Basics of Probabilistic/Bayesian Modeling and Parameter Estimation

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

Jan 9, 2019

- Prob-Stats refresher tutorial tomorrow (Thursday, Jan 10), 6:30pm-7:45pm, KD-101
 - Also posted some refresher slides on class webpage (under lecture-1 readings)
- A regular class this Saturday, Jan 12 (following Monday schedule)
- Sign up on Piazza if you haven't already
- Regularly watch out for slides, readings etc., on class webpage

Probabilistic Modeling and Inference: The Fundamental Rules

• Keep in mind these two simple rules of probability: sum rule and product rule

$$P(a) = \sum_{b} P(a, b) \text{ (Sum Rule)}$$
$$P(a, b) = P(a)P(b|a) = P(b)P(a|b) \text{ (Product Rule)}$$

• Note: For continuous random variables, sum is replaced by integral: $P(a) = \int P(a, b) db$

• Another rule is the Bayes rule (can be easily obtained from the above two rules)

$$P(b|a) = \frac{P(b)P(a|b)}{P(a)} = \frac{P(b)P(a|b)}{\int P(a,b)db} = \frac{P(b)P(a|b)}{\int P(b)P(a|b)db}$$

• All of probabilistic modeling and inference is based on consistently applying these two simple rules

Probabilistic Modeling

• Assume data $\mathbf{X} = {\mathbf{x}_n}_{n=1}^N$ generated from a probability distribution with parameters θ

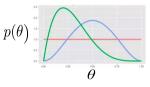
 $\boldsymbol{x}_n \sim p(\boldsymbol{x}|\theta, m), \quad n = 1, \dots, N$

- $p(\mathbf{x}|\theta, m)$ is also known as the likelihood (a function of the parameters θ)
- Assume a prior distribution $p(\theta|m)$ on the parameters θ
- Note: Here *m* collectively denotes "all other stuff" about the model, e.g.,
 - An "index" for the type of model being considered (e.g., "Gaussian", "Student-t", etc)
 - Any other (hyper)parameters of the likelihood/prior
- Note: Usually we will omit the explicit use of m in the notation
 - In some situations (e.g., when doing model comparison/selection), we will use it explicitly
- Note: For some models, the likelihood is not defined explicitly using a probability distribution but implicitly via a probabilistic simulation process (more on such implicit probability models[†] later)

[†]Hierarchical Implicit Models and Likelihood-Free Variational Inference (Tran et al (NIPS 2017)

Probabilistic Modeling

- The prior distribution $p(\theta|m)$ plays a key role in probabilistic (especially Bayesian) modeling
 - Reflects our prior beliefs about possible parameter values before seeing the data



- Can be "subjective" or "objective" (also a topic of debate, which we won't get into)
- Subjective: Prior (our beliefs) derived from past experiments
- Objective: Prior represents "neutral knowledge" (e.g.. uniform, vague prior)
- Can also be seen as a regularizer (connection with non-probabilistic view)
- The goal of probabilistic modeling is usually one or more of the following
 - Infer the unknowns/parameters heta given data **X** (to summarize/understand the data)
 - Use the inferred quantities to make predictions

Parameter Estimation/Inference

• Can infer the parameters by computing the posterior distribution (Bayesian inference)

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X},\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$

• Note: Marginal likelihood p(X|m) is another very important quantity (more on it later)

• Cheaper alternative: Point Estimation of the parameters. E.g.,

• Maximum likelihood estimation (MLE): Find θ that makes the observed data most probable

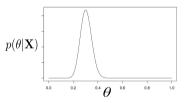
$$\hat{\theta}_{ML} = \arg\max_{ heta} \log p(\mathbf{X}| heta)$$

• Maximum-a-Posteriori (MAP) estimation: Find θ that has the largest posterior probability

$$\hat{\theta}_{MAP} = \arg\max_{\theta} \log p(\theta | \mathbf{X}) = \arg\max_{\theta} [\log p(\mathbf{X} | \theta) + \log p(\theta)]$$

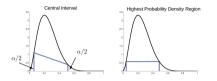
"Reading" the Posterior Distribution

- ${\, \bullet \,}$ Posterior provides us a holistic view about θ given observed data
- A simple unimodal posterior distribution for a scalar parameter heta might look something like



- Various types of estimates regarding θ can be obtained from the posterior, e.g.,
 - Mode of the posterior (same as the MAP estimate)
 - Mean and median of the posterior
 - Variance/spread of the posterior (uncertainty in our estimate of the parameters)
 - Any quantile (say 0 < lpha < 1 quantile) of the posterior, e.g., $heta_*$ s.t. $p(heta \leq heta_*) = lpha$
 - Various types of intervals/regions..

"Reading" the Posterior



• 100(1 – α)% Credible interval: Region in which 1 – α fraction of posterior's mass resides

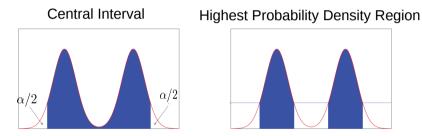
$$\mathcal{C}_{lpha}(\mathbf{X}) = (\ell, u): p(\ell \leq heta \leq u | \mathbf{X}) = 1 - lpha$$

• Credible Interval is not unique (there can be many $100(1 - \alpha)\%$ intervals)

- Central Interval is is a symmetrized version of Credible Interval (lpha/2 mass on each tail)
- Another useful interval: The (1α) Highest Probability Density (HPD) region is defined as

$$\mathcal{C}_{\alpha}(\mathbf{X}) = \{ \theta : p(\theta | \mathbf{X}) \ge p^* \}, \quad \text{s.t.} \quad 1 - \alpha = \int_{\theta : p(\theta | \mathbf{X}) > p^*} p(\theta | \mathbf{X}) d\theta$$

• CI, HPD, etc. can also be defined for multi-modal posteriors



• Computing quantiles, CI, HPD, etc. may require inverting the CDF of the posterior

Using Posterior for Making Predictions

Posterior can be used to compute the posterior predictive distribution (PPD) of new observation
The PPD of a new observation x_{*} given previous observations

$$p(\mathbf{x}_*|\mathbf{X},m) = \int p(\mathbf{x}_*,\theta|\mathbf{X},m)d\theta = \int p(\mathbf{x}_*|\theta,\mathbf{X},m)p(\theta|\mathbf{X},m)d\theta$$
$$= \int p(\mathbf{x}_*|\theta,m)p(\theta|\mathbf{X},m)d\theta$$

 $\, \circ \,$ Note: In the above, we assume that the observations are i.i.d. given θ

Computing PPD requires doing a posterior-weighted averaging over all values of θ
If the integral in PPD is intractable, we can approximate the PPD by plug-in predictive

$$p(oldsymbol{x}_*|oldsymbol{X},m)pprox p(oldsymbol{x}_*|\hat{ heta},m)$$

.. where $\hat{\theta}$ is a point estimate of θ (e.g., MLE/MAP)

• The plug-in predictive is the same as PPD with $p(\theta | \mathbf{X}, m)$ approximated by a point mass at $\hat{\theta}$

Marginal Likelihood

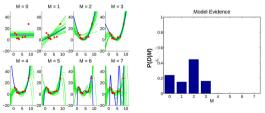
• Recall the Bayes rule for computing the posterior

$$p(\theta|\mathbf{X}, m) = \frac{p(\mathbf{X}, \theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta, m)p(\theta|m)}{\int p(\mathbf{X}|\theta, m)p(\theta|m)d\theta} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Marginal likelihood}}$$

• The denominator in the Bayes rule is the marginal likelihood (a.k.a. "model evidence")

• Note that $p(\mathbf{X}|m) = \mathbb{E}_{p(\theta|m)}[p(\mathbf{X}|\theta, m)]$ is the average/expected likelihood under model m

• For a good model, we would expect this "averaged" quantity to be large (most θ 's will be good)



• Note that marginal likelihood is also like a "prior predictive distribution"

Model Selection and Model Averaging

Marginal likelihood is hard-to-compute (due to integral) but a very useful quantity
It can be used for doing model selection

• Choose model *m* that has largest posterior probability

$$\hat{m} = \arg \max_{m} p(m|\mathbf{X}) = \arg \max_{m} \frac{p(\mathbf{X}|m)p(m)}{p(\mathbf{X})} = \arg \max_{m} p(\mathbf{X}|m)p(m)$$

- If all models are equally likely a priori then $\hat{m} = rg\max_m p(\mathbf{X}|m)$
- If m is a hyperparam, then $\arg \max_m p(\mathbf{X}|m)$ is MLE-II based hyperparameter estimation
- Marginal likelihood can be used to compute $p(m|\mathbf{X})$ and then perform Bayesian Model Averaging

$$p(\mathbf{x}_*|\mathbf{X}) = \sum_{m=1}^{M} p(\mathbf{x}_*|\mathbf{X}, m) p(m|\mathbf{X})$$

• BMA does a "double" averaging to make prediction since $p(\mathbf{x}_*|\mathbf{X}, m) = \int p(\mathbf{x}_*|\theta, m) p(\theta|\mathbf{X}, m) d\theta$

A Simple Parameter Estimation Problem

(for a single-parameter model) (hyperparameter if any will be assumed to be fixed/known)

MLE via a simple example

- Consider a sequence of N coin tosses (call head = 0, tail = 1)
- The n^{th} outcome \boldsymbol{x}_n is a binary random variable $\in \{0, 1\}$
- Assume θ to be probability of a head (parameter we wish to estimate)
- Each likelihood term $p(\mathbf{x}_n \mid \theta)$ is Bernoulli: $p(\mathbf{x}_n \mid \theta) = \theta^{\mathbf{x}_n} (1 \theta)^{1 \mathbf{x}_n}$
- Log-likelihood: $\sum_{n=1}^{N} \log p(\mathbf{x}_n \mid \theta) = \sum_{n=1}^{N} \mathbf{x}_n \log \theta + (1 \mathbf{x}_n) \log(1 \theta)$
- $\bullet\,$ Taking derivative of the log-likelihood w.r.t. $\theta,$ and setting it to zero gives

$$\hat{\theta}_{MLE} = \frac{\sum_{n=1}^{N} \mathbf{x}_n}{N}$$

- $\hat{\theta}_{MLE}$ in this example is simply the fraction of heads!
- MLE doesn't have a way to express our prior belief about θ . Can be problematic especially when the number of observations is very small (e.g., suppose very few or zero heads when N is small).

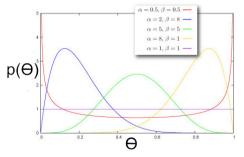
MAP via a simple example

• MAP estimation can incorporate a prior $p(\theta)$ on θ

ullet Since $\theta\in(0,1),$ one possibility can be to assume a Beta prior

$$p(heta) = rac{ \mathsf{\Gamma}(lpha+eta)}{ \mathsf{\Gamma}(lpha) \mathsf{\Gamma}(eta)} heta^{lpha-1} (1- heta)^{eta-1}$$

• α, β are called hyperparameters of the prior (these can have intuitive meaning; we'll see shortly)



• Note that each likelihood term is still a Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$

MAP via a simple example (contd.)

• The log posterior probability = $\sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta) + \log p(\theta)$

• Ignoring the constants w.r.t. θ , the log posterior probability:

 $\sum_{n=1}^{N} \{ \boldsymbol{x}_n \log \theta + (1 - \boldsymbol{x}_n) \log(1 - \theta) \} + (\alpha - 1) \log \theta + (\beta - 1) \log(1 - \theta)$

• Taking derivative w.r.t. θ and setting to zero gives

$$\hat{\theta}_{MAP} = \frac{\sum_{n=1}^{N} \mathbf{x}_n + \alpha - 1}{N + \alpha + \beta - 2}$$

• Note: For $\alpha = 1, \beta = 1$, i.e., $p(\theta) = \text{Beta}(1, 1)$ (equivalent to a uniform prior), $\hat{\theta}_{MAP} = \hat{\theta}_{MLE}$

• What hyperparameters represent intuitively? Hyperparameters of the prior (in this case α , β) can often be thought of as "pseudo-observations".

• $\alpha - 1$, $\beta - 1$ are the expected numbers of heads and tails, respectively, before seeing any data

Full Bayesian Inference via a simple example

- Recall that each likelihood term was Bernoulli: $p(\mathbf{x}_n|\theta) = \theta^{\mathbf{x}_n}(1-\theta)^{1-\mathbf{x}_n}$
- Let's again choose the prior $p(\theta)$ as Beta: $p(\theta) = \text{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha-1}(1-\theta)^{\beta-1}$
- The posterior distribution will be proportional to the product of likelihood and prior

$$egin{aligned} & \mathcal{P}(heta|\mathbf{X}) & \propto & \prod_{n=1}^N \mathcal{P}(\mathbf{x}_n| heta)\mathcal{P}(heta) \ & \propto & heta^{lpha+\sum_{n=1}^N \mathbf{x}_n-1} (1- heta)^{eta+N-\sum_{n=1}^N \mathbf{x}_n-1} \end{aligned}$$

• From simple inspection, note that the posterior $p(\theta|\mathbf{X}) = \text{Beta}(\alpha + \sum_{n=1}^{N} \mathbf{x}_n, \beta + N - \sum_{n=1}^{N} \mathbf{x}_n)$

- Here, finding the posterior boiled down to simply "multipy, add stuff, and identify the distribution"
- Note: Can verify (exercise) that the normalization constant = $\frac{\Gamma(\alpha + \sum_{n=1}^{N} \mathbf{x}_n)\Gamma(\beta + N \sum_{n=1}^{N} \mathbf{x}_n)}{\Gamma(\alpha + \beta + N)}$
 - $\, \circ \,$ To verify, make use of the fact that $\int {\it p}(\theta | {\bf X}) d\theta = 1$

• Here, the posterior has the same form as the prior (both Beta): property of conjugate priors.

Conjugate Priors

• Many pairs of distributions are conjugate to each other. E.g.,

- Bernoulli (likelihood) + Beta (prior) \Rightarrow Beta posterior
- Binomial (likelihood) + Beta (prior) \Rightarrow Beta posterior
- $_{\odot}$ Multinomial (likelihood) + Dirichlet (prior) \Rightarrow Dirichlet posterior
- Poisson (likelihood) + Gamma (prior) \Rightarrow Gamma posterior
- $\, \circ \,$ Gaussian (likelihood) + Gaussian (prior) \Rightarrow Gaussian posterior
- and many other such pairs ..

• Easy to identify if two distributions are conjugate to each other: their functional forms are similar

• E.g., recall the forms of Bernoulli and Beta

$$\mathsf{Bernoulli} \propto \theta^{\mathsf{x}} (1-\theta)^{1-\mathsf{x}}, \quad \mathsf{Beta} \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

• More on conjugate priors when we look at exponental family distributions

Making Predictions

- Let's say we want to compute the probability that the next outcome $x_{N+1} \in \{0,1\}$ will be a head
- The plug-in predictive distribution using a point estimate $\hat{ heta}$ (e.g., using MLE/MAP)

 $p(\mathbf{x}_{N+1} = 1 | \mathbf{X}) \approx p(\mathbf{x}_{N+1} = 1 | \hat{\theta}) = \hat{\theta} \qquad \text{or equivalently} \qquad p(\mathbf{x}_{N+1} | \mathbf{X}) \approx \text{Bernoulli}(\mathbf{x}_{N+1} \mid \hat{\theta})$

• The posterior predictive distribution (averaging over all θ weighted by their posterior probabilities):

$$p(\mathbf{x}_{N+1} = 1 | \mathbf{X}) = \int_{0}^{1} P(\mathbf{x}_{N+1} = 1 | \theta) p(\theta | \mathbf{X}) d\theta$$
$$= \int_{0}^{1} \theta \times \text{Beta}(\theta | \alpha + N_{1}, \beta + N_{0}) d\theta$$
$$= \mathbb{E}[\theta | \mathbf{X}]$$
$$= \frac{\alpha + N_{1}}{\alpha + \beta + N}$$

• Therefore the posterior predictive distribution: $p(\mathbf{x}_{N+1}|\mathbf{X}) = \text{Bernoulli}(\mathbf{x}_{N+1} \mid \mathbb{E}[\theta|\mathbf{X}])$

Another Example: Estimating Gaussian Mean

• Consider N i.i.d. observations $\mathbf{X} = \{x_1, \dots, x_N\}$ drawn from a one-dim Gaussian $\mathcal{N}(x|\mu, \sigma^2)$

$$p(x_n|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2) \propto \exp\left[-\frac{(x_n-\mu)^2}{2\sigma^2}\right]$$
$$p(\mathbf{X}|\mu,\sigma^2) = \prod_{n=1}^{N} p(x_n|\mu,\sigma^2)$$

• Assume the mean $\mu \in \mathbb{R}$ of the Gaussian is unknown and assume variance σ^2 to be known/fixed

- ${\, \bullet \, }$ We wish to estimate the unknown μ given the data ${\bf X}$
- $\,$ $\bullet\,$ Let's do fully Bayesian inference for μ (not MLE/MAP)
- ${\, \bullet \, }$ We first need a prior distribution for the unknown param. μ
- Let's choose a Gaussian prior on μ , i.e., $p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$ with μ_0, σ_0^2 as fixed
- Therefore this is also a single-parameter model (only μ is the unknown)

Another Example: Estimating Gaussian Mean

ullet The posterior distribution for the unknown mean parameter μ

$$p(\mu|\mathbf{X}) = \frac{p(\mathbf{X}|\mu)p(\mu)}{p(\mathbf{X})} \quad \propto \quad \prod_{n=1}^{N} \exp\left[-\frac{(x_n - \mu)^2}{2\sigma^2}\right] \times \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

• (Verify) The above posterior turns out to be another Gaussian $p(\mu|\mathbf{X}) = \mathcal{N}(\mu|\mu_N, \sigma_N^2)$ where

$$\begin{aligned} \frac{1}{\sigma_N^2} &= \frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \\ \mu_N &= \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{x} \end{aligned} \qquad (\text{where } \bar{x} = \frac{\sum_{n=1}^N x_n}{N}) \end{aligned}$$

• Making prediction: The posterior predictive distribution for a new observation x_* will be

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu) p(\mu|\mathbf{X}) d\mu = \int \mathcal{N}(x_*|\mu, \sigma^2) \mathcal{N}(\mu|\mu_N, \sigma_N^2) d\mu = \mathcal{N}(x_*|\mu_N, \sigma_N^2 + \sigma^2)$$

 ${\, \bullet \,}$ Note that, in contrast, the plug-in predictive posterior, given a point estimate $\hat{\mu}$ would be

$$p(x_*|\mathbf{X}) = \int p(x_*|\mu)p(\mu|\mathbf{X})d\mu \approx p(x_*|\hat{\mu}) = \mathcal{N}(x_*|\hat{\mu},\sigma^2)$$