers, respectively, for the Gamma

p(7) o< (1)@ Y exp [- 7] (note: mean of Gamma(a, §)
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Working with Gaussians: Variance vs Precision

o Often, it is easier to work with the precision (=1/variance) rather than variance

ploalit. ™) = N(xlpe. ™) = [ 5 e [~ (x0 = )?

o If mean is known, for precision Gamma(c, 3) is a conjugate prior to Gaussian likelihood

)

=2
B

.. where « and 3 are the shape and rate hyperparamers, respectively, for the Gamma

p(7) o< (1)@ Y exp [- 7] (note: mean of Gamma(a, §)

o (Verify) Th i X) will also be G N gy Tamba=p)®
y) The posterior p(7|X) will also be Gamma(a + 3, 5 + > )
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Working with Gaussians: Variance vs Precision

o Often, it is easier to work with the precision (=1/variance) rather than variance

ploalit. ™) = N(xlpe. ™) = [ 5 e [~ (x0 = )?

o If mean is known, for precision Gamma(c, 3) is a conjugate prior to Gaussian likelihood

)

=2
B

. where « and 3 are the shape and rate hyperparamers, respectively, for the Gamma

p(7) o< (1)@ Y exp [- 7] (note: mean of Gamma(a, §)

o (Verify) Th i X) will also be G N gy Tamba=p)®
y) The posterior p(7|X) will also be Gamma(a + 3, 5 + > )

o Note: Gamma distribution can be defined in terms of shape and scale or shape and rate
parametrization (scale = 1/rate). Likewise, inverse Gamma can also be defined both shape and
scale (which we saw) as well as shape and rate parametrizations.
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Bayesian Inference for Both Parameters of a Gaussian!

o Gaussian with unknown scalar mean and unknown scalar precision (two parameters)
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Bayesian Inference for Both Parameters of a Gaussian!

o Gaussian with unknown scalar mean and unknown scalar precision (two parameters)

o Consider N i.i.d. observations X = {xq,...,xy} drawn from a one-dim Gaussian A/(x|u, A71)
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Bayesian Inference for Both Parameters of a Gaussian!

o Gaussian with unknown scalar mean and unknown scalar precision (two parameters)
o Consider N i.i.d. observations X = {xq,...,xy} drawn from a one-dim Gaussian N/(x|u, A\71)

o Assume both mean p and precision A to be unknown. The likelihood will be

(Xl )) = H\fexp[ =]
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Bayesian Inference for Both Parameters of a Gaussian!

o Gaussian with unknown scalar mean and unknown scalar precision (two parameters)
o Consider N i.i.d. observations X = {xq,...,xy} drawn from a one-dim Gaussian N/(x|u, A\71)

o Assume both mean p and precision A to be unknown. The likelihood will be

p(X|i, \) = H\/;exp {f%(xn—u)ﬂ
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Bayesian Inference for Both Parameters of a Gaussian!

o Gaussian with unknown scalar mean and unknown scalar precision (two parameters)

o Consider N i.i.d. observations X = {x,...,xy} drawn from a one-dim Gaussian N (x|u,

o Assume both mean p and precision A to be unknown. The likelihood will be

(Xl )) = H\fexp[ - )}

N N
x /\1/2exp —)\—HZ exp )\,LLZXH—AZXZ
2 n=1 2 n=1 ’

o If we want a conjugate joint prior p(i, A), it must have the same form as likelihood.
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Bayesian Inference for Both Parameters of a Gaussian!

o Gaussian with unknown scalar mean and unknown scalar precision (two parameters)

o Consider N i.i.d. observations X = {xq,...,xy} drawn from a one-dim Gaussian A/(x|u, A71)

o Assume both mean p and precision A to be unknown. The likelihood will be

(Xl )) = H\fexp[ (o = ]

A N A o

1/2 _ AR _ A 2

x {/\ exp ( 5 )} exp [)\,u HEZI Xn 5 '?:1 x,,]

o If we want a conjugate joint prior p(u, A), it must have the same form as likelihood. Suppose

2

Ko
p(p, A) {)\1/2 exp <—%>] exp [Auc — Ad]
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Bayesian Inference for Both Parameters of a Gaussian!

o Gaussian with unknown scalar mean and unknown scalar precision (two parameters)

Consider N i.i.d. observations X = {xi,...,xy} drawn from a one-dim Gaussian N'(x|u, A~1)

©

©

Assume both mean p and precision A to be unknown. The likelihood will be

(Xl )) = H\fexp[ —u)}

N N
x /\1/2exp —)\—Hz exp )\,LLZXH—AZXZ
2 n=1 2 n=1 ’

If we want a conjugate joint prior p(u, A), it must have the same form as likelihood. Suppose

©

2

Ko
p(p, A) {)\1/2 exp <—%>] exp [Auc — Ad]

(+]

What's this prior? A normal-gamma (Gaussian-gamma) distribution! (will see its form shortly)
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Bayesian Inference for Both Parameters of a Gaussian!

o Gaussian with unknown scalar mean and unknown scalar precision (two parameters)

Consider N i.i.d. observations X = {xi,...,xy} drawn from a one-dim Gaussian N'(x|u, A~1)

©

©

Assume both mean p and precision A to be unknown. The likelihood will be

(Xl )) = H\fexp[ —u)}

N N
x /\1/2exp —)\—Hz exp )\,LLZXH—AZXZ
2 n=1 2 n=1 ’

If we want a conjugate joint prior p(u, A), it must have the same form as likelihood. Suppose

©

2

Ko
p(p, A) {)\1/2 exp <—%>] exp [Auc — Ad]

(+]

What's this prior? A normal-gamma (Gaussian-gamma) distribution! (will see its form shortly)

o Can be used when we wish to estimate the unknown mean and unknown precision of a Gaussian
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Bayesian Inference for Both Parameters of a Gaussian!

o Gaussian with unknown scalar mean and unknown scalar precision (two parameters)

©

Consider N i.i.d. observations X = {xi,...,xy} drawn from a one-dim Gaussian N'(x|u, A~1)

©

Assume both mean p and precision A to be unknown. The likelihood will be

o A A
_ A A2
p(X|u,A) = n|:|1 \ 2, &P { 5 00— 1) }
A2\ 1Y N Pl
1/2 AR A 2
x {/\ exp ( 5 )} exp [)\,u HEZI Xn 5 '?:1 X;

If we want a conjugate joint prior p(u, A), it must have the same form as likelihood. Suppose

©

2

Ko
p(p, A) {)\1/2 exp <—%>] exp [Auc — Ad]

(+]

What's this prior? A normal-gamma (Gaussian-gamma) distribution! (will see its form shortly)
o Can be used when we wish to estimate the unknown mean and unknown precision of a Gaussian
o Note: Its multivariate version is the Normal-Wishart (for multivariate mean and precision matrix)
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Normal-gamma (Gaussian-gamma) Distribution

o We saw that the conjugate prior needed to have the form

27 750
p(p,\) {/\1/2exp<—)\Tu)} exp [Auc — Ad]

L shape-rate parametrization assumed for the gamma
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Normal-gamma (Gaussian-gamma) Distribution

o We saw that the conjugate prior needed to have the form
2 Ko
p(p,\) {/\1/2 exp (—)\TN)} exp [Auc — Ad]

= exp {—%)\(u - c/mo)z} A"0/% exp {— (d - 2%0) )\} (re-arranging terms)

prop. to a Gaussian prop. to a gamma

L shape-rate parametrization assumed for the gamma
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Normal-gamma (Gaussian-gamma) Distribution

o We saw that the conjugate prior needed to have the form
2 Ko
p(p,\) {/\1/2 exp (—)\TN)} exp [Auc — Ad]

= exp {—%)\(u - C/Ho)2:| A"0/% exp {— (d - 2%0) )\} (re-arranging terms)

prop. to a Gaussian prop. to a gamma
o The above is product of a normal and a gamma distribution®

P, X) = N (il o, (50X)~")Gamma(A[ e, fo) = NG(uo, o, o, o)
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L shape-rate parametrization assumed for the gamma
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Normal-gamma (Gaussian-gamma) Distribution

o We saw that the conjugate prior needed to have the form
2 Ko
p(p,\) {/\1/2 exp (—)\TN)} exp [Auc — Ad]

= exp {—%)\(u - C/Ho)2:| A"0/% exp {— (d - 2%0) )\} (re-arranging terms)

prop. to a Gaussian prop. to a gamma
o The above is product of a normal and a gamma distribution®
P11 A) = N (ulpo, (koX) ") Gamma(A| o, Bo) = NG(puo, %o, a0, o)
where pio = ¢/ko, ap = 1+ ko/2, fo = d — c*/2ko are prior's hyperparameters

o p(u, A\) = NG(uo, ko, o, Bo) is a conjugate for the mean-precision pair (u, A)

L shape-rate parametrization assumed for the gamma
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Normal-gamma (Gaussian-gamma) Distribution

o We saw that the conjugate prior needed to have the form
2 Ko
p(p,\) {/\1/2 exp (—)\TN)} exp [Auc — Ad]

= exp {—%)\(u - C/Ho)2:| A"0/% exp {— (d - 2%0) )\} (re-arranging terms)

prop. to a Gaussian prop. to a gamma
o The above is product of a normal and a gamma distribution®
P, X) = N (il o, (50X)~")Gamma(A[ e, fo) = NG(uo, o, o, o)
where pio = ¢/ko, ap = 1+ ko/2, fo = d — c*/2ko are prior's hyperparameters
o p(u, A\) = NG(uo, ko, o, Bo) is a conjugate for the mean-precision pair (u, A)

o A useful prior in many problems involving Gaussians with unknown mean and precision

L shape-rate parametrization assumed for the gamma
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Joint Posterior

o Due to conjugacy, the joint posterior p(u, A\|X) will also be normal-gamma

(s AIX) o< p(X|p, A)p(; A)

2For full derivation, refer to “Conjugate Bayesian analysis of the Gaussian distribution” - Murphy (2007)
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Joint Posterior
o Due to conjugacy, the joint posterior p(u, A\|X) will also be normal-gamma
(s AIX) o< p(X|p, A)p(; A)

o Plugging in the expressions for p(X|u, A) and p(u, A), we get

p(, AX) = NG(uw, kn, an, Bn) = N(plpn, (knX) ™) Gamma(Aaw, A)

2For full derivation, refer to “Conjugate Bayesian analysis of the Gaussian distribution” - Murphy (2007)
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Joint Posterior

o Due to conjugacy, the joint posterior p(u, A\|X) will also be normal-gamma
(s AIX) o< p(X|p, A)p(; A)
o Plugging in the expressions for p(X|u, A) and p(u, A), we get

p(, AX) = NG(uw, kn, an, Bn) = N(plpn, (knX) ™) Gamma(Aaw, A)

where the updated posterior hyperparameters are given by?

_ Kopo + Nx
un = 7@ N
ky = Ko+ N
ay = oo+ N/2
N
_ 1 —\2 /ioN()_( — /,Lo)z
Bv = Bot3 ;(Xn X)° + 200 N)

2For full derivation, refer to “Conjugate Bayesian analysis of the Gaussian distribution” - Murphy (2007)
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Other Quantities of Interest?

o Already saw that joint post. p(u, A|X) = NG(un, kn, an, Bn) = N(u\,u/v, (HN/\)fl)Gamma(MaN,ﬁN)

3For full derivations, refer to “Conjugate Bayesian analysis of the Gaussian distribution” - Murphy (2007)
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Other Quantities of Interest?

o Already saw that joint post. p(u, A|X) = NG(un, kn, an, Bn) = N(u\,u/v, (HN/\)fl)Gamma(MaN,ﬁN)

o Marginal posteriors for p and A

pOX) = [ Pl AlX)dp = Gamma(Alaw, )
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pOX) = [ Pl AlX)dp = Gamma(Alaw, )
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t distribution
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3For full derivations, refer to “Conjugate Bayesian analysis of the Gaussian distribution” - Murphy (2007)
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Other Quantities of Interest?

o Already saw that joint post. p(u, A|X) = NG(un, kn, an, Bn) = N(u\,u/v, (HN/\)fl)Gamma(MaN, Bn)
o Marginal posteriors for p and A
pOX) = [ Pl AlX)dp = Gamma(Alaw, )

[ 2t %083 = [ Pl A X)PAIX)IA =ty (el B/ (anren)

t distribution

p(u]X)

o Exercise: What will be the conditional posteriors p(u|A, X) and p(A|g, X)?

3For full derivations, refer to “Conjugate Bayesian analysis of the Gaussian distribution” - Murphy (2007)
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Other Quantities of Interest?

o Already saw that joint post. p(u, A|X) = NG(un, kn, an, Bn) = N(u\,u/v, (HN/\)fl)Gamma(MaN, Bn)
o Marginal posteriors for p and A

pOX) = [ Pl AlX)dp = Gamma(Alaw, )

[ 2t %083 = [ Pl A X)PAIX)IA =ty (el B/ (anren)

t distribution

p(u]X)

o Exercise: What will be the conditional posteriors p(u|A, X) and p(A|g, X)?
o Marginal likelihood of the model

[N

p(x) = Hom) 5 (2)" eme

3For full derivations, refer to “Conjugate Bayesian analysis of the Gaussian distribution” - Murphy (2007)
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Other Quantities of Interest?

o Already saw that joint post. p(u, A|X) = NG(un, kn, an, Bn) = N(u\,u/v, (HN/\)fl)Gamma(MaN,ﬁN)
o Marginal posteriors for p and A
pOX) = [ Pl AlX)dp = Gamma(Alaw, )
pulX) = [ (AN = [ p(aIX XIPAIXIIN = tacy (il ian, S/ (onin))
t distribution
o Exercise: What will be the conditional posteriors p(u|A, X) and p(A|g, X)?
o Marginal likelihood of the model
_ T(aw) Be° ( ko : %
p(X) = F(ao) AN (w) (2m)
o Posterior predictive distribution of a new observation x,
pe 1) = [ pl s A) Pl AIX) dpdh = taay <><*|/w, w)
—— — — anNKN
Gaussian Normal-Gamma
3

For full derivations, refer to “Conjugate Bayesian analysis of the Gaussian distribution” - Murphy (2007)
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An Aside: general-t and Student-t distribution
o Equivalent to an infinite sum of Gaussian distributions, with same means but different precisions
plxliab) = [ Nlxl, A )Gamma(fa, b)dA

toa(x|, b/a) = t,(x|p, 0%) (general-t distribution)
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o Equivalent to an infinite sum of Gaussian distributions, with same means but different precisions
plxliab) = [ Nlxl, A )Gamma(fa, b)dA

toa(x|, b/a) = t,(x|p, 0%) (general-t distribution)

o pu=0,02 =1 gives the Student-t distribution (,). Note: If x ~ t,(u,0?) then *Z£ ~ t,
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An Aside: general-t and Student-t distribution
o Equivalent to an infinite sum of Gaussian distributions, with same means but different precisions

p(x|u,a,b) = /N x|, A"H)Gamma(\|a, b)d A

toa(x|, b/a) = t,(x|p, 0%) (general-t distribution)

o pu=0,02 =1 gives the Student-t distribution (,). Note: If x ~ t,(u,0?) then *Z£ ~ t,

o An illustration of student-t
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An Aside: general-t and Student-t distribution
o Equivalent to an infinite sum of Gaussian distributions, with same means but different precisions
p(x|u,a,b) = /N x|, A"H)Gamma(\|a, b)d A

toa(x|, b/a) = t,(x|p, 0%) (general-t distribution)

o pu=0,02 =1 gives the Student-t distribution (,). Note: If x ~ t,(u,0?) then *Z£ ~ t,

o An illustration of student-t
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o t distribution has a “fatter” tail than a Gaussian and also sharper around the mean
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An Aside: general-t and Student-t distribution
o Equivalent to an infinite sum of Gaussian distributions, with same means but different precisions

p(x|u,a,b) = /N x|, A"H)Gamma(\|a, b)d A

toa(x|, b/a) = t,(x|p, 0%) (general-t distribution)

o pu=0,02 =1 gives the Student-t distribution (,). Note: If x ~ t,(u,0?) then *Z£ ~ t,

o An illustration of student-t
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o t distribution has a “fatter” tail than a Gaussian and also sharper around the mean

o Also a useful prior for sparse modeling
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Inferring Parameters of Gaussian: Some Other Cases

o We only considered the simple 1-D Gaussian distribution
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o We only considered the simple 1-D Gaussian distribution
o The approach also extends to inferring parameters of a multivariate Gaussian

o For the unknown mean and precision matrix, normal-Wishart distribution can be used as prior
o Posterior updates have forms similar to that in the 1-D case

o When working with mean-variance, we can use normal-inverse gamma as conjugate prior (or
normal-inverse Wishart when working with mean-covariance matrix in case of multivariate Gaussian
distribution)
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Inferring Parameters of Gaussian: Some Other Cases

o We only considered the simple 1-D Gaussian distribution
o The approach also extends to inferring parameters of a multivariate Gaussian

o For the unknown mean and precision matrix, normal-Wishart distribution can be used as prior

(+]

Posterior updates have forms similar to that in the 1-D case

o When working with mean-variance, we can use normal-inverse gamma as conjugate prior (or
normal-inverse Wishart when working with mean-covariance matrix in case of multivariate Gaussian
distribution)

©

Other priors can also be used as well when inferring parameters of Gaussians
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Posterior updates have forms similar to that in the 1-D case

o When working with mean-variance, we can use normal-inverse gamma as conjugate prior (or
normal-inverse Wishart when working with mean-covariance matrix in case of multivariate Gaussian
distribution)

©

Other priors can also be used as well when inferring parameters of Gaussians, e.g.,

o normal-Inverse x? distribution is commonly used in Statistics community for scalar mean-variance
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Inferring Parameters of Gaussian: Some Other Cases

o We only considered the simple 1-D Gaussian distribution
o The approach also extends to inferring parameters of a multivariate Gaussian

o For the unknown mean and precision matrix, normal-Wishart distribution can be used as prior

(+]

Posterior updates have forms similar to that in the 1-D case

o When working with mean-variance, we can use normal-inverse gamma as conjugate prior (or
normal-inverse Wishart when working with mean-covariance matrix in case of multivariate Gaussian
distribution)

©

Other priors can also be used as well when inferring parameters of Gaussians, e.g.,
o normal-Inverse x? distribution is commonly used in Statistics community for scalar mean-variance

o Uniform priors can also be used

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Bayesian Inference for Some Basic Models



Inferring Parameters of Gaussian: Some Other Cases

o We only considered the simple 1-D Gaussian distribution
o The approach also extends to inferring parameters of a multivariate Gaussian

o For the unknown mean and precision matrix, normal-Wishart distribution can be used as prior

(+]

Posterior updates have forms similar to that in the 1-D case

o When working with mean-variance, we can use normal-inverse gamma as conjugate prior (or
normal-inverse Wishart when working with mean-covariance matrix in case of multivariate Gaussian
distribution)

©

Other priors can also be used as well when inferring parameters of Gaussians, e.g.,
o normal-Inverse x? distribution is commonly used in Statistics community for scalar mean-variance
o Uniform priors can also be used

o Look at BDA Chapter 3 for such examples
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Inferring Parameters of Gaussian: Some Other Cases

o We only considered the simple 1-D Gaussian distribution
o The approach also extends to inferring parameters of a multivariate Gaussian

o For the unknown mean and precision matrix, normal-Wishart distribution can be used as prior

(+]

Posterior updates have forms similar to that in the 1-D case

o When working with mean-variance, we can use normal-inverse gamma as conjugate prior (or
normal-inverse Wishart when working with mean-covariance matrix in case of multivariate Gaussian
distribution)

©

Other priors can also be used as well when inferring parameters of Gaussians, e.g.,
o normal-Inverse x? distribution is commonly used in Statistics community for scalar mean-variance
o Uniform priors can also be used

o Look at BDA Chapter 3 for such examples

(+]

Also refer to “Conjugate Bayesian analysis of the Gaussian distribution” - Murphy (2007) for
various examples and more detailed derivations
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Next Class: More examples of Bayesian inference
with Gaussians
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