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Some Announcements

Prob-Stats refresher tutorial tomorrow (Thursday, Jan 10), 6:30pm-7:45pm, KD-101

©

o Also posted some refresher slides on class webpage (under lecture-1 readings)

A regular class this Saturday, Jan 12 (following Monday schedule)

©

o Sign up on Piazza if you haven't already

©

Regularly watch out for slides, readings etc., on class webpage
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Probabilistic Modeling and Inference: The Fundamental Rules

o Keep in mind these two simple rules of probability: sum rule and product rule

> P(a,b) (Sum Rule)
b

P(a,b) = P(a)P(bla) = P(b)P(alb) (Product Rule)

P(a)

©

Note: For continuous random variables, sum is replaced by integral: P(a) = [ P(a, b)db

©

Another rule is the Bayes rule (can be easily obtained from the above two rules)

P(bla) = P(b)P(a|b) _ P(b)P(alb) _ P(b)P(a|b)
P(a) [ P(a,b)db — [ P(b)P(a|b)db

o All of probabilistic modeling and inference is based on consistently applying these two simple rules
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Probabilistic Modeling

o Assume data X = {x,}N_; generated from a probability distribution with parameters 6

Xp~p(x|0,m), n=1,...,N

(+]

p(x|6, m) is also known as the likelihood (a function of the parameters )

©

Assume a prior distribution p(6|m) on the parameters

©

Note: Here m collectively denotes “all other stuff” about the model, e.g.,

o An “index” for the type of model being considered (e.g., “Gaussian”, “Student-t’, etc)
o Any other (hyper)parameters of the likelihood/prior

o Note: Usually we will omit the explicit use of m in the notation
o In some situations (e.g., when doing model comparison/selection), we will use it explicitly

o Note: For some models, the likelihood is not defined explicitly using a probability distribution but
implicitly via a probabilistic simulation process (more on such implicit probability models’ later)

T Hierarchical Implicit Models and Likelihood-Free Variational Inference (Tran et al (NIPS 2017)
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Probabilistic Modeling

o The prior distribution p(f|m) plays a key role in probabilistic (especially Bayesian) modeling

o Reflects our prior beliefs about possible parameter values before seeing the data

p(0)

0

Can be "subjective” or “objective” (also a topic of debate, which we won't get into)

©

o Subjective: Prior (our beliefs) derived from past experiments
Objective: Prior represents “neutral knowledge” (e.g.. uniform, vague prior)

©

o Can also be seen as a regularizer (connection with non-probabilistic view)

o The goal of probabilistic modeling is usually one or more of the following

o Infer the unknowns/parameters 6 given data X (to summarize/understand the data)

o Use the inferred quantities to make predictions
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Parameter Estimation/Inference

o Can infer the parameters by computing the posterior distribution (Bayesian inference)
_p(X,0lm)  p(X]|0, m)p(A|m)  Likelihood x Prior
— p(X|m) [ p(X|0, m)p(0|m)d®  Marginal likelihood

p(01X, m)

b Posterior PDJ
p(01X)
\Obs. Likelihood:
Prior PO} p(X[6)
p(0),

73

2 0 2

o Note: Marginal likelihood p(X|m) is another very important quantity (more on it later)

o Cheaper alternative: Point Estimation of the parameters. E.g.,
o Maximum likelihood estimation (MLE): Find 6 that makes the observed data most probable

O = arg max log p(X|0)

o Maximum-a-Posteriori (MAP) estimation: Find 0 that has the largest posterior probability

Omap = arg max log p(0|1X) = arg meax[log p(X|6) + log p(0)]
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“Reading” the Posterior Distribution

o Posterior provides us a holistic view about 8 given observed data

o A simple unimodal posterior distribution for a scalar parameter § might look something like

p(0]X) .

o Various types of estimates regarding 6 can be obtained from the posterior, e.g.,

o Mode of the posterior (same as the MAP estimate)

J -

o Mean and median of the posterior

o Variance/spread of the posterior (uncertainty in our estimate of the parameters)
o Any quantile (say 0 < a < 1 quantile) of the posterior, e.g., 0. s.t. p(0 < 0.) =«
o Various types of intervals/regions..
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“Reading” the Posterior

Central Interval Highest Probability Density Region

0 100(1 — )% Credible interval: Region in which 1 — « fraction of posterior's mass resides

CaX)=(lu):pl<O<uX)=1-«

o Credible Interval is not unique (there can be many 100(1 — )% intervals)

©

Central Interval is is a symmetrized version of Credible Interval («/2 mass on each tail)

©

Another useful interval: The (1 — «) Highest Probability Density (HPD) region is defined as

Ca(X) = {0:p(0X) = 57}, st 1-a= [ p(0]X)d0
0:p(01X)>p*
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“Reading” the Posterior

o Cl, HPD, etc. can also be defined for multi-modal posteriors

Central Interval Highest Probability Density Region

| /

o Computing quantiles, Cl, HPD, etc. may require inverting the CDF of the posterior
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Using Posterior for Making Predictions

o Posterior can be used to compute the posterior predictive distribution (PPD) of new observation

©

The PPD of a new observation x, given previous observations
plx.X,m) = [ p(x. X, m)d0 = [ p(x.16, X, mp(6]X, m)do

_ /‘p(x*\F),m)p(ﬁ\X,m)df)

o Note: In the above, we assume that the observations are i.i.d. given 6

©

Computing PPD requires doing a posterior-weighted averaging over all values of 6

o If the integral in PPD is intractable, we can approximate the PPD by plug-in predictive
p(x.|X, m) = p(x.|0, m)

. where 0 is a point estimate of 0 (e.g., MLE/MAP)
o The plug-in predictive is the same as PPD with p(6|X, m) approximated by a point mass at 0
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Marginal Likelihood

o Recall the Bayes rule for computing the posterior

p(X,0lm)  p(X[|0, m)p(6|m)  Likelihood x Prior

PO, m) = p(X|m) [ p(X|8, m)p(6]m)dd ~ Marginal likelihood

o The denominator in the Bayes rule is the marginal likelihood (a.k.a. “model evidence")
o Note that p(X|m) = E,g|m)[p(X|0, m)] is the average/expected likelihood under model m

o For a good model, we would expect this “averaged” quantity to be large (most 8's will be good)

Model Evidence
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o Note that marginal likelihood is also like a “prior predictive distribution”
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Model Selection and Model Averaging

o Marginal likelihood is hard-to-compute (due to integral) but a very useful quantity

o It can be used for doing model selection

o Choose model m that has largest posterior probability
X
m = arg max p(m|X) = arg max % = arg max p(X|m)p(m)
o If all models are equally likely a priori then 1 = arg maxy, p(X|m)

o If mis a hyperparam, then arg maxm, p(X|m) is MLE-II based hyperparameter estimation

o Marginal likelihood can be used to compute p(m|X) and then perform Bayesian Model Averaging
M

p(x.|X) = > p(x.X, m)p(m|X)

m=1

o BMA does a “double” averaging to make prediction since p(x.|X,m) = [ p(x.|6, m)p(0|X, m)d6

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Basics of Probabilistic/Bayesian Modeling and Parameter Estimation 12



A Simple Parameter Estimation Problem

(for a single-parameter model)
(hyperparameter if any will be assumed to be fixed /known)
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MLE via a simple example

o Consider a sequence of N coin tosses (call head = 0, tail = 1)

o The n'" outcome x, is a binary random variable € {0, 1}

o Assume 6 to be probability of a head (parameter we wish to estimate)

o Each likelihood term p(x, | 6) is Bernoulli: p(x, | ) = 6*(1 — §)1=*=

o Log-likelihood: 27:1 log p(x, | 0) = Zyzl Xnlogf+ (1 —x,)log(1—6)
o Taking derivative of the log-likelihood w.r.t. #, and setting it to zero gives

N
Zn:l Xn

é\MLE = N

o @MLE in this example is simply the fraction of heads!

o MLE doesn't have a way to express our prior belief about . Can be problematic especially when
the number of observations is very small (e.g., suppose very few or zero heads when N is small).
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MAP via a simple example

o MAP estimation can incorporate a prior p(#) on 6

o Since 6 € (0,1), one possibility can be to assume a Beta prior

o «, 3 are called hyperparameters of the prior (these can have intuitive meaning; we'll see shortly)

o Note that each likelihood term is still a Bernoulli: p(x,|0) = 6*"(1 — §)1=*n
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MAP via a simple example (contd.)

©

©

(]

©

The log posterior probability = 221:1 log p(x,|0) + log p(0)
Ignoring the constants w.r.t. 6, the log posterior probability:
SV {xnlog + (1 — x,)log(1 — 0)} + (v — 1) log 0 + (8 — 1) log(1 — 6)

Taking derivative w.r.t. 6 and setting to zero gives
Onnp = Ly Xn b1
N+a+p-2

Note: For a =1,8 =1, i.e., p(0) = Beta(1,1) (equivalent to a uniform prior), Oyap = Opie

What hyperparameters represent intuitively? Hyperparameters of the prior (in this case «, ) can
often be thought of as “pseudo-observations”.

o a— 1, B —1 are the expected numbers of heads and tails, respectively, before seeing any data

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Basics of Probabilistic/Bayesian Modeling and Parameter Estimation



Full Bayesian Inference via a simple example

(+]

Recall that each likelihood term was Bernoulli: p(x,[0) = 6%»(1 — §)1=*=

o Let's again choose the prior p(f) as Beta: p(#) = Beta(a, ) = a+ﬁ))90‘ 1(1-0)5-1

©

The posterior distribution will be proportional to the product of likelihood and prior

p(0|1X) prn|()

- 9a+zn:1 xi=1(] — 9)5+N722’:1 xp—1

©

From simple inspection, note that the posterior p(6|X) = Beta(a + Z 1 Xn B+ N— Z 1 Xn)

©

Here, finding the posterior boiled down to simply “multipy, add stuff, and identify the distribution”

T(at+3N ) x)T(B+N=3 xn)
INa+B8+N)

o Note: Can verify (exercise) that the normalization constant =
o To verify, make use of the fact that [ p(0|X)df =1

o Here, the posterior has the same form as the prior (both Beta): property of conjugate priors.
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Conjugate Priors

o Many pairs of distributions are conjugate to each other. E.g.,
o Bernoulli (likelihood) + Beta (prior) = Beta posterior
o Binomial (likelihood) + Beta (prior) = Beta posterior
o Multinomial (likelihood) + Dirichlet (prior) = Dirichlet posterior
o Poisson (likelihood) + Gamma (prior) = Gamma posterior
o Gaussian (likelihood) + Gaussian (prior) = Gaussian posterior
o and many other such pairs ..
o Easy to identify if two distributions are conjugate to each other: their functional forms are similar
o E.g., recall the forms of Bernoulli and Beta

Bernoulli oc 6*(1 — 6)' ™, Beta xx 9“7 '(1 —0)° !

o More on conjugate priors when we look at exponental family distributions
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Making Predictions

o Let's say we want to compute the probability that the next outcome xpy1 € {0,1} will be a head
o The plug-in predictive distribution using a point estimate 6 (e.g., using MLE/MAP)

p(xn41 = 1|X) = p(xns1 = 1|10) = 0 or equivalently p(xn41|X) ~ Bernoulli(xysy | 0)

o The posterior predictive distribution (averaging over all § weighted by their posterior probabilities):

1
P =1X) = [ Plxwi = 110)p(61X)d0
0

1
= / 0 x Beta(@\a+Nl,B+N0)d9
0

E[0]X]
a+ Ny
a+B+N

o Therefore the posterior predictive distribution: p(xy,1|X) = Bernoulli(xny1 | E[0|X])
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Another Example: Estimating Gaussian Mean

o Consider N i.i.d. observations X = {xi,...,xy} drawn from a one-dim Gaussian N (x|, o?)
)2
p(xalpt,0?) = N(x|u,0%) o< exp [—()(202”)}
N
p(Xi,0?) = T plxaliso?)
n=1

(+]

Assume the mean 1 € R of the Gaussian is unknown and assume variance o2 to be known /fixed

(+]

We wish to estimate the unknown p given the data X

©

Let's do fully Bayesian inference for i (not MLE/MAP)
o We first need a prior distribution for the unknown param. p

o Let's choose a Gaussian prior on , i.e., p(p) = N(u|po, 03) with g, 03 as fixed

©

Therefore this is also a single-parameter model (only p is the unknown)

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Basics of Probabilistic/Bayesian Modeling and Parameter Estimation



Prob. Mod. & Inference - CS698X (Piyush Rai, IITK)

Another Example: Estimating Gaussian Mean
o The posterior distribution for the unknown mean parameter p

p(X|p)p()

N 2 2
(xo — 1) (1 — po)
EI Y b {’T} e {’7}

2
20

p(p|X) =

o (Verify) The above posterior turns out to be another Gaussian p(u|X) = N (u|pn, o3) where

1 N 1
o2 o2 o}
2 2 N
o Nog " Xn
+ X where x = &=n=1""
U NO’S + 02 Ho No'g + 02 ( N )

o Making prediction: The posterior predictive distribution for a new observation x, will be
plxeX) = [ plxclidpsX)an = [ At PN (s AR} = A, 0+ 0%
o Note that, in contrast, the plug-in predictive posterior, given a point estimate i would be

p(x.|X) = / p(xe )P (uX)dps ~ plxe 1) = N (xe |1 02)
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