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Some Announcements

Prob-Stats refresher tutorial tomorrow (Thursday, Jan 10), 6:30pm-7:45pm, KD-101

Also posted some refresher slides on class webpage (under lecture-1 readings)

A regular class this Saturday, Jan 12 (following Monday schedule)

Sign up on Piazza if you haven’t already

Regularly watch out for slides, readings etc., on class webpage
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Probabilistic Modeling and Inference: The Fundamental Rules

Keep in mind these two simple rules of probability: sum rule and product rule

P(a) =
∑
b

P(a, b) (Sum Rule)

P(a, b) = P(a)P(b|a) = P(b)P(a|b) (Product Rule)

Note: For continuous random variables, sum is replaced by integral: P(a) =
∫
P(a, b)db

Another rule is the Bayes rule (can be easily obtained from the above two rules)

P(b|a) =
P(b)P(a|b)

P(a)
=

P(b)P(a|b)∫
P(a, b)db

=
P(b)P(a|b)∫
P(b)P(a|b)db

All of probabilistic modeling and inference is based on consistently applying these two simple rules
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Probabilistic Modeling

Assume data X = {xn}Nn=1 generated from a probability distribution with parameters θ

xn ∼ p(x |θ,m), n = 1, . . . ,N

p(x |θ,m) is also known as the likelihood (a function of the parameters θ)

Assume a prior distribution p(θ|m) on the parameters θ

Note: Here m collectively denotes “all other stuff” about the model, e.g.,

An “index” for the type of model being considered (e.g., “Gaussian”, “Student-t”, etc)

Any other (hyper)parameters of the likelihood/prior

Note: Usually we will omit the explicit use of m in the notation

In some situations (e.g., when doing model comparison/selection), we will use it explicitly

Note: For some models, the likelihood is not defined explicitly using a probability distribution but
implicitly via a probabilistic simulation process (more on such implicit probability models† later)

†Hierarchical Implicit Models and Likelihood-Free Variational Inference (Tran et al (NIPS 2017)
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Probabilistic Modeling

The prior distribution p(θ|m) plays a key role in probabilistic (especially Bayesian) modeling

Reflects our prior beliefs about possible parameter values before seeing the data

Can be “subjective” or “objective” (also a topic of debate, which we won’t get into)

Subjective: Prior (our beliefs) derived from past experiments

Objective: Prior represents “neutral knowledge” (e.g.. uniform, vague prior)

Can also be seen as a regularizer (connection with non-probabilistic view)

The goal of probabilistic modeling is usually one or more of the following

Infer the unknowns/parameters θ given data X (to summarize/understand the data)

Use the inferred quantities to make predictions
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Parameter Estimation/Inference

Can infer the parameters by computing the posterior distribution (Bayesian inference)

p(θ|X,m) =
p(X, θ|m)

p(X|m)
=

p(X|θ,m)p(θ|m)∫
p(X|θ,m)p(θ|m)dθ

=
Likelihood× Prior

Marginal likelihood

Note: Marginal likelihood p(X|m) is another very important quantity (more on it later)

Cheaper alternative: Point Estimation of the parameters. E.g.,

Maximum likelihood estimation (MLE): Find θ that makes the observed data most probable

θ̂ML = arg max
θ

log p(X|θ)

Maximum-a-Posteriori (MAP) estimation: Find θ that has the largest posterior probability

θ̂MAP = arg max
θ

log p(θ|X) = arg max
θ

[log p(X|θ) + log p(θ)]
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“Reading” the Posterior Distribution

Posterior provides us a holistic view about θ given observed data

A simple unimodal posterior distribution for a scalar parameter θ might look something like

Various types of estimates regarding θ can be obtained from the posterior, e.g.,

Mode of the posterior (same as the MAP estimate)

Mean and median of the posterior

Variance/spread of the posterior (uncertainty in our estimate of the parameters)

Any quantile (say 0 < α < 1 quantile) of the posterior, e.g., θ∗ s.t. p(θ ≤ θ∗) = α

Various types of intervals/regions..
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“Reading” the Posterior

Central Interval Highest Probability Density Region

100(1− α)% Credible interval: Region in which 1− α fraction of posterior’s mass resides

Cα(X) = (`, u) : p(` ≤ θ ≤ u|X) = 1− α

Credible Interval is not unique (there can be many 100(1− α)% intervals)

Central Interval is is a symmetrized version of Credible Interval (α/2 mass on each tail)

Another useful interval: The (1− α) Highest Probability Density (HPD) region is defined as

Cα(X) = {θ : p(θ|X) ≥ p∗}, s.t. 1− α =

∫
θ:p(θ|X)≥p∗

p(θ|X)dθ
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“Reading” the Posterior

CI, HPD, etc. can also be defined for multi-modal posteriors

Central Interval Highest Probability Density Region

Computing quantiles, CI, HPD, etc. may require inverting the CDF of the posterior
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Using Posterior for Making Predictions

Posterior can be used to compute the posterior predictive distribution (PPD) of new observation

The PPD of a new observation x∗ given previous observations

p(x∗|X,m) =

∫
p(x∗, θ|X,m)dθ =

∫
p(x∗|θ,X,m)p(θ|X,m)dθ

=

∫
p(x∗|θ,m)p(θ|X,m)dθ

Note: In the above, we assume that the observations are i.i.d. given θ

Computing PPD requires doing a posterior-weighted averaging over all values of θ

If the integral in PPD is intractable, we can approximate the PPD by plug-in predictive

p(x∗|X,m) ≈ p(x∗|θ̂,m)

.. where θ̂ is a point estimate of θ (e.g., MLE/MAP)

The plug-in predictive is the same as PPD with p(θ|X,m) approximated by a point mass at θ̂
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Marginal Likelihood

Recall the Bayes rule for computing the posterior

p(θ|X,m) =
p(X, θ|m)

p(X|m)
=

p(X|θ,m)p(θ|m)∫
p(X|θ,m)p(θ|m)dθ

=
Likelihood× Prior

Marginal likelihood

The denominator in the Bayes rule is the marginal likelihood (a.k.a. “model evidence”)

Note that p(X|m) = Ep(θ|m)[p(X|θ,m)] is the average/expected likelihood under model m

For a good model, we would expect this “averaged” quantity to be large (most θ’s will be good)

Note that marginal likelihood is also like a “prior predictive distribution”
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Model Selection and Model Averaging

Marginal likelihood is hard-to-compute (due to integral) but a very useful quantity

It can be used for doing model selection

Choose model m that has largest posterior probability

m̂ = arg max
m

p(m|X) = arg max
m

p(X|m)p(m)

p(X)
= arg max

m
p(X|m)p(m)

If all models are equally likely a priori then m̂ = arg maxm p(X|m)

If m is a hyperparam, then arg maxm p(X|m) is MLE-II based hyperparameter estimation

Marginal likelihood can be used to compute p(m|X) and then perform Bayesian Model Averaging

p(x∗|X) =
M∑

m=1

p(x∗|X,m)p(m|X)

BMA does a “double” averaging to make prediction since p(x∗|X,m) =
∫
p(x∗|θ,m)p(θ|X,m)dθ
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A Simple Parameter Estimation Problem

(for a single-parameter model)
(hyperparameter if any will be assumed to be fixed/known)
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MLE via a simple example

Consider a sequence of N coin tosses (call head = 0, tail = 1)

The nth outcome xn is a binary random variable ∈ {0, 1}

Assume θ to be probability of a head (parameter we wish to estimate)

Each likelihood term p(xn | θ) is Bernoulli: p(xn | θ) = θxn(1− θ)1−xn

Log-likelihood:
∑N

n=1 log p(xn | θ) =
∑N

n=1 xn log θ + (1− xn) log(1− θ)

Taking derivative of the log-likelihood w.r.t. θ, and setting it to zero gives

θ̂MLE =

∑N
n=1 xn

N

θ̂MLE in this example is simply the fraction of heads!

MLE doesn’t have a way to express our prior belief about θ. Can be problematic especially when
the number of observations is very small (e.g., suppose very few or zero heads when N is small).
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MAP via a simple example

MAP estimation can incorporate a prior p(θ) on θ

Since θ ∈ (0, 1), one possibility can be to assume a Beta prior

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

α, β are called hyperparameters of the prior (these can have intuitive meaning; we’ll see shortly)

Note that each likelihood term is still a Bernoulli: p(xn|θ) = θxn(1− θ)1−xn
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MAP via a simple example (contd.)

The log posterior probability =
∑N

n=1 log p(xn|θ) + log p(θ)

Ignoring the constants w.r.t. θ, the log posterior probability:∑N
n=1{xn log θ + (1− xn) log(1− θ)}+ (α− 1) log θ + (β − 1) log(1− θ)

Taking derivative w.r.t. θ and setting to zero gives

θ̂MAP =

∑N
n=1 xn + α− 1

N + α + β − 2

Note: For α = 1, β = 1, i.e., p(θ) = Beta(1, 1) (equivalent to a uniform prior), θ̂MAP = θ̂MLE

What hyperparameters represent intuitively? Hyperparameters of the prior (in this case α, β) can
often be thought of as “pseudo-observations”.

α− 1, β − 1 are the expected numbers of heads and tails, respectively, before seeing any data
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Full Bayesian Inference via a simple example

Recall that each likelihood term was Bernoulli: p(xn|θ) = θxn(1− θ)1−xn

Let’s again choose the prior p(θ) as Beta: p(θ) = Beta(α, β) = Γ(α+β)
Γ(α)Γ(β)θ

α−1(1− θ)β−1

The posterior distribution will be proportional to the product of likelihood and prior

p(θ|X) ∝
N∏

n=1

p(xn|θ)p(θ)

∝ θα+
∑N

n=1 xn−1(1− θ)β+N−
∑N

n=1 xn−1

From simple inspection, note that the posterior p(θ|X) = Beta(α +
∑N

n=1 xn, β + N −
∑N

n=1 xn)

Here, finding the posterior boiled down to simply “multipy, add stuff, and identify the distribution”

Note: Can verify (exercise) that the normalization constant =
Γ(α+

∑N
n=1 xn)Γ(β+N−

∑N
n=1 xn)

Γ(α+β+N)

To verify, make use of the fact that
∫
p(θ|X)dθ = 1

Here, the posterior has the same form as the prior (both Beta): property of conjugate priors.
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Conjugate Priors

Many pairs of distributions are conjugate to each other. E.g.,

Bernoulli (likelihood) + Beta (prior) ⇒ Beta posterior

Binomial (likelihood) + Beta (prior) ⇒ Beta posterior

Multinomial (likelihood) + Dirichlet (prior) ⇒ Dirichlet posterior

Poisson (likelihood) + Gamma (prior) ⇒ Gamma posterior

Gaussian (likelihood) + Gaussian (prior) ⇒ Gaussian posterior

and many other such pairs ..

Easy to identify if two distributions are conjugate to each other: their functional forms are similar

E.g., recall the forms of Bernoulli and Beta

Bernoulli ∝ θx(1− θ)1−x , Beta ∝ θα−1(1− θ)β−1

More on conjugate priors when we look at exponental family distributions
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Making Predictions

Let’s say we want to compute the probability that the next outcome xN+1 ∈ {0, 1} will be a head

The plug-in predictive distribution using a point estimate θ̂ (e.g., using MLE/MAP)

p(xN+1 = 1|X) ≈ p(xN+1 = 1|θ̂) = θ̂ or equivalently p(xN+1|X) ≈ Bernoulli(xN+1 | θ̂)

The posterior predictive distribution (averaging over all θ weighted by their posterior probabilities):

p(xN+1 = 1|X) =

∫ 1

0

P(xN+1 = 1|θ)p(θ|X)dθ

=

∫ 1

0

θ × Beta(θ|α + N1, β + N0)dθ

= E[θ|X]

=
α + N1

α + β + N

Therefore the posterior predictive distribution: p(xN+1|X) = Bernoulli(xN+1 | E[θ|X])
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Another Example: Estimating Gaussian Mean

Consider N i.i.d. observations X = {x1, . . . , xN} drawn from a one-dim Gaussian N (x |µ, σ2)

p(xn|µ, σ2) = N (x |µ, σ2) ∝ exp

[
− (xn − µ)2

2σ2

]
p(X|µ, σ2) =

N∏
n=1

p(xn|µ, σ2)

Assume the mean µ ∈ R of the Gaussian is unknown and assume variance σ2 to be known/fixed

We wish to estimate the unknown µ given the data X

Let’s do fully Bayesian inference for µ (not MLE/MAP)

We first need a prior distribution for the unknown param. µ

Let’s choose a Gaussian prior on µ, i.e., p(µ) = N (µ|µ0, σ
2
0) with µ0, σ

2
0 as fixed

Therefore this is also a single-parameter model (only µ is the unknown)
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Another Example: Estimating Gaussian Mean

The posterior distribution for the unknown mean parameter µ

p(µ|X) =
p(X|µ)p(µ)

p(X)
∝

N∏
n=1

exp

[
−

(xn − µ)2

2σ2

]
× exp

[
−

(µ− µ0)2

2σ2
0

]

(Verify) The above posterior turns out to be another Gaussian p(µ|X) = N (µ|µN , σ
2
N) where

1

σ2
N

=
N

σ2
+

1

σ2
0

µN =
σ2

Nσ2
0 + σ2

µ0 +
Nσ2

0

Nσ2
0 + σ2

x̄ (where x̄ =

∑N
n=1 xn

N
)

Making prediction: The posterior predictive distribution for a new observation x∗ will be

p(x∗|X) =

∫
p(x∗|µ)p(µ|X)dµ =

∫
N (x∗|µ, σ2)N (µ|µN , σ

2
N)dµ = N (x∗|µN , σ

2
N + σ2)

Note that, in contrast, the plug-in predictive posterior, given a point estimate µ̂ would be

p(x∗|X) =

∫
p(x∗|µ)p(µ|X)dµ ≈ p(x∗|µ̂) = N (x∗|µ̂, σ2)
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